LIVE OAK COMMUNITY CENTER UPGRADE
Berkeley, California
Specifications No. 19-11320-C

PROJECT MANUAL

July 17, 2019
Bid Set

Owner:
Department of Public Works
2180 Milvia Street
Berkeley, CA 94704
Phone 510/981-6300
Fax 510/981-6320
www.publicworks@cityofberkeley.info

Architect:
ELS Architecture and Urban Design
2040 Addison Street
Berkeley, CA 94704
Phone 510.549.2929
Fax 510.843.3304
www.elsarch.com
TABLE OF CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 01</td>
<td>Project Title Page</td>
</tr>
<tr>
<td>00 01 10</td>
<td>Table of Contents</td>
</tr>
</tbody>
</table>

DIVISION 01 - GENERAL REQUIREMENTS

DIVISION 02 - EXISTING CONDITIONS

- Section 02 41 16 Selective Building Demolition

DIVISIONS 03 - CONCRETE

- Section 03 20 00 Concrete Reinforcing
- Section 03 30 00 Cast-In-Place Concrete
- Section 03 35 00 Concrete Finishing

DIVISION 04 - MASONRY

- Section 04 22 00 Concrete Unit Masonry

DIVISION 05 - METALS

- Section 05 50 00 Metal Fabrications

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

- Section 06 10 00 Rough Carpentry
- Section 06 16 00 Sheathing
- Section 06 20 00 Finish Carpentry
- Section 06 41 10 Custom Casework
Table of Contents

Division 07 - Thermal and Moisture Protection
- Section 07 21 01 Building Insulation
- Section 07 31 13 Asphalt Shingles
- Section 07 46 23 Wood Siding
- Section 07 54 00 Thermoplastic Membrane Roofing
- Section 07 62 00 Sheet Metal Flashing and Trim
- Section 07 65 00 Flexible Flashing
- Section 07 84 00 Firestopping
- Section 07 92 00 Joint Sealants

Division 08 - Openings
- Section 08 01 51.10 Restoration of Steel Windows
- Section 08 11 15 Steel Doors and Frames
- Section 08 14 10 Wood Doors and Frames
- Section 08 31 13 Access Doors and Frames
- Section 08 33 26 Overhead Coiling Grilles
- Section 08 51 13 Aluminum Windows
- Section 08 71 00 Door Hardware
- Section 08 80 00 Glazing
- Section 08 83 00 Mirrors
- Section 08 90 00 Louvers and Vents

Division 09 - Finishes
- Section 09 29 00 Gypsum Board
- Section 09 30 00 Tiling
- Section 09 64 66 Wood Athletic Flooring
- Section 09 65 00 Resilient Flooring
- Section 09 68 13 Tile Carpentry
- Section 09 80 00 Acoustic Treatment
- Section 09 90 00 Painting and Coating
- Section 09 97 25 Vapor Emission Treatment Systems

Division 10 - Specialties
- Section 10 11 00 Visual Display Surfaces
- Section 10 14 00 Signage
- Section 10 21 13.20 Phenolic Toilet Compartments
- Section 10 22 33 Accordion Folding Partitions
- Section 10 28 13 Toilet Accessories
- Section 10 44 00 Fire Protection Specialties

Division 11 - Equipment
- Not Used

Division 12 - Furnishings
- Section 12 24 00 Window Shades
- Section 12 36 61.16 Solid Surfacing Countertops
- Section 12 61 00 Fixed Audience Seating
DIVISIONS 13 THROUGH 20

Not Used

DIVISION 21 - FIRE SUPPRESSION

Section 21 05 17 Sleeves and Sleeve Seals for Fire-Suppression Piping
Section 21 05 18 Escutcheons for Fire-Suppression Piping
Section 21 05 23 General-Duty Valves for Fire Protection Piping
Section 21 05 48 Vibration and Seismic Controls for Fire-Suppression Piping and Equipment
Section 21 05 53 Identification for Fire-Suppression Piping and Equipment
Section 21 11 19 Fire Department Connections
Section 21 13 13 Wet-Pipe Sprinkler Systems

DIVISION 22 - PLUMBING

Section 22 05 17 Sleeves and Sleeve Seals for Plumbing Piping
Section 22 05 18 Escutcheons for Plumbing Piping
Section 22 05 23.12 Ball Valves for Plumbing Piping
Section 22 05 23.14 Check Valves for Plumbing Piping
Section 22 05 29 Hangers and Supports for Plumbing Piping and Equipment
Section 22 05 48 Vibration and Seismic Controls for Plumbing Piping and Equipment
Section 22 05 53 Identification for Plumbing Piping and Equipment
Section 22 07 19 Plumbing Piping Insulation
Section 22 11 16 Domestic Water Piping
Section 22 11 19 Domestic Water Piping Specialties
Section 22 13 16 Sanitary Waste and Vent Piping
Section 22 13 19 Sanitary Waste Piping Specialties
Section 22 13 19.13 Sanitary Drains
Section 22 13 23 Sanitary Waste Interceptors
Section 22 33 00 Electric, Domestic-Water Heaters
Section 22 42 13.13 Commercial Water Closets
Section 22 42 13.16 Commercial Urinals
Section 22 42 16.13 Commercial Lavatories
Section 22 42 16.16 Commercial Sinks
Section 22 47 13 Drinking Fountains

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

Section 23 05 17 Sleeves and Sleeve Seals for HVAC Piping
Section 23 05 18 Escutcheons for HVAC Piping
Section 23 05 29 Hangers and Supports for HVAC Piping and Equipment
Section 23 05 48 Vibration and Seismic Controls for HVAC
Section 23 05 53 Identification for HVAC Piping and Equipment
Section 23 07 13 Testing, Adjusting, and Balancing for HVAC
Section 23 07 19 HVAC Piping Insulation
Section 23 07 23 Direct Digital Control (DDC) System for HVAC
Section 23 09 23 Refrigerant Piping
Section 23 31 13 Metal Ducts
Section 23 33 00 Air Duct Accessories
Section 23 33 00.11 Acoustical Control
DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC) (continued)

- Section 23 34 23 HVAC Power Ventilators
- Section 23 34 39 Heavy Duty Commercial Ceiling Fans
- Section 23 37 13 Supply and Grilles
- Section 23 82 16.00 40 Air Coils
- Section 23 82 19 VRF Split System Air Conditioners

DIVISION 24 THROUGH 25

- Not Used

DIVISION 26 - ELECTRICAL

- Section 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- Section 26 05 26 Grounding and Bonding for Electrical Systems
- Section 26 05 29 Hangers and Supports for Electrical Systems
- Section 26 05 33 Raceways and Boxes for Electrical Systems
- Section 26 05 43 Underground Ducts and Raceways for Electrical Systems
- Section 26 05 53 Identification for Electrical Systems
- Section 26 09 23 Lighting Control Devices
- Section 26 24 13 Switchboards
- Section 26 24 16 Panelboards
- Section 26 33 23.11 Central Battery Equipment for Emergency Lighting
- Section 26 51 19 LED Interior Lighting
- Section 26 56 19 Exterior Lighting

DIVISION 27 - COMMUNICATIONS

- Section 27 15 13 Communications Copper Horizontal Cabling

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

- Section 28 31 11 Digital, Addressable Fire-Alarm System
- Section 28 39 13 Local-Area Mass Notification Systems

DIVISIONS 29 THROUGH 30

- Not Used

DIVISION 31 - EARTHWORK

- Section 31 10 00 Site Clearing
- Section 31 20 00 Earth Moving
- Section 31 21 00 Utility Trenching and Backfill

DIVISION 32 - EXTERIOR IMPROVEMENTS

- Section 32 11 00 Pavement Base Course
- Section 32 13 18 Cement and Concrete for Exterior Improvements

DIVISION 33 - UTILITIES

- Section 33 10 00 Water System
- Section 33 30 00 Sanitary Sewer System
This Page Intentionally Left Blank
END OF TABLE OF CONTENTS
SECTION 02 41 16

SELECTIVE BUILDING DEMOLITION

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Selective demolition of building elements.
 1. Protect items in place as indicated on the Drawings, including, but not limited to,
 historic wisteria tree.
 2. Demolish/remove items as indicated on the Drawings.
 3. Remove/salvage and remove/reinstall items as indicated on the Drawings.

B. Contractor shall be aware of the historical significance of the Live Oak Community Center
 building.

C. Removal, salvage, storage, and reinstallation of historic and other building items include,
 but are not limited to:
 1. Glazing.
 2. Exterior and interior wood trim, casings, and wainscoting.
 3. Wood doors and hardware.
 4. Theatre seating.
 5. Window hardware.
 6. Salvage items for the City as indicated.

D. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. ANSI - American National Standards Institute
 1. A10.6 - Safety Requirements for Demolition Operations.

B. EPA - Environmental Protection Agency

C. ESA - Endangered Species Act

D. ISA - International Society of Arboriculture

E. NFPA - National Fire Protection Association

1.03 DEFINITIONS

A. Remove: Remove and legally dispose of items except those indicated to be reinstalled,
 salvaged, or to remain the City's property.

B. Remove and Salvage: Items indicated to be removed and salvaged remain the City's
 property. Remove, clean, and pack or crate items to protect against damage. Identify
 contents of containers and deliver to the City's designated storage area.

C. Remove and Reinstall: Remove items indicated; clean, service, and otherwise prepare
 them for reuse; store and protect against damage. Reinstall items in locations indicated.
D. Existing to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by the Architect, items may be removed to a suitable, protected storage location during selective demolition and then cleaned and reinstalled in their original locations.

E. Materials Ownership: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain the City's property, demolished materials shall become the Contractor's property and shall be removed from the site with further disposition at the Contractor's option.

1.04 SUBMITTALS

A. Qualification Data: For demolition firm if not provided by Contractor.

B. Protection Plans: Submit protection plan for historic finishes and components scheduled to remain in place, identifying elements and possible hazards and indicating means and methods proposed for protection.

C. Pre-demolition Photographs and Details: Show existing conditions in areas where demolition work will be performed, both interior and exterior, including finish surfaces, items to be salvaged, and items to be re-installed, that might be misconstrued as damage caused by demolition operations. Submit before work begins.

D. Inventory of Salvaged Items: After demolition is complete, submit a list of items that have been removed and salvaged.
 1. Include at least one digital photograph of each item, numbered and clearly labeled to correspond with inventory.
 2. Provide written Table of Contents for inventory.
 3. Indicate original location(s) of each item or type of item.
 4. Indicate whether or not the item is to be re-installed. If it will be re-installed, indicate repair or restorative work required and location of re-installation.

E. Demolition, Salvage, and Re-Installation Plan as specified.

F. Receipts for items and materials salvaged and sold to recycling/re-use companies that include name of licensed recycling company, dollar value, and date.

1.05 DEMOLITION, SALVAGE, AND RE-INSTALLATION PLAN

A. Submit a complete Demolition, Salvage, and Re-Installation Plan detailing procedures and sequence for the following:
 1. Removal of existing construction and facilities including all features necessary to remove portions of the existing building for new work in a safe and controlled manner to ensure stability, weathertightness, and security of the existing building at any given time.
 2. Removal, salvage, transportation, storage, and re-installation of items to be re-installed.
 3. Submit detailed information on methods and sequencing for accomplishing this work. Employ a Structural Engineer registered in the State of California to develop such methods and demolition sequences.

B. Thoroughly investigate the condition of the existing structures before proceeding with the Demolition, Salvage, and Re-Installation Plan.
C. Contact the salvage companies listed below to request individual site visits and assessments of materials designated for removal, including, but not limited to, windows, exterior or interior doors, package unit, furnaces, copper pipes, air conditioning units, and water heater. Items to be salvaged for re-use or for the City shall be excluded. Each salvage company shall present a bid to remove and purchase specific items, on a unit basis. Charges for removing items will not be accepted.

1. Urban Ore, 900 Murray St., Berkeley, CA 94710, phone 510.841.7283.
2. This & That, 1701 Rumrill Blvd., San Pablo, CA 94806, phone 510.232.1273.

D. The Demolition, Salvage, and Re-Installation Plan shall consist of the following:
1. Detailed sequence of demolition and removal work, with starting and ending dates for each activity.
2. Interruption of utility services.
3. Coordination for shutoff, capping, and continuation of utility services.
4. Details and locations of temporary and exterior protective measures to ensure that people, property and improvements to remain will not be endangered or damaged.
5. Access routes for hauling debris and salvaged items from building.
6. Coordinate schedule of activity for hazardous materials removal and other work contracted directly by the City.

E. In the event that modifications to the Demolition, Salvage, and Re-Installation Plan are required to be submitted for approval, the Contractor shall provide 14 calendar days for the review of substantial procedural and sequence modifications.

F. Review by the Architect and the City of the Demolition, Salvage, and Re-Installation Plan, or field observations performed by the Architect, will in no way relieve the Contractor of full responsibility for the Demolition, Salvage, and Re-Installation Plan and procedure.

1.06 QUALITY ASSURANCE

A. Demolition Firm Qualifications: A firm with documented specialized experience in demolition work similar in material and extent to that indicated for this Project.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

C. Standards: Comply with ANSI A10.6 and NFPA 241.

D. Pre-demolition Conference
1. Conduct conference at Project site. Conference shall be attended by Contractor, the City, Architect, demolition contractor if applicable, and others whose work is affected by demolition operations.
2. Pre-demolition photographs and details shall be complete and accepted by Architect before conference takes place.
3. Notify participants a minimum of 48 hours prior to time of conference.
4. Review methods and procedures related to demolition including, but not limited to, the following:
 a. Pre-demolition photographs must be complete and acceptable to Architect and the City.
 b. Inspect and discuss condition of construction to be demolished.
c. Review and finalize Demolition, Salvage, and Re-Installation Plan and verify availability of demolition personnel, equipment, and facilities needed to make progress and avoid delays.

d. Review and finalize protection requirements.

5. Record discussions of conference and any conflict, incompatibility, or inadequacy. Furnish a copy of record to each participant.

1.07 TRAFFIC

A. Conduct demolition operations and the removal of debris to ensure minimum interference with streets, walks, and adjacent occupied or used facilities. Do not close or obstruct streets, walks, or other occupied or used facilities without permission from the City, and, where applicable, from other authorities having jurisdiction.

B. Existing pedestrian walks shall be kept open at all times unless otherwise approved by the City. Any closings or disruptions of existing site circulation, if required, shall be included in the Demolition Plan.

C. Full compensation for temporary vehicular and pedestrian controls shall be considered as included in the Contract Lump Sum Price and no additional compensation will be allowed for this purpose.

1.08 PROJECT CONDITIONS

A. Conditions existing at time of inspection for bidding purposes will be maintained by the City as far as practical.

B. Coordinate the performance of work in this Section with related or adjacent work.

C. Protection of items should be completed prior to commencement of new construction and demolition procedures. At the end of working day or during inclement weather, cover work exposed to weather with waterproof coverings, securely anchored.

D. Protection for Historic Elements should remain in place for the duration of the Project unless determined otherwise by the Architect.
 1. Do not store construction materials on protection.
 2. Protection systems shall not attach to or penetrate historic materials.

E. Damages to Historic Materials: Immediately cease work and notify the Architect. Do not repair.

F. Asbestos and lead paint may be encountered in the Work. If any materials suspected of containing asbestos or lead paint are encountered, do not disturb the materials. Immediately notify the Architect and the City’s Representative.

PART 2 - PRODUCTS

2.01 PROTECTION MATERIALS

A. Polyethylene Sheets: 4 mil.

B. Lumber: Species to be selected by the Contractor, with sizes to fit field conditions. Lumber shall be fire retardant treated.

C. Plywood: 1/2-inch or 3/4-inch fire retardant treated.
D. Soft Fiberboard
 1. 1/2-inch Homasote.
 2. 1/2-inch NCFR Homasote for exposed locations.

E. Neoprene: 1/4-inch or 1/2-inch strips stock sizes.

F. Polyurethane Foam Sheets: 4-inches thick.

 1. Do not apply to historic materials.

H. Plastic Film Tape: As manufactured by 3M, “Scotch Brand No. 472”; American Biltrite Inc.; Surface Armor, or equal.
 1. Do not apply to historic materials.

I. Kraft Paper.

J. Accessories: Provide necessary and related parts, fasteners, devices and anchors required for complete installation.

PART 3 - EXECUTION

3.01 GENERAL

A. Historic Elements to Remain in Place
 1. Protection shall be installed in its entirety before demolition, bracing, or other work, that may harm historic elements, may proceed.
 2. Protect all historic elements to remain in place which may be damaged by construction activities. In the event of new damage, inform the Architect immediately as to the nature and extent of damage and the proposed method of repair. Do not repair until approved by the Architect.
 3. Do not attach protection materials directly to historic elements.
 4. Protection to be secured adequately so as to maintain a safe environment for workers and other individuals using the building throughout the duration of the Project.
 5. Protection material and method selected shall be appropriate to the location of the historic finish or building element and potential damage that may occur to that historic finish or building element.

3.02 EXAMINATION

A. Survey existing conditions and correlate with requirements indicated to determine extent of demolition required.

B. Inventory and record the condition of any items required to be removed and salvaged. Where appropriate, provide at least one digital photograph.

C. When unanticipated mechanical, electrical, or structural elements are encountered, investigate and measure the nature and extent of the element. Promptly submit a written report to Architect and the City.

D. Perform an engineering survey of condition of existing buildings to determine whether removing any unanticipated element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during building demolition operations.
E. Hazardous materials will be remediated by the General Contractor per requirements prepared by the City's Consultant and provided in an appendix to these Specifications. General Contractor shall coordinate to ensure that hazardous materials are removed or remediated before proceeding with demolition operations in the affected area.

3.03 PREPARATION

A. Existing Utilities: Locate, identify, disconnect, and seal or cap off indicated utilities to be removed or abandoned.
 1. Arrange to shut off indicated utilities with the City and utility companies when applicable.
 2. Do not start demolition work until utility disconnecting and sealing have been completed and verified in writing.

B. Temporary Shoring: Provide and maintain shoring, bracing, or structural support to preserve stability and prevent unexpected movement or collapse of existing construction.
 1. Strengthen or add new supports when required during progress of demolition.
 2. All work shall be designed by Contractor's Structural Engineer.

C. Comply with the following:
 1. Clean salvaged items of dirt and demolition debris.
 2. Make a written inventory of all salvaged items as specified in Part 1, noting original location, condition, and any significant damage or deficiencies.
 3. Pack or crate items after cleaning. Identify contents of containers and number to correspond with inventory.
 4. Store items in a secure area until re-installation or until delivery to the City, as applicable.
 5. Transport items to the City or to new location in building as applicable.
 6. Protect items from damage during transport and storage.

3.04 POLLUTION CONTROLS

A. Use water mist, temporary enclosures, and other suitable methods to limit the spread of dust and dirt. Comply with governing environmental protection regulations.

B. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

C. Clean adjacent site areas of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before start of selective demolition.

3.05 INSTALLATION OF PROTECTION

A. General
 1. Alternative methods to specified protection may be acceptable if equal or greater protection is provided. Submit alternative methods to the Architect for review as specified. Do not proceed with alternative methods until specified approvals are secured. Mockups may be required.
 2. Protection may be required to remain in place for the duration of the Project. As such, materials shall be installed to provide adequate protection throughout the full extent of construction activities. Repair or reinstall protection as required throughout the duration of construction. Changes to protection shall be proposed to the Architect for approval prior to making changes.
3. Extent of protection is to cover all historic elements to remain which are in the vicinity of construction activities, whether specifically called out on the Drawings or not. All questionable protection requirements should be identified for the Architect's review and approval.

4. All protection assemblies should be self-supporting and self bracing, and secured at the base, unless otherwise noted.

B. Existing Facilities: Protect adjacent walkways, buildings, and other facilities during demolition operations.

C. Historic Wisteria Tree Protection
 1. Provide temporary barrier as directed by the Drawings and Specifications.
 2. Fence tree at drip line.
 3. Allow no storage or stacking of materials or heavy equipment within fenced area.

3.06 HISTORIC WISTERIA TREE

A. General
 1. Do not remove, injure, or destroy tree or tree roots.
 2. Minimize disturbance to tree trunk and root zone to prevent damage to tree.
 3. No ropes, cables, or guys shall be fastened to or attached to the tree for anchorage unless specifically authorized.
 4. Do not drive over root zone unless work cannot otherwise be reasonably done. Driving over roots compacts the soil and can harm or destroy the tree. If necessary, use protective measures like mats or plywood to spread wheel load.
 5. Do not cut wheels or make sharp turns with wheeled or tracked equipment in root zone.
 6. Do not pile excavated soil against tree trunk.
 7. Do not compact soil around roots to a greater degree than surrounding unexcavated soil, except to meet compaction requirements directly under pavement or structures.

B. Tree Appraisal for Assessment of Damages
 1. If the Contractor destroys or injures the historic wisteria tree, the Contractor shall be assessed damages prior to final progress payment.
 2. Replacement cost for damaged tree shall be computed according to the method described in the ISA Guide for Plant Appraisal (1992). This method is based on the cost of the largest commonly available tree, with modifications based on species value, condition, and location. A trained arborist or professional tree appraiser from the California region shall be hired by the City to make the damage appraisal. The arborist's fees shall be included in the damage assessment.
 3. This damage appraisal process shall be triggered by any of the following types of damage to the historic wisteria tree:
 a. Removal of the tree.
 b. Pruning or removal of more than 30 percent of the tree canopy.
 c. Removal or fracture of any limb or trunk that is one of the major structural entities of the damaged tree.
 d. Removal or fracture of any limb greater than 12 inches in diameter.
 e. Bark damage or removal around more than 30 percent of the trunk circumference.
 f. Trenching or soil disturbance within the critical root zone that is deeper than 1 foot unless indicated on the Drawings.
 4. If the damaged tree is protected under ESA or other special legislation, additional penalties may be assessed.
5. Minor cuts and damaged areas shall be assessed by the trained arborist or professional tree appraiser and the City. Repair to the tree shall be at the recommendation of the trained arborist or professional tree appraiser and approval of the City.

3.07 SELECTIVE DEMOLITION

A. Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete Work within limitations of governing regulations and as follows:
1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. To minimize disturbance of adjacent surfaces, use hand or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire suppression devices during flame-cutting operations.
4. Maintain adequate ventilation when using cutting torches.
5. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
6. Dispose of demolished items and materials promptly.
7. Return elements of construction and surfaces to remain to condition existing before start of selective demolition operations.

B. Demolish concrete and masonry in small sections. Cut concrete and masonry at junctures with construction to remain, using power-driven masonry saw or hand tools; do not use power-driven impact tools.
1. Use a pacometer to locate all existing rebar within any existing concrete to be demolished. Before drilling or cutting any rebar, obtain bar-by-bar permission in writing from the Architect.

C. General
1. Use extreme care in removing salvage elements and materials attached to historic elements scheduled to remain.
 a. Leave embedded connectors undisturbed and intact for later reinstallation.
 b. Remove items whole wherever possible.
 1) Do not pry members apart whose finish will be damaged thereby, or whose integrity will be impaired.
 2) Verify unusual or ambiguous conditions with the Architect prior to removal.
 3) Remove nails from woodwork from back side. Drive nails through or pull from the back so that nail head does not splinter the finished face.
2. Millwork: Remove in full lengths. Unless required for reinstallation at the same location, salvage of components less than 18 inches is not required. Verify quantities needed for reinstallation prior to salvaging.
3. Doors: Remove components as a whole system.
 a. Store door and hardware as a complete unit.
 b. Do not remove door frames and casings unless required by construction activity.
3.08 SITE RESTORATION
 A. Rough grade below-grade areas, where slabs and sidewalks are removed, ready for further excavation or new construction.
 B. Completely fill voids resulting from building demolition operations that will not be required by new construction with satisfactory soil materials.

3.09 PATCHING AND REPAIRS
 A. All parts of the existing buildings indicated to remain and damaged by demolition operations shall be repaired and refinished or replaced to match existing.
 B. Where repairs to existing surfaces are required, patch to produce surfaces suitable for new materials.
 C. Restore exposed finishes of patched areas and extend restoration into adjoining construction in a manner that eliminates evidence of patching and refinishing.

3.10 DISPOSAL OF DEMOLISHED MATERIALS
 A. General: Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site.
 B. Burning: Do not burn demolished materials.
 C. Disposal
 1. Transport demolished materials off the City’s property and legally dispose of them.
 2. When hauling is done over highways or city streets, loads shall be trimmed and the vehicle shelf areas cleaned after each loading.
 3. Contractor shall pay all permit and disposal fees for off-hauled materials.

3.11 CLEANING
 A. Sweep the building broom clean on completion of selective demolition operation.
 B. All residue and debris from protection work shall be removed from existing construction leaving the premises clean and neat.
 C. Removal of protective coverings shall be done with utmost care so as not to damage historic elements.

3.12 SELECTIVE DEMOLITION SCHEDULE
 A. Remove the Following: Demolished site construction materials.

END OF SECTION
This Page Intentionally Left Blank
SECTION 03 20 00

CONCRETE REINFORCING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Steel reinforcement bars.
 2. Welded-wire reinforcement.

1.02 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Each type of steel reinforcement.
 2. Bar supports.

B. Shop Drawings: Comply with ACI SP-066:
 1. Include placing drawings that detail fabrication, bending, and placement.
 2. Include bar sizes, lengths, materials, grades, bar schedules, stirrup spacing, bent bar
 diagrams, bar arrangement, location of splices, lengths of lap splices, details of
 mechanical splice couplers, details of welding splices, tie spacing, hoop spacing, and
 supports for concrete reinforcement.

C. Construction Joint Layout: Indicate proposed construction joints required to build the
 structure.
 1. Location of construction joints is subject to approval of the Architect.

1.03 INFORMATIONAL SUBMITTALS

A. Welding certificates.
 1. Reinforcement to Be Welded: Welding procedure specification in accordance with
 AWS D1.4/D1.4M

B. Material Test Reports: For the following, from a qualified testing agency:
 1. Steel Reinforcement:
 a. For reinforcement to be welded, mill test analysis for chemical composition and
 carbon equivalent of the steel in accordance with ASTM A706/A706M.

C. Field quality-control reports.

D. Minutes of preinstallation conference.

1.04 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with
 AWS D1.4/D 1.4M.

PART 2 - PRODUCTS

2.01 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A615/A615M, Grade 60, deformed.
2.02 REINFORCEMENT ACCESSORIES

A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place.
 1. Manufacture bar supports from steel wire, plastic, or precast concrete in accordance with CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 a. For concrete surfaces exposed to view, where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire, all-plastic bar supports, or CRSI Class 2 stainless steel bar supports.
 b. For epoxy-coated reinforcement, use CRSI Class 1A epoxy-coated or other dielectric-polymer-coated wire bar supports.
 c. For dual-coated reinforcement, use CRSI Class 1A epoxy-coated or other dielectric-polymer-coated wire bar supports.
 d. For zinc-coated reinforcement, use galvanized wire or dielectric-polymer-coated wire bar supports.
 e. For stainless steel reinforcement, use CRSI Class 1 plastic-protected steel wire, all-plastic bar supports, or CRSI Class 2 stainless steel bar supports.

B. Stainless Steel Tie Wire: ASTM A1022/A1022M, not less than 0.0508 inch in diameter.

2.03 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

PART 3 - EXECUTION

3.01 PREPARATION

A. Protection of In-Place Conditions:
 1. Do not cut or puncture vapor retarder.
 2. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that reduce bond to concrete.

3.02 INSTALLATION OF STEEL REINFORCEMENT

A. Comply with CRSI's "Manual of Standard Practice" for placing and supporting reinforcement.

B. Accurately position, support, and secure reinforcement against displacement.
 1. Locate and support reinforcement with bar supports to maintain minimum concrete cover.
 2. Do not tack weld crossing reinforcing bars.

C. Preserve clearance between bars of not less than 1 inch, not less than one bar diameter, or not less than 1-1/3 times size of large aggregate, whichever is greater.

D. Provide concrete coverage in accordance with ACI 318.

E. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

F. Splices: Lap splices as indicated on Drawings.
 1. Bars indicated to be continuous, and all vertical bars shall be lapped not less than 36 bar diameters at splices, or 24 inches, whichever is greater.
 2. Stagger splices in accordance with ACI 318.
3. Mechanical Splice Couplers: Install in accordance with manufacturer's instructions.
4. Weld reinforcing bars in accordance with AWS D1.4/D 1.4M, where indicated on Drawings.

3.03 JOINTS
A. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 1. Place joints perpendicular to main reinforcement.
 2. Continue reinforcement across construction joints unless otherwise indicated.
 3. Do not continue reinforcement through sides of strip placements of floors and slabs.

3.04 INSTALLATION TOLERANCES
A. Comply with ACI 117.

3.05 FIELD QUALITY CONTROL
A. Special Inspections: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
C. Inspections:
 1. Steel-reinforcement placement.
 2. Steel-reinforcement mechanical splice couplers.
 3. Steel-reinforcement welding.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Cast-in-place concrete, including concrete materials, mixture design, placement procedures, and finishes.

B. Related Requirements:
 1. Section 03 10 00 "Concrete Forming and Accessories" for form-facing materials, form liners, insulating concrete forms, and waterstops.
 2. Section 03 20 00 "Concrete Reinforcing" for steel reinforcing bars and welded-wire reinforcement.
 3. Section 31 20 00 "Earth Moving" for drainage fill under slabs-on-ground.

1.02 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, and other pozzolans materials subject to compliance with requirements.

B. Water/Cement Ratio (w/cm): The ratio by weight of water to cementitious materials.

1.03 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.04 ACTION SUBMITTALS

A. Product Data: For each of the following.
 1. Portland cement.
 2. Fly ash.
 3. Slag cement.
 5. Aggregates.
 6. Admixtures:
 a. Include limitations of use, including restrictions on cementitious materials, supplementary cementitious materials, air entrainment, aggregates, temperature at time of concrete placement, relative humidity at time of concrete placement, curing conditions, and use of other admixtures.
 7. Vapor retarders.
 8. Liquid floor treatments.
 10. Joint fillers.

B. Design Mixtures: For each concrete mixture, include the following:
 1. Mixture identification.
 2. Minimum 28-day compressive strength.
 3. Maximum w/cm.
 4. Slump limit.
 5. Air content.
7. Indicate amounts of mixing water to be withheld for later addition at Project site if permitted.
8. Intended placement method.
9. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Shop Drawings:
 1. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 a. Location of construction joints is subject to approval of the Architect.
 2. Expansion Joint / Control Joint Layout: Indicate proposed construction joints required to construct the structure.
 a. Location of construction joints is subject to approval of the Architect.

D. Concrete Schedule: For each location of each Class of concrete indicated in "Concrete Mixtures" Article, including the following:
 1. Concrete Class designation.
 2. Location within Project.
 3. Formed Surface Finish designation and final finish.
 4. Final finish for floors.
 5. Curing process.
 6. Floor treatment if any.

1.05 INFORMATIONAL SUBMITTALS

A. Material Certificates: For each of the following, signed by manufacturers:
 1. Cementitious materials.
 2. Admixtures.
 3. Curing compounds.
 4. Vapor retarders.
 5. Joint-filler strips.

B. Material Test Reports: For the following, from a qualified testing agency:
 1. Portland cement.
 2. Fly ash.
 3. Slag cement.
 5. Aggregates.
 6. Admixtures:

C. Research Reports: For concrete admixtures in accordance with ICC's Acceptance Criteria AC198.

D. Preconstruction Test Reports: For each mix design.

E. Field quality-control reports.

F. Minutes of preinstallation conference.

1.06 QUALITY ASSURANCE

A. Ready-Mixed Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 1. Manufacturer certified in accordance with NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
1.07 DELIVERY, STORAGE, AND HANDLING

A. Comply with ASTM C94/C94M and ACI 301.

PART 2 - PRODUCTS

2.01 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless modified by requirements in the Contract Documents.

2.02 CONCRETE MATERIALS

A. Cementitious Materials:
 1. Portland Cement: ASTM C150/C150M, Type I/II.
 2. Fly Ash: ASTM C618, Class C or F.
 3. Slag Cement: ASTM C989/C989M, Grade 100 or 120.

 1. Alkali-Silica Reaction: Comply with one of the following:
 a. Expansion Result of Aggregate: Not more than 0.04 percent at one-year when tested in accordance with ASTM C1293.
 b. Expansion Results of Aggregate and Cementitious Materials in Combination: Not more than 0.10 percent at an age of 16 days when tested in accordance with ASTM C1567.
 c. Alkali Content in Concrete: Not more than 4 lb./cu. yd. for moderately reactive aggregate or 3 lb./cu. yd. for highly reactive aggregate, when tested in accordance with ASTM C1293 and categorized in accordance with ACI 301.
 2. Maximum Coarse-Aggregate Size: see schedule on plan.

C. Air-Entraining Admixture: ASTM C260/C260M.

D. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride in steel-reinforced concrete.
 1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
 2. Retarding Admixture: ASTM C494/C494M, Type B.
 3. Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
 5. High-Range, Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

E. Water and Water Used to Make Ice: ASTM C94/C94M, potable

2.03 VAPOR RETARDERS

A. Sheet Vapor Retarder, Class A: ASTM E1745, Class A; not less than 10 mils thick. Include manufacturer's recommended adhesive or pressure-sensitive tape.
2.04 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or silicate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

2.05 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

 1. Color:
 a. Ambient Temperature Below 50 deg F: Black.
 b. Ambient Temperature between 50 deg F and 85 deg F: Any color.
 c. Ambient Temperature Above 85 deg F: White.

D. Water: Potable or complying with ASTM C1602/C1602M.

E. Clear, Waterborne, Membrane-Forming, Dissipating Curing Compound: ASTM C309, Type 1, Class B.

F. Clear, Waterborne, Membrane-Forming, Nondissipating Curing Compound: ASTM C309, Type 1, Class B, certified by curing compound manufacturer to not interfere with bonding of floor covering.

G. Clear, Waterborne, Membrane-Forming, Curing and Sealing Compound: ASTM C1315, Type 1, Class A.

2.06 RELATED MATERIALS

2.07 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, in accordance with ACI 301.
 1. Use a qualified testing agency for preparing and reporting proposed mixture designs, based on laboratory trial mixtures.

B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 1. Fly Ash or Other Pozzolans: 30 percent by mass.

C. Admixtures: Use admixtures in accordance with manufacturer's written instructions.
 1. Use water-reducing admixture in concrete, as required, for placement and workability.

2.08 CONCRETE MIXTURES

A. See Plans.
2.09 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete in accordance with ASTM C94/C94M, and furnish batch ticket information.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete in accordance with ASTM C94/C94M. Mix concrete materials in appropriate drum-type batch machine mixer.
1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than five minutes after ingredients are in mixer, before any part of batch is released.
2. For mixer capacity larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd..
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.01 INSTALLATION OF EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining Work that is attached to or supported by cast-in-place concrete.
1. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of ANSI/AISC 303.
3. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

3.02 INSTALLATION OF VAPOR RETARDER

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder in accordance with ASTM E1643 and manufacturer's written instructions.
1. Install vapor retarder with longest dimension parallel with direction of concrete pour.
2. Face laps away from exposed direction of concrete pour.
3. Lap vapor retarder over footings and grade beams not less than 6 inches, sealing vapor retarder to concrete.
4. Lap joints 6 inches and seal with manufacturer's recommended tape.
5. Terminate vapor retarder at the top of floor slabs, grade beams, and pile caps, sealing entire perimeter to floor slabs, grade beams, foundation walls, or pile caps.
6. Seal penetrations in accordance with vapor retarder manufacturer's instructions.
7. Protect vapor retarder during placement of reinforcement and concrete.
 a. Repair damaged areas by patching with vapor retarder material, overlapping damages area by 6 inches on all sides, and sealing to vapor retarder.

3.03 JOINTS

A. Construct joints true to line, with faces perpendicular to surface plane of concrete.

B. Construction Joints: Coordinate with floor slab pattern and concrete placement sequence.
1. Install so strength and appearance of concrete are not impaired, at locations indicated on Drawings or as approved by Architect.
2. Place joints perpendicular to main reinforcement.
 a. Continue reinforcement across construction joints unless otherwise indicated.
b. Do not continue reinforcement through sides of strip placements of floors and slabs.

3. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.

4. Locate joints for beams, slabs, joists, and girders at third points of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.

5. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.

6. Space vertical joints in walls as indicated on Drawings. Unless otherwise indicated on Drawings, locate vertical joints beside piers integral with walls, near corners, and in concealed locations where possible.

C. Control Joints in Slabs-on-Ground: Form weakened-plane control joints, sectioning concrete into areas as indicated. Construct control joints for a depth equal to at least one-fourth of concrete thickness as follows:

1. Grooved Joints: Form control joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of control joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.

2. Sawed Joints: Form control joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random cracks.

D. Isolation Joints in Slabs-on-Ground: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated on Drawings.

2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface, where joint sealants, specified in Section 07 92 00 “Joint Sealants,” are indicated.

3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

E. Doweled Joints:

1. Install dowel bars and support assemblies at joints where indicated on Drawings.

2. Lubricate or asphalt coat one-half of dowel bar length to prevent concrete bonding to one side of joint.

F. Dowel Plates: Install dowel plates at joints where indicated on Drawings.

3.04 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, embedded items, and vapor retarder is complete and that required inspections are completed.

1. Immediately prior to concrete placement, inspect vapor retarder for damage and deficient installation, and repair defective areas.

2. Provide continuous inspection of vapor retarder during concrete placement and make necessary repairs to damaged areas as Work progresses.

B. Notify Architect and testing and inspection agencies 24 hours prior to commencement of concrete placement.

C. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect in writing, but not to exceed the amount indicated on the concrete delivery ticket.
1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

D. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301, but not to exceed the amount indicated on the concrete delivery ticket.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

E. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness.
 1. If a section cannot be placed continuously, provide construction joints as indicated.
 2. Deposit concrete to avoid segregation.
 3. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 4. Consolidate placed concrete with mechanical vibrating equipment in accordance with ACI 301.
 a. Do not use vibrators to transport concrete inside forms.
 b. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer.
 c. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity.
 d. At each insertion, limit duration of vibration to time necessary to consolidate concrete, and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.

F. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 1. Do not place concrete floors and slabs in a checkerboard sequence.
 2. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 4. Screed slab surfaces with a straightedge and strike off to correct elevations.
 5. Level concrete, cut high areas, and fill low areas.
 6. Slope surfaces uniformly to drains where required.
 7. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface.
 8. Do not further disturb slab surfaces before starting finishing operations.

3.05 FINISHING FORMED SURFACES

A. As-Cast Surface Finishes:
 1. ACI 301 Surface Finish SF-1.0: As-cast concrete texture imparted by form-facing material.
 a. Patch voids larger than 1-1/2 inches wide or 1/2 inch deep.
 b. Remove projections larger than 1 inch.
 c. Tie holes do not require patching.
 d. Surface Tolerance: ACI 117 Class D.
 e. Apply to concrete surfaces not exposed to public view.

B. Related Unformed Surfaces:
 1. At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a color and texture matching adjacent formed surfaces.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

2. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.06 FINISHING FLOORS AND SLABS

A. Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Float Finish:
1. When bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operation of specific float apparatus, consolidate concrete surface with power-driven floats or by hand floating if area is small or inaccessible to power-driven floats.
2. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture and complies with ACI 117 tolerances for conventional concrete.
3. Apply float finish to surfaces as indicated on the drawings.

C. Trowel Finish:
1. After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel.
2. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance.
3. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
4. Do not add water to concrete surface.
5. Do not apply hard-troweled finish to concrete, which has a total air content greater than 3 percent.
6. Apply a trowel finish to surfaces as indicated on plans.
7. Finish and measure surface, so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.- long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/8 inch.

D. Polished finish: See Section 033543 "Polished Concrete Finishing" for theater extension floor scheduled to receive a polished concrete finish.

3.07 CONCRETE SURFACE REPAIRS

A. Patching Defective Areas: Repair and patch defective areas with cement mortar immediately after removing forms, when acceptable to the Architect.

B. Mix dry-pack mortar, consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing a No. 16 mesh sieve, using only enough water as required for handling and placing.
1. Cut out honeycombs, rock pockets, voids over 1/4-inch in any dimension, and holes left by tie rods and bolts down to solid concrete but in no case to a depth less than 1 inch. Make edges of cuts perpendicular to the concrete surface. Thoroughly clean, dampen with water, and brush-coat the area to be patched with bonding agent. Place patching mortar before bonding agent has dried.
2. For surfaces exposed to view, blend white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Provide test areas at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike-off slightly higher than surrounding surface.

C. Repairing Formed Surfaces: Remove and replace concrete having defective surfaces if defects cannot be repaired to satisfaction of the Architect. Surface defects include color
and texture irregularities, cracks, spalls, air bubbles, honeycomb, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning. Flush out form tie holes and fill with dry-pack mortar or precast cement cone plugs secured in place with bonding agent.

1. Repair concealed formed surfaces, where possible, containing defects that affect the concrete’s durability. If defects cannot be repaired, remove and replace the concrete.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as monolithic slabs, for smoothness and verify surface tolerances specified for each surface and finish. Correct low and high areas as specified. Test unformed surfaces sloped to drain for trueness of slope and smoothness by using a template having the required slope.

1. Repair finished unformed surfaces containing defects that affect the concrete’s durability. Surface defects include crazing and cracks in excess of 0.01-inch wide or that penetrate to the reinforcement or completely through nonreinforced sections regardless of width, spalling, popouts, honeycombs, rock pockets, and other objectionable conditions.

2. Correct high areas in unformed surfaces by grinding after concrete has cured at least 14 days.

3. Correct low areas in unformed surfaces during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete. Proprietary underlayment compounds may be used when acceptable to the Architect.

4. Repair defective areas, except random cracks and single holes not exceeding 1 inch in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose reinforcing steel with at least 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials to provide concrete of same type or class as original concrete. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

E. Repair isolated random cracks and single holes 1 inch or less in diameter by dry-pack method. Groove top of cracks and cut out holes to sound concrete and clean of dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding compound. Place dry-pack before bonding agent has dried. Compact dry-pack mixture in place and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

F. Repair methods not specified above may be used, subject to acceptance of the Architect.

3.08 INSTALLATION OF MISCELLANEOUS CONCRETE ITEMS

A. Filling In:
1. Fill in holes and openings left in concrete structures after Work of other trades is in place unless otherwise indicated.

2. Mix, place, and cure concrete, as specified, to blend with in-place construction.

3. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Equipment Bases and Foundations:
1. Coordinate sizes and locations of concrete bases with actual equipment provided.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

2. Construct concrete bases high unless otherwise indicated on Drawings, and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated on Drawings, or unless required for seismic anchor support.

3. Minimum Compressive Strength: 3000 psi at 28 days.

4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.

6. Prior to pouring concrete, place and secure anchorage devices.
 a. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 b. Cast anchor-bolt insert into bases.
 c. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.09 CONCRETE CURING

A. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
 1. Comply with ACI 301 and ACI 306.1 for cold weather protection during curing.
 2. Comply with ACI 301 and ACI 305.1 for hot-weather protection during curing.
 3. Maintain moisture loss no more than 0.2 lb/sq. ft. x h before and during finishing operations.

B. Curing Formed Surfaces: Comply with ACI 308.1 as follows:
 1. Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces.
 2. Cure concrete containing color pigments in accordance with color pigment manufacturer's instructions.
 3. If forms remain during curing period, moist cure after loosening forms.
 4. If removing forms before end of curing period, continue curing for remainder of curing period, as follows:
 a. Continuous Fogging: Maintain standing water on concrete surface until final setting of concrete.
 b. Continuous Sprinkling: Maintain concrete surface continuously wet.
 c. Absorptive Cover: Pre-dampen absorptive material before application; apply additional water to absorptive material to maintain concrete surface continuously wet.
 d. Water-Retention Sheeting Materials: Cover exposed concrete surfaces with sheeting material, taping, or lapping seams.
 e. Membrane-Forming Curing Compound: Apply uniformly in continuous operation by power spray or roller in accordance with manufacturer's written instructions.
 1) Reccoat areas subject to heavy rainfall within three hours after initial application.
 2) Maintain continuity of coating and repair damage during curing period.

C. Curing Unformed Surfaces: Comply with ACI 308.1 as follows:
 1. Begin curing immediately after finishing concrete.
 2. Interior Concrete Floors:
 a. Floors to Receive Floor Coverings Specified in Other Sections: Contractor has option of the following:
1) Absorptive Cover: As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 a) Lap edges and ends of absorptive cover not less than 12-inches.
 b) Maintain absorptive cover water saturated, and in place, for duration of curing period, but not less than seven days.

2) Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive.
 a) Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 b) Cure for not less than seven days.

3) Ponding or Continuous Sprinkling of Water: Maintain concrete surfaces continuously wet for not less than seven days, utilizing one, or a combination of, the following:
 a) Water.
 b) Continuous water-fog spray.

b. Floors to Receive Polished Finish: Contractor has option of the following:
 1) Absorptive Cover: As soon as concrete has sufficient set to permit application without marring concrete surface, install prewetted absorptive cover over entire area of floor.
 a) Lap edges and ends of absorptive cover not less than 12 inches.
 b) Maintain absorptive cover water saturated, and in place, for duration of curing period, but not less than seven days.
 2) Ponding or Continuous Sprinkling of Water: Maintain concrete surfaces continuously wet for not less than seven days, utilizing one, or a combination of, the following:
 a) Water.
 b) Continuous water-fog spray.

3.10 TOLERANCES
 A. Conform to ACI 117.

3.11 FIELD QUALITY CONTROL
 A. Special Inspections: Owner will engage a special inspector to perform field tests and inspections and prepare testing and inspection reports.

 B. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
 1. Testing agency shall be responsible for providing curing container for composite samples on Site and verifying that field-cured composite samples are cured in accordance with ASTM C31/C31M.
 2. Testing agency shall immediately report to Architect, Contractor, and concrete manufacturer any failure of Work to comply with Contract Documents.
 3. Testing agency shall report results of tests and inspections, in writing, to Owner, Architect, Contractor, and concrete manufacturer within 48 hours of inspections and tests.
 a. Test reports shall include reporting requirements of ASTM C31/C31M, ASTM C39/C39M, and ACI 301, including the following as applicable to each test and inspection:
 1) Project name.
 2) Name of testing agency.
3) Names and certification numbers of field and laboratory technicians performing inspections and testing.
4) Name of concrete manufacturer.
5) Date and time of inspection, sampling, and field testing.
6) Date and time of concrete placement.
7) Location in Work of concrete represented by samples.
8) Date and time sample was obtained.
9) Truck and batch ticket numbers.
10) Design compressive strength at 28 days.
11) Concrete mixture designation, proportions, and materials.
12) Field test results.
13) Information on storage and curing of samples before testing, including curing method and maximum and minimum temperatures during initial curing period.
14) Type of fracture and compressive break strengths at seven days and 28 days.

C. Batch Tickets: For each load delivered, submit three copies of batch delivery ticket to testing agency, indicating quantity, mix identification, admixtures, design strength, aggregate size, design air content, design slump at time of batching, and amount of water that can be added at Project site.

D. Inspections:
1. Headed bolts and studs.
2. Verification of use of required design mixture.
3. Concrete placement, including conveying and depositing.
4. Curing procedures and maintenance of curing temperature.
5. Verification of concrete strength before removal of shores and forms from beams and slabs.

E. Concrete Tests: Testing of composite samples of fresh concrete obtained in accordance with ASTM C 172/C 172M shall be performed in accordance with the following requirements:
1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 a. When frequency of testing provides fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
2. Slump: ASTM C143/C143M:
 a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 b. Perform additional tests when concrete consistency appears to change.
3. Slump Flow: ASTM C1611/C1611M:
 a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 b. Perform additional tests when concrete consistency appears to change.
4. Air Content: ASTM C231/C231M pressure method, for normal-weight concrete:
 a. One test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
5. Concrete Temperature: ASTM C1064/C1064M:
 a. One test hourly when air temperature is 40 deg F and below or 80 deg F and above, and one test for each composite sample.
a. One test for each composite sample, but not less than one test for each day’s pour of each concrete mixture.

7. Compression Test Specimens: ASTM C31/C31M:
 a. Cast and laboratory cure two sets of three 6-inch by 12-inch or 4-inch by 8-inch cylinder specimens for each composite sample.

 a. Test one set of three laboratory-cured specimens at seven days and one set of two specimens at 28 days.
 b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength, and no compressive-strength test value falls below specified compressive strength by more than 500 psi if specified compressive strength is 5000 psi, or no compressive strength test value is less than 10 percent of specified compressive strength if specified compressive strength is greater than 5000 psi.

11. Additional Tests:
 a. Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
 b. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42/C42M or by other methods as directed by Architect.
 1) Acceptance criteria for concrete strength shall be in accordance with ACI 301 section 1.6.6.3.

12. Additional testing and inspecting, at Contractor’s expense, will be performed to determine compliance of replaced or additional work with specified requirements.

13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

F. Measure floor and slab flatness and levelness in accordance with ASTM E1155 within 72 hours of completion of floor finishing and promptly report test results to Architect.

3.12 PROTECTION

A. Protect concrete surfaces as follows:
 1. Protect from petroleum stains.
 2. Diaper hydraulic equipment used over concrete surfaces.
 4. Prohibit use of pipe-cutting machinery over concrete surfaces.
 5. Prohibit placement of steel items on concrete surfaces.
 6. Prohibit use of acids or acidic detergents over concrete surfaces.
 7. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.
 8. Protect concrete surfaces scheduled to receive surface hardener or polished concrete finish using Floor Slab Protective Covering.
 9. Restore finishes damaged during installation and construction so that no evidence remains of corrective work.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Concrete finishes, including integral color and polished concrete system.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 03 30 00 - Cast-In-Place Concrete: Provision of cast-in-place concrete.
 2. Section 09 97 25 - Vapor Emission Treatment Systems: Provision of vapor emission treatment system, as required.

1.02 REFERENCES

A. ACI - American Concrete Institute
 1. 302.1R - Guide for Concrete Floor and Slab Construction.

B. ANSI - American National Standards Institute

C. ASTM - American Society for Testing and Materials

D. NFSI - National Floor Safety Institute

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Provide smooth concrete surfaces at exposed cast-in-place concrete, utilizing steel, fiberglass or plastic coated forms or any other kind of material that will impart no pattern to concrete.
 2. Pour joints of cast-in-place concrete shall align with reveals, rustication joints and/or control joints as indicated on the Drawings.
 3. Polished Concrete System
 a. Static Coefficient of Friction: A reading of not less than 0.5 for level floor surfaces shall be achieved and documented, as determined by certified NFSI walkway auditor using the ANSI/NFSI B101.1 quality control test.
b. Test Reports: Comply with the provisions of the following specifications and standards, except as otherwise indicated or specified, or as accepted or directed by the City and/or Architect. All test data shall be recorded and submitted upon completion of job.
 a. ASTM E1155.
 b. ASTM D523.
 c. ACI 302.1R.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s technical literature for each product indicated, specified, or required. Include manufacturer’s technical data, application instructions, recommendations and MSDS.

B. Installer Qualifications: Data for company, principal personnel, experience, and training. Provide a letter documenting installer’s accreditation and certification compliance, as specified under quality assurance.

C. Maintenance Data: Provide manufacturer’s instructions for maintenance of installed work, including methods and frequency recommended for maintaining optimum condition under intended use. These instructions should contain precautions against cleaning products and methods which may be detrimental to finishes and performance.

1.05 QUALITY ASSURANCE

A. Installer Qualifications
 1. Installer shall be a certified installer for the manufacturer’s polished concrete system, including the use of proprietary equipment and diamond abrasives, concrete preparation, and chemical hardening and finishing materials.
 2. Installer shall be experienced in performing specified work similar in design, products, and scope of this project, with a documented track record of successful, in-service performance and with sufficient production capabilities, facilities, and personnel to produce specified work.
 3. A factory-trained, competent supervisor must be maintained on site during all times during which specified work is performed.
 4. Installer shall provide written documentation from the manufacturer confirming the installer’s current accreditation and training on installation of the polished concrete system and related equipment and processes. Failure to provide current accreditation will void any warranty implied or otherwise associated with the manufacturer’s polished concrete system.

B. Pre-Installation Conference: Prior to the installation of the concrete topping system, an on-site conference shall be conducted to review installation requirements.
 1. Required attendees include the City, Architect, General Contractor, concrete topping system subcontractor, and manufacturer’s representative.
 2. The minimum agenda shall include:
 a. Tour of work area, inspection, and discussion of preparation of substrate and other pre-installation conditions and issues.
 b. Review of floor system requirements, including Drawings, Specifications and other Contract Documents.
 c. Review of required submittals and completion status.
 d. Review and finalization of installation schedule and verification of availability of required materials, trained installer personnel, equipment, and facilities to execute specification and avoid delays.
e. Limit access to work area by other trades to reduce possible damage to the floor before, during, and after completion.
f. Review of required inspection, testing, certification, and material usage accounting procedures.
g. Review of power requirements and responsibility.
h. Review of governing regulations and requirements for insurance, certifications, inspection, and testing, if applicable.
i. Review of temporary protection requirements during and after installation.
j. Review of cleaning procedures during and after installation.

C. Mockup: Before performing the work in this Section, provide on-site mockups of 5 feet by 5 feet on existing concrete and 5 feet by 5 feet on newly installed concrete. System representative of specified process, surface, finish, color, and joint design/treatments shall be installed for review and approval. Mockups shall be installed using the same installer personnel who will perform work. Approved mockups may become part of completed work, if undisturbed at time of substantial completion.

1.06 DELIVERY, STORAGE. AND HANDLING

A. Deliver all materials in original containers bearing manufacturer’s labels indicating brand name and directions for storage, factory numbered and sealed until ready for installation.

B. Maintain copies of all chemical MSDS and Technical data sheets for all products.

C. Store all materials in a dry, climate-controlled environment at a minimum of 55 degrees Fahrenheit and maximum of 85 degrees Fahrenheit.

1.07 SITE CONDITIONS

A. Comply with manufacturer’s written instructions for substrate temperature and moisture content, ambient temperature and humidity, and ventilation and other conditions affecting the floor finish.

B. Close areas to traffic during and after polished concrete system application for a time period recommended by the manufacturer.

C. Inspect the existing substrate and document unsatisfactory conditions in writing. Verify that surfaces and site conditions are ready to receive work. Correct unacceptable conditions prior to installation of polished concrete system. Commencement of work constitutes acceptance of substrate conditions.

D. Existing concrete shall be cured for a sufficient time period as recommended by the flooring system manufacturer before the application can begin, typically 28 days.

E. Protect existing concrete and the new polished concrete system from contamination by petroleum, oil, hydraulic fluid, acid and acidic detergents, paint, and other liquid dripping from trades and equipment working over these substrates. If construction equipment must be used on these substrates, diaper all components that may drip fluids.

F. Prohibit the placement and storage of construction materials over new polished concrete system, to include ferrous metals and steel members. Prohibit vehicle parking and pipe cutting operations over concrete before and after the installation of the polished concrete system.
G. Moisture Vapor Testing
1. Test existing concrete for moisture vapor transmission according to methods indicated in ASTM F1869. Acceptable results are not more than 5 pounds per 1,000 square feet in 24 hours.
2. Test existing concrete for relative humidity using in situ probes according to ASTM F2170. Acceptable results are not more than 80 percent.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Cast-In-Place Concrete: As specified in Section 03 30 00.

B. Integral Color Where Indicated: Concrete shall be colored using integral color admixtures as manufactured by Davis Colors, or equal. Mix admixtures with white cement; do not use grey cement.
1. Color: As selected by the Architect.

C. Polished Concrete System: A proprietary, engineered, and integrated complete installation system, as manufactured by DIAMATIC USA, “ULTRAFLOR® DIAMATIC® Polished Concrete System with Level 3 Finish”, or equal, requiring strict adherence to all specified installation processes, equipment, diamond abrasives, concrete preparation, joint treatment, and chemicals to achieve the intended result. Components include:
1. Equipment
 a. Planetary Grinder and Polisher: Large platform, 32-inches, head pressure of 600 pounds, as manufactured by DIAMATIC USA, “DIAMATIC® BMG-780 or BMG-735”, or equal.
 b. Micro Polisher/Burnisher: Specific weight and RPM required to reach temperature of 100 degrees Fahrenheit for system application, as manufactured by DIAMATIC USA, “DIAMATIC® MPS-1721-1727”, or equal.
 c. Vacuums: Dust collection shall be designed for filtering of concrete dust; minimum air speed of 300 CFM for large and medium platform equipment, as manufactured by DIAMATIC USA, “DIAMATIC® BDC3140P, 1330 BDP”, or equal.
 d. Power generator capable of supplying a minimum output of 45kw and above and capable of generating 480/240 Volt 3-phase power.
 e. Diamond Abrasives and Blades
 1) Metal Bonded Diamonds: 30/40, 60/80, grit of soft, medium, and hard bonded metal. Note: Concrete has hardness levels of soft, medium, and hard; the hardness of the concrete will determine the required hardness of the metal bonded diamonds:
 a) Hard Concrete: Soft metal bonded diamonds.
 b) Medium Concrete: Medium metal bonded diamonds.
 c) Soft Concrete: Hard metal bonded diamonds.
 2) Transitional Diamonds: #0, #1, #2 grit.
 3) Hybrid Flex-res Resin Bonded Diamonds: 50, 100, 200, 400, 800, 1500, 3000 grit.
 4) FLOR-GRIT Diamond Impregnated Pads: 200, 400, 800, 1500, 3000 grit.
 2. Concrete Treatment Chemical
 a. Densifier: For standard concrete and terrazzo, as manufactured by DIAMATIC USA, “DIAMATIC® FLOR-SIL™ Lithium Densifier”, or equal.
 b. Dye: As manufactured by DIAMATIC USA, “DIAMATIC® FLOR-COLOR™ Micronized Water Borne High Performance Dye”, or equal.
c. Protection Treatment: High gloss, powered by Dow Corning, as manufactured by DIAMATIC USA, “DIAMATIC® FLOR-FINISH Stain and Wear Protection Treatment”, or equal.

3. Protection Materials: To prevent minor damage from light trade traffic during build out of site, provide and install protective floor covering as manufactured by DIAMATIC USA, “DIAMATIC™ PRIMO-COVER”, or equal.

PART 3 - EXECUTION

3.01 COLORED CONCRETE

A. Mix coloring in concrete in accordance with manufacturer’s instructions.

3.02 MONOLITHIC SLAB FINISHES

A. Scratch Finish: Apply scratch finish to monolithic slab surfaces to receive concrete floor topping or mortar setting beds for tile, pavers and other bonded applied cementitious finish flooring material, and where indicated.
1. After placing slabs, finish surface to tolerance not exceeding 1/2-inch in 10 feet when tested with a 10 feet straight edge, or to tolerance of F(F) not less than 15 (floor flatness) and F(L) not less than 13 (floor levelness) measured according to ASTM E1155. Slope surfaces uniformly to drains where required. After leveling, roughen surface before final set with stiff brushes, brooms, or rakes.

B. Float Finish: Apply float finish to monolithic slab surfaces to receive trowel finish and other finishes as specified; slab surfaces to be covered with membrane or elastic waterproofing, or as otherwise indicated.
1. After screeding, consolidating, and leveling concrete slabs, do not work surface until ready for floating. Begin floating when surface water has disappeared, or when concrete has stiffened sufficiently to permit operation of power-driven floats, or both. Consolidate surface with power-driven floats or by hand-floating if area is small or inaccessible to power units. Check and level surface plane to a tolerance not exceeding 5/16-inch in 10 feet when tested with a 10 feet straightedge or to tolerance of F(F) not less than 20 (floor flatness) and F(L) not less than 15 (floor levelness) measured according to ASTM E1155. Cut down high spots and fill low spots. Uniformly slope surfaces to drains. Immediately after leveling, refloat surface to a uniform, smooth, granular texture. Provide square corners in slab depressions.

C. Wood Float Finish: Apply wood float finish to exterior stair and walk surfaces except where noted otherwise on the Drawings. Finish surface shall have a uniform slight textured appearance without swirl marks.

D. Trowel Finish: Apply a trowel finish to monolithic slab surfaces exposed to view and slab surfaces to be covered with resilient flooring, carpet, thin set ceramic or paver, paint or another thin film finish coating system.
1. After floating, begin first trowel finish operation using a power-driven trowel. Begin final troweling when surface produces a ringing sound as trowel is moved over surface. Consolidate concrete surface by final hand-troweling operation, free of trowel marks, uniform in texture and appearance, and with a surface plane tolerance not exceeding 3/16-inch in 10 feet when tested with a 10 feet straightedge or to tolerances of not less than F(F) 30 (floor flatness) and F(L) not less than 20 (floor levelness) measured according to ASTM E1155. Grind smooth any surface defects that would telegraph through applied floor covering system.
3.03 CONCRETE SURFACE REPAIRS

A. Patching Defective Areas: Repair and patch defective areas with cement mortar immediately after removing forms, when acceptable to the Architect.

B. Mix dry-pack mortar, consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing a No. 16 mesh sieve, using only enough water as required for handling and placing.

1. Cut out honeycombs, rock pockets, voids over 1/4-inch in any dimension, and holes left by tie rods and bolts down to solid concrete but in no case to a depth less than 1 inch. Make edges of cuts perpendicular to the concrete surface. Thoroughly clean, dampen with water, and brush-coat the area to be patched with bonding agent. Place patching mortar before bonding agent has dried.

2. For surfaces exposed to view, blend white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Provide test areas at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike-off slightly higher than surrounding surface.

C. Repairing Formed Surfaces: Remove and replace concrete having defective surfaces if defects cannot be repaired to satisfaction of the Architect. Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycomb, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning. Flush out form tie holes and fill with dry-pack mortar or precast cement cone plugs secured in place with bonding agent.

1. Repair concealed formed surfaces, where possible, containing defects that affect the concrete’s durability. If defects cannot be repaired, remove and replace the concrete.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as monolithic slabs, for smoothness and verify surface tolerances specified for each surface and finish. Correct low and high areas as specified. Test unformed surfaces sloped to drain for trueness of slope and smoothness by using a template having the required slope.

1. Repair finished unformed surfaces containing defects that affect the concrete’s durability. Surface defects include crazing and cracks in excess of 0.01-inch wide or that penetrate to the reinforcement or completely through nonreinforced sections regardless of width, spalling, popouts, honeycombs, rock pockets, and other objectionable conditions.

2. Correct high areas in unformed surfaces by grinding after concrete has cured at least 14 days.

3. Correct low areas in unformed surfaces during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete. Proprietary underlayment compounds may be used when acceptable to the Architect.

4. Repair defective areas, except random cracks and single holes not exceeding 1 inch in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose reinforcing steel with at least 3/4-inch
clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials to provide concrete of same type or class as original concrete. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

E. Repair isolated random cracks and single holes 1 inch or less in diameter by dry-pack method. Groove top of cracks and cut out holes to sound concrete and clean of dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding compound. Place dry-pack before bonding agent has dried. Compact dry-pack mixture in place and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

F. Repair methods not specified above may be used, subject to acceptance of the Architect.

3.04 POLISHED CONCRETE SYSTEM

A. Examination
1. Examine all concrete substrates and conditions under which the polished concrete system is to be installed.
2. Verify that all surfaces and site conditions are ready to receive work; document and correct conditions detrimental to timely and proper installation of work. Beginning work constitutes acceptance of substrate condition.
3. Verify that existing concrete has cured a minimum of 28 days and meets finish and surface profile requirements before installing the polished concrete system.
4. Examine and confirm mockup panel is satisfactory and meets all of the City’s and Architect’s requirements.
5. Conduct pre-installation conference.
6. Examine substrate and conditions, with installer present, for compliance with requirements for installation tolerances and other conditions affecting application of sealer finish.
7. Do not proceed with application until unsatisfactory conditions have been corrected.

B. Preparation
2. Using the appropriate mechanical means and methods, remove existing floor coverings, coatings, and other non-concrete floor materials. Adhesives shall be removed to their penetrated depth. Prevent any damage to concrete slab surface during demolition from chipping hammers. Existing flooring should be removed mechanically with walk-behind or ride-on scraping equipment.
3. Prepare the existing concrete mechanically via scarification, shot blasting, or other means recommended by the system manufacturer, to remove all contaminants and provide a sound concrete surface free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants. Chemical preparation of the substrate is NOT acceptable, including but not limited to, acid etching, sweeping compounds, solvents, and adhesive removers.
4. Suppress dust during demolition with the use of dust collection equipment to reduce or eliminate airborne concrete and substrate dust.
5. Where existing concrete is cracked, damaged, spalled, not within specified tolerance, or contains unacceptable levels of contaminants or moisture vapor, the installer shall evaluate conditions and proceed with appropriate proprietary system components.
6. Joint Fill (Indoor)
 a. All joint fill materials shall be installed in accordance with the written recommendations provided in the approved manufacturer’s technical data.
 b. For the best results, all joints should be filled after the first pass of metal bonded diamonds, but before any further grinding continues.
c. If the joint filling will occur after the polishing process, apply tape or soap to the edge of the concrete to keep the joint filler from staining the concrete.

C. Installation
1. Gloss Readings
 a. Shall not be obtained through the use of any microfilming products, sealers, coatings, enhancers, or as the result of resin transfer from resin bond abrasives. Refer to ASTM E430.
 b. Readings shall be taken not less than 10 feet on center in field areas and within 1 foot of floor area perimeters. In no case shall a reading be below 2 percent of specified minimum sheen:
 1) Level A Sheen: Low gloss reading of 30 to 40; 400 grit diamond finish.
 2) Level B Sheen: Medium gloss reading of 41 to 55; 800 grit diamond finish.
 3) Level C Sheen: High gloss reading of 56 or higher; 1500 grit or higher.
 c. For instructions on achieving gloss levels, refer to the appropriate written instructions provided by the polished concrete system manufacturer.

D. Acceptance
1. Remove all installation materials and any foreign materials resulting from the installation from the site.
2. Clean adjacent surfaces and materials.
3. Perform post job walk to ensure that the polished concrete system has been completed in accordance with manufacturer’s written instructions.
4. If requested or required, take pictures of final product for documentation and submittal.

E. Protection
1. Prevent any spills or stains from coming into contact with the floor. Clean any spills that may occur as quickly as possible.
2. Protect the finished polished concrete system from continuing construction and build out as needed by installing protective floor covering.
 a. The installation of the manufacturer’s proprietary protective covering shall be approved by the installer and General Contractor.
 b. If the protective covering is damaged during use, then that section shall be cut out and replaced to maintain the integrity of the protective covering.
 c. The protective cover can be removed after build out is complete.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Concrete masonry units.
 2. Steel reinforcing bars.

1.02 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For reinforcing steel. Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.

C. Samples: For each type and color of the following:
 1. Exposed CMUs.

1.04 INFORMATIONAL SUBMITTALS

A. Material Certificates: For each type and size of product. For masonry units, include material test reports substantiating compliance with requirements.

B. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.
 2. Include test reports, according to ASTM C1019, for grout mixes required to comply with compressive strength requirement.

1.05 QUALITY ASSURANCE

A. Sample Panels: Build sample panels to verify selections made under Sample submittals and to demonstrate aesthetic effects. Comply with requirements in Section 01 40 00 "Quality Requirements" for mockups.
 1. Build sample panels for typical exterior wall in sizes approximately 60 inches long by 48 inches high by full thickness.

1.06 FIELD CONDITIONS

A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

PART 2 - PRODUCTS

2.01 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.

C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.02 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.

B. Integral Water Repellent: Provide units made with integral water repellent where indicated.

C. CMUs: ASTM C90.
 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength as noted on plans.
 2. Density Classification: Lightweight.

2.03 CONCRETE LINTELS

A. Concrete Lintels: ASTM C1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated.

2.04 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Masonry Cement: ASTM C91/C91M.

E. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C979/C979M. Use only pigments with a record of satisfactory performance in masonry mortar.

F. Aggregate for Mortar: ASTM C144.
 1. White-Mortar Aggregates: Natural white sand or crushed white stone.
2. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

H. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent from same manufacturer.

I. Water: Potable.

2.05 REINFORCEMENT

A. Uncoated-Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60.

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

2.06 TIES AND ANCHORS

A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
 3. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

2.07 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Provide metal flashing complying with SMACNA's "Architectural Sheet Metal Manual" and as follows:
 1. Stainless Steel: ASTM A240/A240M or ASTM A666, Type 304, 0.016 inch thick.
 2. Copper: ASTM B370, Temper H00, cold-rolled copper sheet, 16-oz./sq. ft. weight or 0.0216 inch thick or ASTM B370, Temper H01, high-yield copper sheet, 12-oz./sq. ft. weight or 0.0162 inch thick.
 3. Fabricate continuous flashings in sections 96 inches long minimum, but not exceeding 12 feet. Provide splice plates at joints of formed, smooth metal flashing.
 4. Fabricate metal drip edges from stainless steel. Extend at least 3 inches into wall and 1/2 inch out from wall, with outer edge bent down 30 degrees and hemmed.
 5. Fabricate metal sealant stops from stainless steel. Extend at least 3 inches into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch and down into joint 1/4 inch to form a stop for retaining sealant backer rod.
 6. Fabricate metal expansion-joint strips from stainless steel to shapes indicated.

B. Single-Wythe CMU Flashing System: System of CMU cell flashing pans and interlocking CMU web covers made from UV-resistant, high-density polyethylene. Cell flashing pans have integral weep spouts designed to be built into mortar bed joints and that extend into the cell to prevent clogging with mortar.

C. Solder and Sealants for Sheet Metal Flashings: As specified in Section 07 62 00 "Sheet Metal Flashing and Trim."

D. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer’s standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.
2.08 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene urethane or PVC.

B. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D226M, Type I (No. 15 asphalt felt).

2.09 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 1. Do not use calcium chloride in mortar or grout.
 2. For reinforced masonry, use masonry cement mortar.
 3. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated.
 1. For reinforced masonry, use Type S.

D. Grout for Unit Masonry: Comply with ASTM C476.
 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 2. Proportion grout in accordance with ASTM C476, paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.
 3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C143/C143M.

E. Align new joints with existing joints where new and existing Masonry are adjacent.

PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

A. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.02 TOLERANCES

A. Dimensions and Locations of Elements:
 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.
B. Lines and Levels:
1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.

C. Joints:
1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
2. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
3. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.03 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

C. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

D. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

E. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

F. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.04 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
1. Bed face shells in mortar and make head joints of depth equal to bed joints.
2. Bed webs in mortar in all courses of piers, columns, and pilasters.
3. Bed webs in mortar in grouted masonry, including starting course on footings.
4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.05 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 1. Space reinforcement not more than 16 inches o.c.
 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings in addition to continuous reinforcement.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

3.06 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:
 1. Provide an open space not less than 1/2 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 3. Space anchors as indicated, but not more than 24 inches o.c. vertically and 36 inches o.c. horizontally.

3.07 FLASHING

A. General: Install embedded flashing at ledges and other obstructions to downward flow of water in wall where indicated.

B. Install flashing as follows unless otherwise indicated:
 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 2. At lintels, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
 3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal drip edge.
 4. Install metal flashing termination beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall, and adhere flexible flashing to top of metal flashing termination.

C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer's written instructions. Install CMU cell pans with upturned edges.
located below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

3.08 REINFORCED UNIT MASONRY

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 2. Limit height of vertical grout pours to not more than 60 inches.

3.09 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Special inspections according to Level C in TMS 402/ACI 530/ASCE 5.
 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 3. Place grout only after inspectors have verified proportions of site-prepared grout.

C. Testing Prior to Construction: One set of tests.

D. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.

E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C140 for compressive strength.

F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.

G. Mortar Test (Property Specification): For each mix provided, according to ASTM C780. Test mortar for mortar air content and compressive strength.

H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.

I. Prism Test: For each type of construction provided, according to ASTM C1314 at seven days and at 28 days.
3.10 REPAIRING, POINTING, AND CLEANING

A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
 2. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.11 MASONRY WASTE DISPOSAL

A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 1. Do not dispose of masonry waste as fill within 18 inches of finished grade.

B. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Exterior and interior steel pipe guardrails, handrails, and railings.
 2. Exterior fencing.
 3. Ladder at ceiling access hatch.
 4. Countertop supports.
 5. Miscellaneous channels, angles, and other shapes as required.
 6. Rough hardware.

B. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 06 41 10 - Custom Casework: Provision of plastic laminate covered
 countertops.
 2. Section 08 31 13 - Access Doors and Frames: Provision of ceiling access doors and
 frames.
 4. Section 09 90 00 - Painting and Coating: For finish painting of items not specified to
 have factory finish.
 5. Section 12 36 61.16 - Solid Surfacing Countertops: Provision of solid surfacing
 countertops.

1.02 REFERENCES

A. AISC - American Institute of Steel Construction Inc.

B. ANSI - American National Standards Institute
 1. A14.3 - Safety Requirements for Fixed Ladders.

C. ASTM - American Society for Testing and Materials
 4. A53 - Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated,
 Welded and Seamless.
 5. A123 - Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and
 Steel Products.
 7. A307 - Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile
 Strength.
 8. A500 - Standard Specification for Cold-Formed Welded and Seamless Carbon Steel
 Structural Tubing in Rounds and Shapes.

D. AWS - American Welding Society
 1. D1.1 - Structural Welding Code--Steel.
 2. D1.3 - Structural Welding Code--Sheet Steel.

E. CBC - California Building Code, 2016 Edition

F. FS - Federal Specification
 1. FF-B-588 - Bolt, Toggle and Expansion Sleeve, Screw.

G. NAAMM - National Association of Architectural Metal Manufacturers
 1. MFM - Metal Finishes Manual for Architectural and Metal Products.

H. SSPC - The Society for Protective Coatings
 1. PA 1 - Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel.
 2. SP 2 - Surface Preparation Specification No. 2: Hand Tool Cleaning.
 3. SP 3 - Surface Preparation Specification No. 3: Power Tool Cleaning.
 4. SP 6 - Surface Preparation Specification No. 6: Commercial Blast Cleaning.

1.03 SYSTEM DESCRIPTION

A. Design Requirements
 1. Wind Load Requirements for Exterior Items: Design and size members to withstand dead and live loads caused by pressure and suction of wind in accordance with CBC.
 2. Design work to support normally imposed loads and in conformity with AISC requirements.
 3. Provide for expansion and contraction.
 4. Design exterior items to exclude water.
 5. Structural Performance of Guardrails, Handrails, and Railings: Engineer, fabricate, and install guardrails, handrails, and railing systems to withstand structural loads without exceeding the allowable design working stress of the materials involved, including anchors and connections. Apply each load to produce the maximum stress in each of the respective components of each metal fabrication in accordance with CBC.
 6. Ladders: Design ladders in accordance with requirements of NAAMM.
 7. Shop drawings and calculations for metal fabrications engineered under work of this Section shall be prepared under direct supervision of State of California licensed Structural Engineer and shall be so wet stamped and wet signed.
1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for paint products and grout.

B. Shop Drawings
 1. Submit shop drawings detailing fabrication and erection of each metal fabrication indicated. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide templates for anchors and bolts specified for installation under other Sections.
 2. Guardrails, handrails, and railings required to be structurally designed in accordance with CBC shall be engineered by a qualified Engineer licensed in the State of California for the location where the project will be constructed. Submit stamped and signed shop drawings and calculations. Process shop drawings and calculations through the jurisdiction for the project location as a deferred submittal after review by the Architect and per the Architect’s direction.

C. Quality Control Submittals: Welder certificates signed by Contractor certifying that welders comply with requirements specified under the “Quality Assurance” Article.

1.05 QUALITY ASSURANCE

A. Welding Standards: Comply with applicable provisions of AWS D1.1 and AWS D1.3.
 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Metal Surfaces, General
 1. For metal fabrications exposed to view in the completed Work, provide materials selected for their surface flatness, smoothness, and freedom from surface blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
 2. Provide steel with 25 percent minimum recycled steel content. In the case of comparable suppliers, preference shall be given to suppliers with highest recycled steel content in their product.

B. Steel and Iron
 1. Steel Plates, Shapes, and Bars: ASTM A36.
 2. Cold-Formed Steel Tubing: ASTM A500. For exterior installations and where indicated, provide tubing with hot-dip galvanized coating per ASTM A123.
 3. Steel Pipe: ASTM A53, Type S, Grade B, Schedule 40, unless otherwise indicated, or another weight required by structural loads.

C. Concrete Inserts: Anchors of type indicated below, fabricated from corrosion resistant materials capable of sustaining, without failure, the load imposed within a safety factor of 4, as determined by testing per ASTM E488, conducted by a qualified independent testing agency.
 1. Threaded or wedge type; galvanized ferrous castings, either ASTM A47 malleable iron or ASTM A27 cast steel. Provide bolts, washers, and shims as required, hot-dip galvanized in accordance with ASTM A153.
 2. Provide weld plate imbedded in concrete as detailed in the Drawings. Coordinate location with other imbedded materials.
D. Fasteners: Provide plated fasteners complying with ASTM B633, Class Fe/Zn 25 for electrodeposited zinc coating, for exterior use or where built into exterior walls, concrete slabs, or ceilings. Select fasteners for the type, grade, and class required.
 1. Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A, with hex nuts, ASTM A563, and, where indicated, flat washers.
 5. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E488 conducted by a qualified independent testing agency. Testing shall be to twice the indicated tension capacity for the specific approved application listed in a current ICBO report for the expansion/sleeve anchor.
 6. Toggle Bolts: FS FF-B-588, tumble-wing type, class and style as required.

E. Welding Materials: AWS D1.1 and AWS D1.3, type required for materials being welded.

2.02 STANDARD CATALOG PRODUCTS

A. Nonshrink, Nonmetallic Grout
 1. Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107. Provide grout specifically recommended by manufacturer for interior and exterior applications.

B. Expansion Cement
 1. Non-metallic, non-corrosive, pourable hydraulic type cement that is quick-setting, high strength, and non-shrinking, with the following properties:
 a. Compressive Strength: 58,400 psi at 7 days in accordance with ASTM C109.
 b. Volume Change: ±0.31 at 7 days in accordance with ASTM C157.

C. Coatings
 1. Coatings for Protection of Dissimilar Materials
 a. Dissimilar Metals: Bituminous type materials in accordance with ASTM D1187.
 b. Aluminum in Contact with Concrete, Metal, Wood, or other Absorptive Material.
 2. Shop Primer for Ferrous Metal: VOC compliant, fast-curing, lead and chromate free, universal modified alkyd primer with good resistance to corrosion, compatible with finish paint systems.
 3. Galvanizing Repair Paint: High zinc dust content paint, with dry film containing not less than 94 percent zinc dust by weight, as manufactured by Parker Amchem, “Galvaprep SG”; Sherwin Williams, “Zinc Clad I”, or equal.
 4. All items exposed to moisture or weather shall be hot dipped galvanized.

D. Handrail Brackets: Malleable iron, galvanized, complete with fasteners as appropriate to receiving surface, as manufactured by Julius Blum and Co., Inc.; Stanley Hardware; Wagner, or equal.
E. Ladder at Ceiling Access Hatch: Fabricated from 6061-T6 aluminum alloy; mill finish with no painting required; includes side rails with 1-1/8 inch round rungs that are serrated and secured with cast aluminum connectors; 4 solid rivets; 3/8-inch thick brackets mounted to the walls.

2.03 FABRICATION, GENERAL

A. Form metal fabrications from materials of size, thickness, and shapes indicated but not less than that needed to comply with performance requirements indicated. Work to dimensions indicated or accepted on Construction Drawings, using proven details of fabrication and support. Use type of materials indicated or specified for various components of each metal fabrication.

B. Form exposed work true to line and level with accurate angles and surfaces and straight sharp edges.

C. Allow for thermal movement resulting from the following maximum change (range) in ambient temperature in the design, fabrication, and installation of installed metal assemblies to prevent buckling, opening up of joints, and overstressing of welds and fasteners. Base design calculations on actual surface temperatures of metals due to both solar heat gain and nighttime sky heat loss.
 1. Temperature Change (Range): 100 degrees Fahrenheit.

D. Shear and punch metals cleanly and accurately. Remove burrs.

E. Ease exposed edges to a radius of approximately 1/32-inch, unless otherwise indicated. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

F. Remove sharp or rough areas on exposed traffic surfaces.

G. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so that no roughness shows after finishing and contour of welded surface matches those adjacent.

H. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners wherever possible. Use exposed fasteners of type indicated or, if not indicated, Phillips flat-head (countersunk) screws or bolts. Locate joints where least conspicuous.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Fabricate and space-anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

J. Shop Assembly: Preassemble items in shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
K. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

L. Fabricate joints that will be exposed to weather in a manner to exclude water, or provide weep holes where water may accumulate.

2.04 GUARDRAILS, HANDRAILS, AND RAILINGS

A. General: Fabricate guardrails, handrails, and railing systems to comply with requirements indicated for design, dimensions, details, finish, and member sizes, including wall thickness of tube or pipe, post spacings, and anchorage, but not less than that required to support structural loads.

B. Interconnect handrail and railing members by butt-welding or welding with internal connectors, at fabricator's option, unless otherwise indicated.
 1. At tee and cross intersections, cope ends of intersecting members to fit contour of pipe to which end is joined, and weld all around.

C. Form changes in direction of handrails and railings as detailed.

D. Form simple and compound curves by bending tube or pipe in jigs to produce uniform curvature for each repetitive configuration required; maintain cylindrical cross section of tube or pipe throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of pipe.

E. Provide wall returns at ends of wall-mounted handrails, unless otherwise indicated.

F. Close exposed ends of tube or pipe by welding 3/16-inch thick steel plate in place or with prefabricated fittings.

G. Fabricate newels of steel tubing and provide newel caps of pressed steel, as shown.

H. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, end closures, flanges, post base flanges, miscellaneous fittings, and anchors for interconnections of pipe and attachment of handrails and railing systems to other work. Furnish inserts and other anchorage devices for connecting handrails and railing systems to concrete or masonry work.

I. Fillers: Provide steel sheet or plate fillers of thickness and size indicated or required to support structural loads of handrails where needed to transfer wall bracket loads through wall finishes to structural supports. Size fillers to suit wall finish thicknesses. Size fillers to produce adequate bearing to prevent bracket rotation and overstressing of substrate.

J. Galvanize exterior guardrails, handrails, railings, and supports; paint where indicated as specified in Section 09 90 00. Prepare galvanized materials for painting where scheduled.

K. For galvanized handrails and railing systems, provide galvanized fittings, brackets, fasteners, sleeves, and other ferrous components.

L. For non-galvanized steel handrails and railing systems, provide non-galvanized ferrous metal fittings, brackets, fasteners, and sleeves, except galvanize anchors embedded in exterior masonry and concrete construction.
2.05 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports for applications indicated that are not a part of structural steel framework as required to complete the Work.

B. Fabricate units to sizes, shapes, and profiles indicated and required to receive other adjacent construction retained by framing and supports. Fabricate from structural steel shapes, plates, and steel bars of welded construction using mitered joints for field connection. Cut, drill, and tap units to receive hardware, hangers, and similar items.
 1. Equip units with integrally welded anchors for casting into concrete or building into masonry. Furnish inserts if units must be installed after concrete is placed.
 2. Except as otherwise indicated, space anchors 24 inches on center and provide minimum anchor units in the form of steel straps 1-1/4 inches wide by 1/4-inch thick by 8 inches long.

C. Galvanize miscellaneous interior and exterior framing and supports.

2.06 FINISHES, GENERAL

A. Comply with NAAMM’s MFM for recommendations relative to applying and designing finishes. Finish metal fabrications after assembly.

2.07 STEEL AND IRON FINISHES

A. Exterior metal components/fabricsions that are intended to be exposed at the completion of construction and their attachments shall be shop treated with galvanic “metalized” process; then shop primed and painted as indicated herewith.
 1. Prepare galvanized materials for painting where scheduled.

B. Preparation for Shop Priming: Prepare uncoated ferrous metal surfaces to comply with minimum requirements indicated below for SSPC surface preparation specifications and environmental exposure conditions of installed metal fabrications:
 1. Typical: SSPC SP 2, SSPC SP 3, as required.

C. Apply shop primer to uncoated surfaces of metal fabrications, except those with galvanized finishes or to be embedded in concrete, sprayed-on fireproofing, or masonry, unless otherwise indicated. Comply with requirements of SSPC PA 1 for shop painting.

D. Finish Painting: As specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing miscellaneous metal fabrications to in-place construction. Include threaded fasteners for concrete and masonry inserts, toggle bolts, through-bolts, lag bolts, wood screws, and other connectors as required. Fastenings to post tension concrete shall be by cast-in-place embed only. Fasteners not installed but required after pour shall be submitted to the Architect for approval. Fastener shall not be installed until the Architect approval is received.
B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing miscellaneous metal fabrications. Set metal fabrication accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels. No cutting or drilling shall occur in post tension concrete slab without Structural Engineer’s approval.

C. Provide temporary bracing or anchors in formwork for items that are to be built into concrete masonry or similar construction.

D. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop-welded because of shipping size limitations. Do not weld, cut, or abrade the surfaces of exterior units that have been galvanized after fabrication and are intended for bolted or screwed field connections.

E. Field Welding
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so that no roughness shows after finishing and contour of welded surface matches those adjacent.

F. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with a heavy coat of bituminous paint.

3.02 INSTALLING GUARDRAILS, HANDRAILS, AND RAILINGS

A. Adjust guardrails, handrails, and railing systems prior to anchoring to ensure matching alignment at abutting joints. Space posts at spacing indicated or, if not indicated, as required by design loadings. Plumb posts in each direction. Secure posts and railing ends to building construction as follows:
 1. Anchor posts to post tension concrete by welding directly to imbedded steel supporting members.
 2. Anchor handrail and post ends to cast-in-place concrete and masonry with steel flanges welded to rail ends and anchored into wall construction with drilled-in epoxy and bolt anchors.

B. Secure handrails to wall with wall brackets and end fittings. Provide bracket with 1-1/2 inch clearance from inside face of handrail and finished wall surface. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads. Secure wall brackets and wall return fittings to building construction as follows:
 1. Use type of bracket with flange tapped for concealed anchorage to threaded hanger bolt.
 2. For wood stud partitions or walls, use hanger or lag bolts set into wood backing between studs. Coordinate with carpentry work to locate backing members or provide solid 4x blocking.
 3. For hollow masonry anchorage, use toggle bolts having square heads.
 4. For steel framed gypsum board assemblies, fasten brackets directly to steel framing or concealed anchors using self-tapping screws of size and type required to support structural loads.

C. Standard Catalog Products: Install standard catalog products in accordance with manufacturer’s installation instructions and reviewed shop drawings.
3.03 SETTING

A. Set item shown or required to be installed in sleeves with quick-setting anchor cement unless otherwise noted.

B. Use non-shrink grout mixed in accordance with manufacturer’s directions for setting plates, bolts, and similar items.

3.04 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and prime and paint exposed areas with same material as used for shop painting to comply with SSPC PA 1 requirements for touching up shop-painted surfaces.
 1. Apply by brush or spray to provide a 2.0-mil minimum dry film thickness.

B. For galvanized surfaces, clean welds, bolted connections, and abraded areas, and apply galvanizing repair paint to comply with ASTM A780.

END OF SECTION
SECTION 06 10 00

ROUGH CARPENTRY

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Framing with dimension lumber.
 2. Framing with engineered wood products.
 3. Shear wall panels.
 4. Rooftop equipment bases and support curbs.
 5. Wood blocking and nailers.
 7. Wood sleepers.
 8. Plywood backing panels.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

1.03 INFORMATIONAL SUBMITTALS

A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.

B. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.
 2. Engineered wood products.
 3. Post-installed anchors.
 4. Metal framing anchors.

PART 2 - PRODUCTS

2.01 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 1. Factory mark each piece of lumber with grade stamp of grading agency.
 2. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.
 1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.
2.02 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic, chromium, creosote or pentachlorophenol. Do not use inorganic boron (SBX) for sill plates.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:
 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 4. Wood framing members that are less than 18 inches above the ground in crawlspaces or unexcavated areas.
 5. Wood floor plates that are installed over concrete slabs-on-grade.

2.03 DIMENSION LUMBER FRAMING

A. Non-Load-Bearing Interior Partitions: Construction or No. 2 grade.
 1. Application: Interior partitions not indicated as load bearing.
 2. Species:
 a. Western woods; WCLIB or WWPA.

2.04 ENGINEERED WOOD PRODUCTS

A. Parallam or laminated veneer lumber: See plans for requirements.

2.05 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 1. Blocking.
 2. Nailers.
 3. Rooftop equipment bases and support curbs.
 5. Furring.

B. Dimension Lumber Items: Construction or No. 2 grade lumber of any species.

2.06 FASTENERS

A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.
 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preserved or treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.
B. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

C. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC58 ICC-ES AC193 or ICC-ES AC308 as appropriate for the substrate.

2.07 METAL FRAMING ANCHORS

A. Allowable design loads, as published by manufacturer, shall meet or exceed those indicated. Manufacturer’s published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.

 1. Use for interior locations unless otherwise indicated.

C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.
 1. Use for wood-preservative-treated lumber and where indicated.

2.08 MISCELLANEOUS MATERIALS

A. Sill-Sealer Gaskets: Glass-fiber-resilient insulation, fabricated in strip form, for use as a sill sealer; 1-inch nominal thickness, compressible to 1/32 inch; selected from manufacturer’s standard widths to suit width of sill members indicated.

B. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer’s standard widths to suit width of sill members indicated.

C. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch.

D. Adhesives for Gluing Furring and Sleepers to Concrete or Masonry: Formulation complying with ASTM D3498 that is approved for use indicated by adhesive manufacturer.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Framing Standard: Comply with AF&PA’s WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer’s written instructions.

C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.

D. Install shear wall panels to comply with manufacturer's written instructions.
E. Install metal framing anchors to comply with manufacturer’s written instructions. Install fasteners through each fastener hole.

F. Do not splice structural members between supports unless otherwise indicated.

G. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

H. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

I. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC’s International Residential Code for One- and Two-Family Dwellings.
 3. ICC-ES evaluation report for fastener.

3.02 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION
SECTION 06 16 00
SHEATHING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Wall sheathing.
 2. Roof sheathing.
 3. Parapet sheathing.
 5. Subflooring.
 6. Underlayment.
 7. Sheathing joint and penetration treatment.

1.02 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

PART 2 - PRODUCTS

2.01 WOOD PANEL PRODUCTS

2.02 WALL SHEATHING

A. Plywood Sheathing: Exposure 1, Structural I sheathing.

B. Oriented-Strand-Board Sheathing: DOC PS 2, Exposure 1, Structural I sheathing.

2.03 ROOF SHEATHING

A. Plywood Sheathing: Exposure 1, Structural I sheathing.

B. Oriented-Strand-Board Sheathing: DOC PS 2, Exposure 1, Structural I sheathing.

2.04 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.

2.05 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Paper-Surfaced Gypsum Sheathing: Elastomeric, medium-modulus, neutral-curing silicone joint sealant compatible with joint substrates formed by gypsum sheathing and other materials, recommended by sheathing manufacturer for application indicated and complying with requirements for elastomeric sealants specified in Section 07 92 00 "Joint Sealants."

B. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C834, compatible with sheathing tape and sheathing and recommended by tape and
sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.

1. **Sheathing Tape**: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

C. **Sheathing Tape for Foam-Plastic Sheathing**: Pressure-sensitive plastic tape recommended by sheathing manufacturer for sealing joints and penetrations in sheathing.

2.06 MISCELLANEOUS MATERIALS

A. **Adhesives for Field Gluing Panels to Wood Framing**: Formulation complying with APA AFG-01 ASTM D3498 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.

PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:
 1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in the ICC's International Residential Code for One- and Two-Family Dwellings.
 3. ICC-ES evaluation report for fastener.

D. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

3.02 WOOD STRUCTURAL PANEL INSTALLATION

B. Fastening Methods: Fasten panels as indicated below:
 1. **Wall and Roof Sheathing**:
 a. Nail to wood framing. Apply a continuous bead of glue to framing members at edges of wall sheathing panels.
 b. Space panels 1/8 inch apart at edges and ends.

3.03 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.
 1. Fasten gypsum sheathing to wood framing with nails or screws.
 2. Fasten gypsum sheathing to cold-formed metal framing with screws.
4. Install panels with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.

B. Seal sheathing joints according to sheathing manufacturer's written instructions.
1. Apply elastomeric sealant to joints and fasteners and trowel flat. Apply sufficient amount of sealant to completely cover joints and fasteners after troweling. Seal other penetrations and openings.
2. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION
This Page Intentionally Left Blank
SECTION 06 20 00
FINISH CARPENTRY

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Repair of existing exterior wood screen wall.
 2. Repair of existing exterior wood storefront.
 3. Exterior wood fascia boards at eaves.
 4. Replacement of exterior wood sills where indicated.
 5. Exterior wood-framed enclosure with plexiglass.
 6. Diagonal sheathing to match existing.
 7. Interior wood paneling, including repair and refinishing of existing paneling and trim.
 8. Interior wood standing and running trim.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 2. Section 08 80 00 - Glazing: Provision of glass and glazing.
 3. Section 09 90 00 - Painting and Coating: For field finish painting.

1.02 REFERENCES

A. ANSI - American National Standards Institute
 1. A208.2 - Medium Density Fiberboard for Interior Use.

B. APA - The Engineered Wood Association

C. ASTM - American Society for Testing and Materials

D. CALGreen - California Green Building Standards, 2016 Edition

E. CFR - Code of Federal Regulations

F. EPA - Environmental Protection Agency

G. FSC - Forest Stewardship Council
 1. STD-01-001 - FSC Principles and Criteria for Forest Stewardship.

H. WI - Woodwork Institute
1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Composite wood used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Articles 5.504.4.5 and 5.504.4.5.3.
 2. Adhesives used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Article 5.504.4.1.

1.04 SUBMITTALS

A. Product Data: Submit for all items.

B. Shop Drawings
 1. Indicate dimensioned plans, sections, elevations, large scale details, location of each item, materials and wood species, component profiles, fastenings, jointing details, finishes, accessories, hardware location and schedule of finishes.
 2. Follow WI standards for shop drawings.

C. Samples: Submit samples of wood items finished as specified.
 1. At least 1 sample of finished solid stock showing complete range of variations in grain, color, and other features, minimum 6 inches by 18 inches.
 2. Samples shall be resubmitted for acceptable stain and finish until approved by the Architect.

1.05 QUALITY ASSURANCE

A. Forest Certification: Provide wood products made with not less than 70 percent of wood products obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, “FSC Principles and Criteria for Forest Stewardship”.

B. Mockups: Before repairing or installing new interior paneling and running trim, construct mockup to verify selections made under sample submittals and to demonstrate aesthetic effects and qualities of materials and execution. Build mockup to comply with the following requirements, using materials indicated for completed Work.
 1. Locate mockup in the location as directed by the Architect.
 2. Notify the Architect 7 days in advance of the date and time when mockup will be constructed.
 3. Maintain mockup during construction in an undisrupted condition as a standard for judging the completed Work.
 4. Approval of mockup does not constitute approval of deviations from Contract Documents contained in mockup, unless such deviations are specifically approved by the Architect in writing.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Do not deliver interior finish carpentry until environmental conditions meet requirements specified for installation areas. If finish carpentry must be stored in other than installation areas, store only where environmental conditions meet requirements specified for installation areas.

B. Storage and Protection: Keep materials under cover and dry. Protect against exposure to weather and contact with damp or wet surfaces. Stack plywood. Provide for air circulation within and around stacks and under temporary coverings.
PART 2 - PRODUCTS

2.01 MATERIALS

A. Lumber shall bear the grade and trademark of the association under whose rules it is produced and a mark of mill identification. Lumber shall be of sound stock, thoroughly seasoned, kiln-dried to a moisture content not exceeding 19 percent, and surfaced 4 sides, except as specifically designated for items hereinafter.
 1. Exterior Lumber: Finger-jointed, pre-primed Pine, opaque finish as specified in Section 09 90 00.
 2. Interior Lumber for Opaque Finish: Finger-jointed, paint-grade Poplar, opaque finish as specified in Section 09 90 00.
 3. Interior Lumber for Transparent Finish: Redwood and Douglas Fir to match adjacent, stained finish as specified in Section 09 90 00.

B. Plywood: APA Grade AA, 3/4-inch thick; match existing wood paneling species, grain, texture, and color; stain to match existing.

C. Medium Density Fiberboard (MDF): ANSI A208.2, 3/4-inch thick, Grade 130, made with binder containing no urea formaldehyde.

D. Fasteners
 1. Provide fasteners and anchorages with hot-dip galvanized coating complying with ASTM A153, length of fastener embed into wood substrate to equal 1-1/2 times thickness of items fastened.
 2. Countersink nails and fill surface where nailing is unavoidable. Sand smooth and flush for clear finish.

E. Glue: Aliphatic-resin, polyurethane, or resorcinol wood glue recommended by manufacturer for general carpentry use.
 1. Use wood glue that has a VOC content of 30 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Multipurpose Construction Adhesive: Formulation complying with ASTM D3498 that is recommended for indicated use by adhesive manufacturer.
 1. Use adhesive that has a VOC content of 70 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. Putty: Linseed oil type, tinted to match surface finish color.

H. Back Priming: As specified in Section 09 90 00.

I. Glazing: Insulated glass, as specified in Section 08 80 00.

2.02 FABRICATION

A. Preparation
 1. Verify measurements at job site.
 2. Verify details and dimensions of fixtures integral with finish carpentry for proper fit and accurate alignment.

B. General Fabrication Requirements
 1. Factory-fabricate and assemble work in complete units insofar as dimensions permit shipment and installation.
2. Kerf backs of solid members more than 5 inches wide or more than 1 inch nominal thickness.
3. Conceal nailing where possible and set nail heads for putty in exposed portions.
5. Preprime wood and field prime end cuts.

C. Exterior Wood Screen Wall: Repair existing, as indicated on the Drawings. Use matching material for replacement of deteriorated members.

D. Diagonal Sheathing: Where indicated; 2-inch tongue-and-groove Douglas Fir; match existing species, grain, texture, and color; stain to match existing.

E. Interior Wood Siding: Custom tongue-and-groove to match existing; 1x6 shiplap in vertical orientation; intended for opaque finish; refer to Section 07 46 23.

F. Interior Wood Paneling: 1/2-inch veneer plywood; species, grain, texture, and color to match existing; stain to match adjacent panels.

G. Interior Standing and Running Trim
 2. At Wood Paneling: Match existing species, grain, texture, and color; stain to match existing.

2.03 FINISHES

A. Shop Finishing: Provide items specified in this Section to be fabricated in accordance with WI standards, shop finished in accordance with the following requirements

B. Preparation For Site Finishing
 1. Touch-Up: Touch-up items specified to be shop finished in accordance with requirements of WI.
 2. Items Other Than Those Specified to Be Shop Finished
 b. Finish paint in accordance with requirements of Section 09 90 00.
 c. Finish MDF smooth with no visible wart or paint wicking at fasteners.

C. Transparent and Opaque Finishes: As specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 INSTALLATION

A. General
 1. Set work square, level, plumb with edges scribed, accurate, and secure in place with fastenings, clips, braces, brackets, anchors, shims, and blocks.
 2. Install with minimum number of joints practical, using full-length pieces from maximum lengths of lumber available. Do not use pieces less than 24 inches long, except where necessary. Stagger joints in adjacent and related standing and running trim. Cope at returns and miter at corners to produce tight-fitting joints with full-surface contact throughout length of joint. Use scarf joints for end-to-end joints. Plane backs of casings to provide uniform thickness across joints, where necessary for alignment.
3. Conceal nailing and screwing where possible and set nail heads for putty in exposed portion and conceal screws as indicated.
4. Miter inside and outside corners of running trim; bevel end joints together.

B. Wood Surfaces
1. Thoroughly hand sand. Take care that cross sanding is removed by final sanding in direction of grain; ease “knife-edge” corners by sanding.
2. Ensure free from dust, glue, stains, and other foreign matter and in proper condition to receive finish.

C. Repair of Existing Interior Paneling and Trim
1. Match existing veneer plywood or solid lumber species, grain, texture, and color where indicated on the Drawings.
2. Lightly sand imperfections, including small dents and divets, replace damaged members and panels with matching materials, and refinish by touching up stain and clear coat.
3. Allowance: As specified in Division 01.

3.02 ADJUSTING
A. Repair damaged or defective finish carpentry where possible to eliminate functional or visual defects. Where not possible to repair, replace finish carpentry. Adjust joinery for uniform appearance.

END OF SECTION
SECTION 06 41 10

CUSTOM CASEWORK

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Repair and replacement of existing plastic laminate faced casework.
 2. Plastic laminate covered countertops and splashes.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 05 50 00 - Metal Fabrications: Provision of countertop supports.
 2. Section 09 90 00 - Painting and Coating: For back priming.
 4. Division 22 - Plumbing: For rough-in and connection of plumbing fixtures and fittings.
 5. Division 26 - Electrical: For rough-in and connection of electrical fixtures and fittings.

1.02 REFERENCES

A. ALA - American Laminators Association

B. ANSI - American National Standards Institute
 1. A208.2 - Medium Density Fiberboard (MDF) for Interior Applications.

C. CALGreen - California Green Building Standards, 2016 Edition

D. EPA - Environmental Protection Agency

E. FS - Federal Specifications
 1. FF-N-105 - Nails, Brads, Staples and Spikes: Wire, Cut and Wrought.

F. FSC - Forest Stewardship Council
 1. STD-01-001 - FSC Principles and Criteria for Forest Stewardship.

G. NEMA - National Electric Manufacturers Association
 1. LD3 - High Pressure Decorative Laminates.

H. WI - Woodwork Institute

1.03 DEFINITIONS

A. Exposed Portions - All Grades: Surfaces visible when doors and drawers are closed; underside of bottoms of cabinets over 4 feet above finished floor; cabinet tops under 6 feet above finished floor; visible front edges of web frames, ends, divisions, tops, shelves, and hanging stiles; visible sloping tops of cabinets; visible portions of bottoms, tops, and ends in front of sliding doors.
B. Semi-Exposed Portions: Shelves; divisions; interior face of ends, backs, and bottoms; drawer sides, subfronts, backs, and bottoms; underside of bottoms of cabinets between 2-1/2 and 4 feet above finished floor; interior faces of hinged doors; and all rooms designated as storage, janitor, closet, or utility.

C. Concealed Portions: Toe space; sleepers, web frames, stretchers, and solid sub-tops; security panels; underside of bottoms of cabinets less than 2-1/2 feet above finished floor; flat tops of cabinets 6 feet or more above finished floor except if visible from upper building level; 3 non-visible edges of adjustable shelves; underside of countertops, knee spaces, and drawer aprons; faces of cabinet ends of adjoining units that butt together.

1.04 SYSTEM DESCRIPTION

A. Composite wood used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Articles 5.504.4.5 and 5.504.4.5.2.

1.05 SUBMITTALS

A. Product Data
1. Submit manufacturer’s product data for each type of product and process specified and incorporated into items of architectural woodwork during fabrication, finishing, and installation, including hardware.
2. Submit manufacturer’s written installation instructions for pre-fabricated casework items.

B. Shop Drawings: Submit shop drawings showing location of each item, dimensioned plans and elevations, large-scale details, attachment devices, seismic anchorage and other components.
1. Show details full size.
2. Show locations and sizes of furring and blocking, including concealed backing and reinforcing specified in other Sections.
3. Show locations and sizes of cutouts and holes for plumbing fixtures, electrical devices, faucets, soap dispensers, grommets, and other items installed in casework.

C. Samples
1. Submit proposed finish panel.
2. Resubmit panel sample with finishes adjusted as directed, until material and finish are accepted.

D. Quality Control Submittals: Qualification data for firms and persons specified in the “Quality Assurance” Article to demonstrate their capabilities and experience. Include lists of completed Projects with Project names and addresses, names and addresses of architects and Cities, and other information specified.

1.06 QUALITY ASSURANCE

A. Qualifications
1. Fabricator: Firm experienced in producing architectural woodwork similar to that indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units without delaying the Work.
2. Installer: Arrange for interior architectural woodwork installation by a firm that can demonstrate successful experience in installing architectural woodwork items similar in type and quality to those required for this Project.
B. Quality Standard: Except as otherwise indicated, comply with WI for grades of interior architectural woodwork, construction, finishes and other requirements.

C. Forest Certification: Provide wood products made with not less than 70 percent of wood products obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, “FSC Principles and Criteria for Forest Stewardship”.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Do not deliver casework until painting and similar operations that could damage, soil, or deteriorate casework have been completed in installation areas.

1.08 PROJECT CONDITIONS

A. Environmental Requirements: Do not deliver or install casework until building is enclosed, wet-work is completed, and HVAC system is operating and will maintain temperature and relative humidity at occupancy levels during the remainder of the construction period.

B. Field Measurements: Where casework is indicated to be fitted to other construction, check actual dimensions of other construction by accurate field measurements before fabrication, and show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1. Verify locations of concealed framing, backing, reinforcements, and furring that support casework by accurate field measurements before being enclosed. Record measurements on final shop drawings.

2. Where field measurements cannot be made without delaying the Work, guarantee dimensions and proceed with fabricating casework without field measurements. Provide allowance for trimming at site and coordinate construction to ensure that actual dimensions correspond to guaranteed dimensions.

PART 2 - PRODUCTS

2.01 MATERIALS

A. General

1. Material Grade: Provide materials that comply with requirements of the WI quality standard for each type of woodwork and quality grade indicated, unless otherwise indicated.

2. Lumber and Plywood: Kiln-dry to equilibrium moisture content suitable for fabrication in shop and use intended.

B. Plywood

1. Concealed Portions: In accordance with WI.

2. At Wet Area Countertops: Marine plywood, 3/4-inch thick.

C. Medium Density Fiberboard (MDF)

1. ANSI A208.2, 3/4-inch thick, paint grade, with low VOC/ formaldehyde-free.

D. Plastic Laminate

1. Typical: High pressure general purpose grade, solid colors with textured surfaces.
 a. Plastic Thickness and Grade: Meet requirements of NEMA LD3.
 b. Adhesive: As recommended by plastic laminate manufacturer.

2. Product: As manufactured by Formica Group; Wilsonart, LLC, or equal.
3. Colors: As selected by the Architect from manufacturer’s complete range; allow for different colors in each room for upper and lower cabinets.

E. Melamine Laminate: Low pressure decorative, white, ALA approved.

F. Cabinet Hardware: Provide hardware items as required for complete installation as indicated, but no less than the following types.
1. Plug-In Pin Type Shelf Supports: Provide holes 1 inch on center.
2. Cabinet Hinges: European concealed type, minimum 160 degree opening, with spring closer.
4. Drawer Slides: Full extension, rail mounted type, minimum 100 pound capacity with ball bearing rollers, as manufactured by Accuride; Knape & Vogt; Rockler Companies, Inc., or equal.

G. Solid Surfacing Countertops: As specified in Section 12 36 61.16.

2.02 INSTALLATION MATERIALS

A. Screws: Select material, type, size, and finish required for each use. Comply with ANSI B18.6.1 for applicable requirements.

B. Nails: Select material, type, size, and finish required for each use. Comply with FS FF-N-105 for applicable requirements.

C. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide nonferrous metal or hot-dip galvanized anchors and inserts on inside face of exterior walls and elsewhere as required for corrosion resistance. Provide toothed steel or lead expansion bolt devices for drilled-in-place anchors.

D. Adhesives, General: Do not use adhesives that contain urea formaldehyde.

E. VOC Limits for Installation Adhesives and Glues: Use installation adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
1. Wood Glues: 30 g/L.
2. Contact Adhesive: 250 g/L.

F. Adhesive for Bonding Plastic Laminate: Resorcinol.
1. Adhesive for Bonding Edges: Hot melt adhesive.

2.03 FABRICATION, GENERAL

A. Interior Woodwork Grade: Provide custom grade interior casework complying with WI.

B. Wood Moisture Content: Comply with requirements of WI for wood moisture content in relation to relative humidity conditions existing during time of fabrication and in installation areas.
1. Fabricate woodwork to dimensions, profiles, and details indicated. Ease edges to radius indicated for the following:
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

2. Complete fabrication, including assembly and concealed hardware application, before shipment to Project site to maximum extent possible. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

3. Shop-cut openings, to maximum extent possible, to receive appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Smooth edges of cutouts and, where located in countertops and similar exposures, seal edges with a water-resistant coating.

2.04 PLASTIC COVERED CASEWORK

A. Fabricate in accordance with WI, Custom Grade.

B. Construction Type: Flush overlay.

C. Core Material: Particleboard, medium density fiberboard, or close grain hardwood plywood.

D. Provide plastic laminate at exposed surfaces.

E. Provide polyester cabinet liner at concealed interior surfaces.

2.05 PLASTIC LAMINATE COVERED COUNTERTOPS AND SPLASHES

A. Quality Standard: Comply with WI Section 10.
 1. Grade: Custom.

B. High-Pressure Decorative Laminate Grade: HGP.
 1. Colors, Patterns, and Finishes: As selected by the Architect from manufacturer’s full range of colors and finishes.
 2. Grain Direction: Parallel to cabinet fronts, unless otherwise indicated.
 3. Edges: PVC or wood as appropriate to function and as detailed.
 4. Core Material: Medium-density fiberboard or medium-density fiberboard made with exterior glue.
 5. Backer Sheet: Plastic laminate, Grade BKL, on underside of countertop substrate.

2.06 FINISHING

A. Quality Standard: Comply with WI Section 5, unless otherwise indicated.
 1. Grade: Provide finishes of same grades as items to be finished.

B. Preparations for Finishing: Comply with referenced quality standard for sanding, filling countersunk fasteners, sealing concealed surfaces, and similar preparations for finishing architectural woodwork, as applicable to each unit of work.
 1. Backpriming: Apply 1 coat of sealer or primer compatible with finish coats to concealed surfaces of woodwork, including backs of cabinets and underside of countertops. Concealed surfaces of plastic laminate-clad woodwork do not require backpriming when surfaced with plastic laminate or thermoset decorative overlay.

C. Backprime surfaces to be set against concrete or plaster, as specified in Section 09 90 00.
PART 3 - EXECUTION

3.01 PREPARATION
A. Condition casework to average prevailing humidity conditions in installation areas before installing.
B. Before installing architectural casework, examine shop-fabricated work for completion and complete work as required, including back priming and removal of packing.

3.02 INSTALLATION
A. Quality Standard: Install woodwork to comply with WI for the same grade specified in Part 2 of this Section for type of casework involved.
B. Install casework plumb, level, true, and straight with no distortions. Shim as required with concealed shims. Install to a tolerance of 1/8-inch in 96 inches for plumb and level (including tops).
C. Scribe and cut casework to fit adjoining work and refinish cut surfaces or repair damaged finish at cuts.
D. Anchor casework to anchors or blocking built in or directly attached to substrates. Secure to grounds, stripping and blocking with countersunk, concealed fasteners and blind nailing as required for complete installation. Use fine finishing nails for exposed nailing, countersunk and filled flush with woodwork and matching final finish where transparent finish is indicated.
E. Cabinets: Install without distortion so that doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete the installation of hardware and accessory items as indicated.
 1. Install cabinets with no more than 1/8-inch in 96 inch sag, bow, or other variation from a straight line.
F. Countertops: Anchor securely to base units and other support systems as indicated. Caulk space between backsplash and wall with specified sealant.
 1. Install countertops with no more than 1/8-inch in 96 inch sag, bow, or other variation from a straight line.
 2. Secure backsplashes to tops with concealed metal brackets at 16 inches on center.
G. Complete the finishing work specified in this Section to the extent not completed at shop or before installation of casework.

3.03 ADJUSTING AND CLEANING
A. Repair damaged and defective woodwork where possible to eliminate functional and visual defects; where not possible to repair, replace woodwork. Adjust joinery for uniform appearance.
B. Clean, lubricate, and adjust concealed hardware
C. Clean woodwork on exposed and semiexposed surfaces. Touch up shop-applied finishes to restore damaged or soiled areas.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Thermal and acoustical insulation.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 84 00 - Firestopping: Provision of firesafing.
 2. Section 09 29 00 - Gypsum Board: Provision of gypsum board.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. CALGreen - California Green Building Standards, 2016 Edition

1.03 DEFINITIONS

A. Thermal Resistivity: Where the thermal resistivity of insulation products are designated by “r-values”, they represent the reciprocal of thermal conductivity (k-values). Thermal conductivity is the rate of heat flow through a homogenous material exactly 1 inch thick. Thermal resistivities are expressed by the temperature difference in degrees Fahrenheit between the 2 exposed faces required to cause 1 BTU to flow through 1 square foot per hour at mean temperatures indicated.

1.04 SYSTEM DESCRIPTION

A. Insulation used on the Project shall comply with CALGreen Code Nonresidential Voluntary Measures Appendix A5, Division A5.5, Section A5.504, Articles A5.504.4.8 and A5.504.4.8.2.

1.05 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for insulation products specified.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Protect fiberglass and acoustical materials from moisture during storage and installation.
PART 2 - PRODUCTS

2.01 MATERIALS

A. Thermal Insulation at Exterior Walls: Unfaced, friction-fit, flexible batt or blanket of mineral wool, width to fit stud space, formaldehyde-free, having thermal resistance rating of R-24 and conforming to ASTM C665, Type I, Class A, non-combustible when tested in accordance with ASTM E136.
 1. Fire resistive requirements when tested in accordance with ASTM E84:
 a. Flame Spread: 25 or less.
 b. Smoke Developed: 50 or less.
 2. Thickness: 5.5 inches thick or as required to fill wall cavity.

B. Acoustical Insulation at Interior Walls: Unfaced, friction-fit, flexible batt or blanket of mineral wool, width to fit stud space, formaldehyde-free, fire-resistant.
 1. Thickness: As required to fill wall cavity.

C. Accessories
 1. Insulation Support: Galvanized springwire as required.
 2. Undersink Pipe Insulation: Provide undersink supply and drain pipe insulation, as manufactured by Truebro, Inc., “Basin Guard”; IPS Corporation, or equal.
 3. Firesafing: As specified in Section 07 84 00.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Apply insulation units to substrate by method indicated, complying with manufacturer’s recommendations. If no specific method is indicated, use mechanical anchorage to provide permanent placement and support of units.

B. Extend insulation full thickness as indicated to envelop entire area to be insulated. Cut and fit tightly around obstructions, and fill voids with insulation. Remove projections that interfere with placement.

C. Apply a single layer of insulation of required thickness, unless otherwise shown or required to make up total thickness. Avoid crinkling and bending so that final installation is flat and smooth.

D. Install spindle fasteners at metal deck insulation in accordance with manufacturer’s written instructions.

3.02 INSTALLATION OF ACOUSTICAL INSULATION

A. Install batt insulation as indicated on the Drawings and as directed below.

B. Install R-19 batt insulation above all suspended gypsum board ceilings and floor joist cavities.

C. Install batt insulation to fill framing cavities and fasten to framing to prevent slipping at sound-rated construction.
D. Install insulation batts around perimeter of piping and electrical boxes in sound-rated wall/ceiling cavities.

E. Pack sound insulation batts around perimeter of bathtubs.

F. Install safing insulation at duct and pipe penetrations of sound-rated constructions.

G. At all exposed conditions in occupiable spaces, provide edge trim at edges of wall installations. Insulation shall not be visible at joints between adjacent panels.

H. Install black-faced insulation on stick-clips with black protective caps and using 3-M, “77N”, contact adhesive.
 1. At all exposed conditions in occupiable spaces, provide edge trim at edges of all wall installations. Where the insulation is not black, it must not be visible at joints between adjacent panels.
 2. Install 2-inch thick black-faced insulation on all mechanical room, electrical room, elevator machine room ceilings, and the indicated walls.
 3. Do not paint black-faced insulation or any other acoustically absorptive or porous surface.
 4. To facilitate any acoustical “tuning”, notify Architect and Acoustical Consultant prior to installing fabric or other coverings over acoustical treatments.

3.03 PROTECTION

A. General: Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation will be subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Composition asphalt shingles.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Section
 1. Section 07 62 00 - Sheet Metal Flashing and Trim: Provision of sheet metal flashing and trim.

1.02 REFERENCES

A. ARMA - Asphalt Roofing Manufacturers Association

B. ASTM - American Society for Testing and Materials

C. BMC - Berkeley Municipal Code

D. CBC - California Building Code, 2016 Edition

E. NRCA - National Roofing Contractors Association

F. UL - Underwriters Laboratories Inc.
 1. 790 - Test for Fire Resistance of Roof Covering Materials.

1.03 DESIGN-BUILD DESIGN APPROACH

A. Use this Specification as a guide for design/engineering requirements, workmanship, and materials or construction. Utilize design-build concept throughout construction phase of project.

B. Investigate and be apprised of applicable codes, rules, and regulations as enforced by authorities having jurisdiction.
C. Visit the site of the proposed construction. Verify and inspect the existing site to determine conditions that affect this work.

1.04 SUBMITTALS

A. Product Data: Submit product data for each type of product specified, including details of construction relative to materials, dimensions of individual components, profiles, textures, and colors.

B. Samples: Submit samples for verification in the form of 2 full size asphalt shingles showing the full range of variations expected in these characteristics.

C. Permit and Shop Drawings: Show roof plans, details of components and accessories, and attachments to other work.

1.05 QUALITY ASSURANCE

A. Fire Test Response Classification
 1. Roof materials shall be Class A rated and installed per manufacturer’s recommendations and requirements in Wildland Urban Interface Areas per CBC, Chapter 7A and BMC 19.29.040 and 19.28.030.
 2. Provide asphalt shingles identical to those tested according to ASTM E108 or UL 790 and listed by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify each bundle of asphalt shingles with appropriate markings indicating fire test response classification of applicable testing and inspecting agency.

B. Wind Resistance Test Characteristics: Where wind resistant asphalt shingles are indicated, provide products identical to those tested according to ASTM D3161 or UL 997 and passed. Identify each bundle of asphalt shingles with appropriate markings of applicable testing and inspecting agency.

1.06 WARRANTY

A. General Warranty: The special warranty specified in this Article shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. Special Warranty: Submit a written warranty signed by manufacturer agreeing to repair or replace asphalt shingles that fail in materials or workmanship within the specified warranty period. Failures include, but are not limited to, deformation or deterioration of asphalt shingles beyond normal weathering.
 1. Warranty Period: Manufacturer’s standard 40 years after date of Substantial Completion.

C. Special Project Warranty: Roofing Installer’s warranty, on warranty form at end of this Section, signed by roofing Installer, covering Work of this Section, in which roofing Installer agrees to repair or replace components of asphalt shingle roofing that fail in materials or workmanship within the following warranty period:
 1. Warranty Period: 3 years from date of Substantial Completion.

1.07 MAINTENANCE

A. Extra Materials: Furnish 1 square coverage of asphalt shingles, identical to those to be installed, in unbroken bundles; packaged with protective covering for storage, and are identified with labels clearly describing contents.
PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Acceptable Manufacturer: Certainteed, “Landmark Solaris”, or equal.

2.02 ASPHALT SHINGLES
A. Fiberglass Shingles: Mineral surfaced, self-sealing, laminate, fiberglass SBS polymer modified asphalt shingles, complying with both ASTM D3018, Type I, and ASTM D3462. Provide shingles with a Class A fire test response classification that pass the wind resistance test requirements of ASTM D3161.
 1. Color: As selected by the Architect.
B. Sheet Metal Materials: As specified in Section 07 62 00.

2.03 ACCESSORIES
A. Underlayment: Synthetic, polymer-based, scrim-reinforced high-performance underlayment, complying with ASTM D226 (No. 30) or ASTM D4869.
 1. Product: As manufactured by CertainTeed Corporation, “DiamondDeck”, or equal.
C. Nails: Aluminum or hot-dip galvanized steel, 0.120-inch diameter barbed shank, sharp-pointed, conventional roofing nails with a minimum 3/8-inch diameter head and of sufficient length to penetrate OSB in accordance with Code.
 1. Where nails are in contact with flashing, prevent galvanic action by providing nails made from the same metal as that of the flashing.
D. Staples: Minimum 0.0625-inch thick, zinc coated, steel roofing staples with minimum crown width of 15/16-inch, and of sufficient length to penetrate OSB in accordance with CBC.
E. Roof Vent: Aluminum, tapered, low profile attic vent requiring no separate subflashing and providing airflow while blending seamlessly with surround roofing material.
 1. Finish: As selected by the Architect.

PART 3 - EXECUTION

3.01 INSTALLATION
A. General: Comply with manufacturer’s instructions and recommendations but not less than those recommended by ARMA’s “Residential Asphalt Roofing Manual”.
 1. Fasten asphalt shingles to roof sheathing with either roofing staples, applied pneumatically, or nails.
B. Underlayment: Apply 2 layers of underlayment horizontally over entire surface to receive asphalt shingles, lapping succeeding courses a minimum of 2 inches and end laps a minimum of 4 inches. Fasten with sufficient number of roofing nails or noncorrosive staples to hold underlayment in place until asphalt shingle installation.
C. Flashing: Install metal flashing and trim as indicated and according to details and recommendations in ARMA’s “Residential Asphalt Roofing Manual” and asphalt shingle recommendations in NRCA’s “Roofing and Waterproofing Manual”.

D. Roof Vent: Install in accordance with manufacturer’s written instructions.

E. Install asphalt shingles, beginning at roof’s lower edge, with a starter strip of roll roofing or inverted asphalt shingles with tabs removed. Fasten asphalt shingles in the desired weather exposure pattern; use number of fasteners per shingle as recommended by manufacturer. Use vertical and horizontal chalk lines to ensure straight coursing.
 1. Cut and fit asphalt shingles at edges to provide maximum weather protection.
 2. Application Method: As recommended by the manufacturer.

3.02 ADJUSTING

A. Replace any damaged materials installed under this Section with new materials that meet specified requirements.

3.03 ROOFING INSTALLER’S WARRANTY

A. WHEREAS <Insert name> of <Insert address>, herein called the “Roofing Installer”, has performed roofing and associated work (“work”) on the following project:
 1. Owner: <Insert name of Owner.>
 2. Address: <Insert address.>
 3. Building Name/Type: <Insert information.>
 4. Address: <Insert address.>
 5. Area of Work: <Insert information.>
 6. Acceptance Date: <Insert date.>
 7. Warranty Period: <Insert time.>
 8. Expiration Date: <Insert date.>

B. AND WHEREAS Roofing Installer has contracted (either directly with the City or indirectly as a subcontractor) to warrant said work against leaks and faulty or defective materials and workmanship for designated Warranty Period,

C. NOW THEREFORE Roofing Installer hereby warrants, subject to terms and conditions herein set forth, that during Warranty Period he/she will, at his/her own cost and expense, make or cause to be made such repairs to or replacements of said work as are necessary to correct faulty and defective work and as are necessary to maintain said work in a watertight condition.

D. This Warranty is made subject to the following terms and conditions:
 1. Specifically excluded from this Warranty are damages to work and other parts of the building, and to building contents, caused by:
 a. lightning;
 b. peak gust wind speed exceeding <Insert wind speed> mph;
 c. fire;
 d. failure of roofing system substrate, including cracking, settlement, excessive deflection, deterioration, and decomposition;
 e. faulty construction of parapet walls, copings, chimneys, skylights, vents, equipment supports, and other edge conditions and penetrations of the work;
 f. vapor condensation on bottom of roofing; and
 g. activity on roofing by others, including construction contractors, maintenance personnel, other persons, and animals, whether authorized or unauthorized by the City.
2. When work has been damaged by any of foregoing causes, Warranty shall be null and void until such damage has been repaired by Roofing Installer and until cost and expense thereof have been paid by the City or by another responsible party so designated.

3. Roofing Installer is responsible for damage to work covered by this Warranty but is not liable for consequential damages to building or building contents resulting from leaks or faults or defects of work.

4. During Warranty Period, if the City allows alteration of work by anyone other than Roofing Installer, including cutting, patching, and maintenance in connection with penetrations, attachment of other work, and positioning of anything on roof, this Warranty shall become null and void on date of said alterations, but only to the extent said alterations affect work covered by this Warranty. If the City engages Roofing Installer to perform said alterations, Warranty shall not become null and void unless Roofing Installer, before starting said work, shall have notified the City in writing, showing reasonable cause for claim, that said alterations would likely damage or deteriorate work, thereby reasonably justifying a limitation or termination of this Warranty.

5. During Warranty Period, if original use of roof is changed, this Warranty shall become null and void on date of said change, but only to the extent said change affects work covered by this Warranty.

6. The City shall promptly notify Roofing Installer of observed, known, or suspected leaks, defects, or deterioration and shall afford reasonable opportunity for Roofing Installer to inspect work and to examine evidence of such leaks, defects, or deterioration.

7. This Warranty is recognized to be the only warranty of Roofing Installer on said work and shall not operate to restrict or cut off the City from other remedies and resources lawfully available to the City in cases of roofing failure. Specifically, this Warranty shall not operate to relieve Roofing Installer of responsibility for performance of original work according to requirements of the Contract Documents, regardless of whether Contract was a contract directly with the City or a subcontract with the City’s General Contractor.

E. IN WITNESS THEREOF, this instrument has been duly executed this <Insert day> day of <Insert month>, <Insert year>.

1. Authorized Signature: <Insert signature.>
2. Name: <Insert name.>
3. Title: <Insert title.>

END OF SECTION
This Page Intentionally Left Blank
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Wood siding at new addition and repair and replacement of existing wood siding where indicated.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 06 20 00 - Finish Carpentry: Provision of finish carpentry.
 2. Section 07 92 00 - Joint Sealants: Provision of sealers.
 3. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. WCLIB - West Coast Lumber Inspection Bureau

C. WWPA - Western Wood Products Association

1.03 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer who has completed finish carpentry similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.

1.04 DELIVERY, STORAGE AND HANDLING

A. Delivery and Storage: Keep materials under cover and dry. Protect against exposure to weather and contact with damp or wet surfaces. Stack lumber, plywood, and other panels. Provide for air circulation within and around stacks and under temporary coverings.

1.05 PROJECT CONDITIONS

A. Environmental Requirements: Proceed with installation of wood siding only when existing and forecasted weather conditions will permit work to be performed according to manufacturer’s recommendations and warranty requirements and at least 1 coat of specified finish to be applied without exposure to rain or dampness.

PART 2 - PRODUCTS

2.01 GENERAL

A. Inspection Agencies
 1. WCLIB - West Coast Lumber Inspection Bureau.
 2. WWPA - Western Wood Products Association.
B. Grade Stamps: Provide lumber with each piece factory marked with grade stamp of inspection agency evidencing compliance with grading rule requirements and identifying grading agency, grade, species, moisture content at time of surfing, and mill.
 1. For exposed lumber, furnish pieces with grade stamps applied to ends or back of each piece, or omit grade stamps entirely and provide certificates of grade compliance issued by inspection agency.

2.02 MATERIALS

A. Exterior Lumber: Match existing paint-grade lumber.

B. Weather-Resistive Barrier: Asphalt saturated organic felt, ASTM D226, Grade D, 60-minute permeability rated, as manufactured by Fortifiber Building Systems Group, "Super Jumbo Tex", or equal.

C. Fasteners for Exterior Finish Carpentry: Provide stainless steel nails, in sufficient length to penetrate minimum of 1-1/2 inches into substrate. Minimum nail size shall be 6d. Nails shall have annular or helical grooves.

D. Sealants: As specified in Section 07 92 00.

2.03 FABRICATION

A. Wood Moisture Content: Comply with requirements of specified inspection agencies and manufacturer’s recommendations for moisture content of finish carpentry on relative humidity conditions existing during time of fabrication and in installation areas.

B. Wood Siding: Western Red Cedar or Redwood siding, paint-grade; custom tongue-and-groove to match existing; 1x6 shiplap in vertical orientation; match dimensions of existing siding.
 1. Fabricate siding to dimensions, profiles, and details indicated.

C. Finish: Opaque, as specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, with installer present, for compliance with requirements for installation tolerances and other conditions affecting installation and performance of wood siding. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.02 INSTALLATION, GENERAL

A. Do not use siding materials that are unsound, warped, improperly treated or finished, inadequately seasoned, or too small to fabricate with proper jointing arrangements.

B. Install finish carpentry plumb, level, true, and aligned with adjacent materials. Use concealed shims where required for alignment.

3.03 SIDING INSTALLATION

A. Weather-Resistive Barrier: Cover sheathing with weather-resistive barrier as follows:
 1. Apply 2 layers horizontally with 3 inch overlap and 6 inch endlap.
 2. Apply weather-resistive barrier to cover upstanding flashing with 4 inch overlap.
3. Apply weather-resistive barrier over sheathing as soon as practical after sheathing installation to prevent deterioration or expansion from wetting.

B. Do not use siding materials that are unsound, warped, improperly treated or finished, inadequately seasoned, or too small to fabricate with proper jointing arrangements.

C. Install finish carpentry plumb, level, true, and aligned with adjacent materials. Use concealed shims where required for alignment.

D. Finish Painting: As specified in Section 09 90 00.

3.04 PROTECTION

A. Provide final protection and maintain conditions that ensure finish carpentry is without damage or deterioration at the time of Substantial Completion.
This Page Intentionally Left Blank
SECTION 07 54 00

THERMOPLASTIC MEMBRANE ROOFING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Adhered thermoplastic membrane roofing system for replacement where indicated.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 07 62 00 - Sheet Metal Flashing and Trim: Provision of miscellaneous sheet metal flashing and trim.
2. Section 09 29 00 - Gypsum Board: Provision of gypsum sheathing.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. BMC - Berkeley Municipal Code

C. ENERGY STAR

D. FM - Factory Mutual
1. Approval Guide.
2. 1-90 - For High Wind Exposure.
3. 4450 - Approval Standard - Class 1 Insulated Steel Roof Decks.
4. 4470 - Approval Standard - Class 1 Roof Covers.

E. UL - Underwriters Laboratories Inc.
1.03 DEFINITIONS

A. Roofing Terminology: Refer to ASTM D1079 for definition of terms related to roofing work not otherwise defined in this Section.

1.04 SYSTEM DESCRIPTION

A. Performance Requirements
 1. General: Install sheet membrane roofing and base flashing that are watertight; will not permit the passage of water; and will withstand wind loads, thermally induced movement, and exposure to weather without failure.
 2. Material Compatibility: Provide roofing materials that are compatible with one another under conditions of service and application required, as demonstrated by roofing system manufacturer based on testing and field experience.
 3. FM Listing: Provide sheet membrane, base flashings, and component materials that meet requirements of FM 4450 and FM 4470 as part of a roofing system and that are listed in FM’s “Approval Guide” for Class 1 or noncombustible construction, as applicable. Identify materials with FM markings.
 a. Roofing system shall comply with the following:
 1) Fire Rating: Class A.
 4. Energy Performance: Provide roofing system that complies with ENERGY STAR requirements for reflectivity and high emissivity; initial emissivity minimum 0.9 when tested in accordance with ASTM E408.

1.05 SUBMITTALS

A. Product Data: Submit product data for each type of roofing product specified. Include data substantiating that materials comply with requirements.

B. Shop Drawings: Include plans, sections, and details of base flashings and membrane terminations.

C. Samples for Verification: Of the following products:
 1. Submit 8-inch by 8-inch squares of sheet roofing, of color specified, including T-shaped side and end lap seam.
 2. Submit 6 insulation fasteners.

D. Quality Assurance Submittals
 1. Installer Certificates: Signed by roofing system manufacturer certifying that installer is approved, authorized, or licensed by manufacturer to install specified roofing system.
 2. Manufacturer Certificates: Signed by roofing manufacturer certifying that the roofing system complies with requirements specified in the “Performance Requirements” Article. Upon request, submit evidence of meeting requirements.
 3. Qualification Data: For firms and persons specified in the “Quality Assurance” Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.
 4. Product Test Reports: Based on evaluation of tests performed by manufacturer and witnessed by a qualified independent testing agency, indicate compliance of components of roofing system with requirements based on comprehensive testing of current product compositions.
 5. Research/Evaluation Reports: Evidence of roofing system’s compliance with the building code in effect for Project, from a model code organization acceptable to authorities having jurisdiction.
6. Energy Performance: Provide manufacturer’s certification that roofing system complies with ENERGY STAR requirements for reflectivity and high emissivity.

7. Maintenance Data: For roofing system to include in the maintenance manuals.

8. Warranty: Sample copy of standard roofing system manufacturer’s warranty stating obligations, remedies, limitations, and exclusions of warranty.

9. Energy Performance: Provide roofing system that complies with ENERGY STAR requirements for reflectivity and high emissivity; initial emissivity minimum 0.9 when tested in accordance with ASTM E408.

1.06 QUALITY ASSURANCE

A. Installer Qualifications: Engage an installer, with minimum 5 years experience, to perform work of this Section who has specialized in installing roofing similar to that required for this Project and who is approved, authorized, or licensed by the roofing system manufacturer to install manufacturer’s product.

B. Fire Test Response Characteristics: Provide roofing materials with the fire test response characteristics indicated as determined by testing identical products per test method indicated below by UL, FM, or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify materials with appropriate markings of applicable testing and inspecting agency.

1. Roof materials shall be Class A rated and installed per manufacturer’s recommendations and requirements in Wildland Urban Interface Areas per CBC, Chapter 7A and BMC 19.29.040 and 19.28.030.

2. Exterior Fire Test Exposure: Class A; ASTM E108, for application and slopes indicated.

C. Preliminary Roofing Conference: Before starting roof deck construction, conduct conference at Project site. Meet with the same participants and review the same items listed for the preinstallation conference. In addition, review status of submittals and coordination of work related to roof construction. Notify participants at least 5 working days before conference.

D. Preinstallation Conference: Before installing roofing system, conduct conference at Project site. Notify participants at least 5 working days before conference.

1. Meet with the City; Architect; City’s insurer, if applicable; testing and inspecting agency representative; roofing Installer; roofing system manufacturer’s representative; deck Installer; and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.

2. Review methods and procedures related to roofing installation, including manufacturer’s written instructions.

3. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.

4. Review loading limitations of deck during and after roofing.

5. Review flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect roofing.

6. Review governing regulations and requirements for insurance, certificates, and inspection and testing, if applicable.

7. Review temporary protection requirements for roofing system during and after installation.

8. Review roof observation and repair procedures after roofing installation.

9. Document proceedings, including corrective measures or actions required, and furnish copy of record to each participant.
1.07 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer’s name, product brand name and type, date of manufacture, and directions for storing and mixing with other components.

B. Storage and Protection
 1. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid materials from direct sunlight.
 a. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.
 2. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer’s written instructions for handling, storing, and protecting during installation.
 3. Handle and store roofing materials and place equipment in a manner to avoid permanent deflection of deck.

1.08 PROJECT CONDITIONS

A. Weather Limitations: Proceed with roofing work only when existing and forecasted weather conditions permit roofing to be installed according to manufacturers’ written instructions and warranty requirements.

1.09 WARRANTY

A. General Warranty: The warranties specified in this Article shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. Manufacturer’s Special Roofing System Warranty: Submit a written labor and material warranty, without monetary limitation, signed by roofing system manufacturer agreeing to promptly repair leaks in the roof membrane and base flashings resulting from defects in materials or workmanship for the following warranty period:
 1. Warranty Period: 25 years from date of Substantial Completion.

C. Manufacturer’s Maintenance and Service Agreement
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturer: Tremco, “TPA Single Ply Roof System”, or equal.

2.02 MATERIALS

A. Thermoplastic Membrane Roofing System: Single ply roof membrane comprised of an elastomeric tri-polymer alloy based on Elvaloy and blended with CPE and PVC; reinforced with high strength, wick resistant polyester fabric.
 1. Thickness: As indicated.
 2. Exposed Face Color: White.
2.03 AUXILIARY MATERIALS

A. General: Furnish auxiliary materials recommended by roofing system manufacturer for intended use and compatible with membrane roofing material.
 1. Furnish liquid-type auxiliary materials that meet VOC limits of authorities having jurisdiction.
 2. Primer: As recommended by roofing manufacturer.
 3. Sheet Flashing: Manufacturer’s standard sheet flashing of same material, type, and color as sheet membrane; 60 mils thickness.
 4. Bonding Adhesive: As recommended by roofing manufacturer.
 5. Slip Sheet: Manufacturer’s recommended slip sheet, of type required for application.
 6. Metal Termination Bars: Manufacturer’s standard aluminum bars, approximately 1 inch wide, roll formed and prepunched.
 7. Fasteners: Factory-coated steel fasteners and metal or plastic plates meeting corrosion-resistance provisions of FM 4470, designed for fastening sheet to substrate, and acceptable to roofing system manufacturer.
 8. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, preformed inside and outside corner sheet flashings, T-joint covers, seam calk, termination reglets, and other accessories recommended by roofing system manufacturer for intended use.

B. Gypsum Sheathing: As specified in Section 09 29 00.

C. Insulation Adhesive: As recommended by the roofing manufacturer.

D. Walkway Protection: Manufacturer’s standard polyester-reinforced, weldable membrane with surface embossment.

2.04 INSULATION

A. General: Provide preformed, 4 feet by 4 feet roofing insulation boards that comply with requirements, selected from manufacturer’s standard sizes and of thicknesses indicated.

B. Provide preformed, tapered insulation boards where indicated for sloping to drain. Provide preformed saddles, tapered edge strips, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.

C. Polyisocyanurate Board Insulation: Closed cell, rigid, cellular polyisocyanurate thermal insulation with integrally laminated glass fiber facers and core formed by using HCFCs as blowing agents complying with ASTM C1289; thickness as required to achieve average total thermal resistance of R-30.

D. Cover Board: Fiberglass-mat faced gypsum roof board, with the following properties:
 1. Thickness: 1/2-inch.
 2. Width: 4 feet.
 3. Length: 4 feet.
 4. Weight: 1.975 psf.
 5. Surfacing: Fiberglass mat with non-asphaltic coating.
 9. R-Value (ASTM C518): Not less than 0.56.

E. Tapered Roof Insulation: Tapered panels and standard fill panels composed of expanded volcanic minerals combined with waterproof binders and top surfaced with an asphalt based coating. Perlite shall be in compliance with ASTM C728. The tapered system shall provide for roof slope and crickets as indicated on the Drawings.

2.05 INSULATION ACCESSORIES

A. General: Furnish roofing insulation accessories recommended by insulation manufacturer for intended use and compatible with sheet roofing material.

B. Tapered Edge Strips: Rigid, perlite insulation board, complying with ASTM C728.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas, and conditions under which roofing will be applied, with Installer present, for compliance with requirements.

B. Verify that roof openings and penetrations are in place and set and braced and that roof drains are properly clamped into position.

C. Do not proceed with installation until after the minimum concrete curing period recommended by roofing system manufacturer.

D. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Clean substrate of dust, debris, and other substances detrimental to roofing installation according to roofing system manufacturer’s written instructions. Remove sharp projections.

B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.

C. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of the roofing system at the end of the workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

3.03 INSULATION INSTALLATION

A. Coordinate installing roofing system components so insulation is not exposed to precipitation or left exposed at the end of the workday.

B. Comply with roofing system manufacturer’s written instructions for installing roofing insulation.

C. Install tapered insulation under area of roofing to conform to slopes indicated and to shop drawings.
D. Install tapered edge strips at perimeter edges of roof that do not terminate at vertical surfaces and at locations indicated on the Drawings.

E. Install 1 or more layers of insulation under area of roofing to achieve required thickness with end joint offset, with joints of each succeeding layer staggered from joints of previous layer a minimum of 6 inches in each direction.

F. Trim surface of insulation where necessary at roof drains so completed surface is flush with ring of drain.

G. Adhered Insulation: Install each layer of insulation and adhere to substrate as follows:
 1. Set each layer of insulation in a solid mopping of hot roofing asphalt.

H. Install cover boards over insulation with long joints in continuous straight lines with end joints staggered between rows. Loosely butt cover boards together and fasten to roof deck according to roofing system manufacturer’s written instructions. Tape joints of cover boards.

3.04 ADHERED ROOFING MEMBRANE INSTALLATION

A. Install roofing membrane over area to receive roofing according to membrane roofing system manufacturer’s written instructions. Unroll roofing membrane and allow to relax before installing.

B. Accurately align roofing membrane and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.

C. Bonding Adhesive: Apply water-based bonding adhesive to substrate at rate required by manufacturer and immediately install roofing membrane. Do not apply bonding adhesive to splice area of roofing membrane.

D. Adhesively fasten roofing membrane securely at terminations, penetrations, and perimeter of roofing.

E. Apply roofing membrane with side laps shingled with slope of roof deck where possible.

F. Seams: Clean seam areas, overlap roofing membrane, and hot-air weld side and end laps of roofing membrane according to manufacturer’s written instructions to ensure a watertight seam installation.
 1. Test lap edges with probe to verify seam weld continuity. Apply lap sealant to seal cut edges of roofing membrane.
 2. Verify field strength of seams a minimum of twice daily and repair seam sample areas.
 3. Repair tears, voids, and lapped seams in roofing membrane that does not meet requirements.

G. Spread sealant or mastic bed over deck drain flange at deck drains and securely seal roofing membrane in place with clamping ring.

3.05 FLASHING INSTALLATION

A. Install sheet flashings and preformed flashing accessories and adhere to substrate according to roofing system manufacturer’s written instructions.
B. Apply bonding adhesive to substrate and underside of flashing sheet at required rate and allow to partially dry. Do not apply bonding adhesive to seam area of flashing.

C. Flash penetrations and field-formed inside and outside corners with sheet flashing as recommended by manufacturer.

D. Clean seam areas, overlap sheets, and firmly roll flashings into the adhesive. Weld side and end laps to ensure a watertight seam installation.

E. Test lap edges with probe to verify seam weld continuity. Apply lap sealant and seal exposed edges of sheet flashing terminations.

F. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.06 FIELD QUALITY CONTROL

A. Verify field strength of seams a minimum of twice daily, according to manufacturer’s written instructions, and repair seam sample areas.

B. Final Roof Inspection: Arrange for roofing system manufacturer’s technical personnel to inspect roofing installation on completion and submit report to Architect.
 1. Notify the Architect or the City 48 hours in advance of the date and time of inspection.

3.07 PROTECTING AND CLEANING

A. Protect sheet membrane roofing from damage and wear during remainder of construction period. When remaining construction will not affect or endanger roofing, inspect roofing for deterioration and damage, describing its nature and extent in a written report, with copies to the Architect and the City.

B. Correct deficiencies in or remove roofing that does not comply with requirements, repair substrates, reinstall roofing, and repair sheet flashings to a condition free of damage and deterioration at the time of Substantial Completion and according to warranty requirements.

C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures required by manufacturer of affected construction.

END OF SECTION
SECTION 07 62 00

SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
1. Gutters and downspouts.
 a. Remove, rehabilitate, and reinstall existing where indicated.
2. Metal flashing and counterflashing.
3. Window head and sill flashings.
4. Sub-sill flashings and sheet metal drip screeds.
5. Exposed metal trim.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 07 31 13 - Asphalt Shingles: Provision of asphalt shingle roofing system.
2. Section 07 54 00 - Thermoplastic Membrane Roofing: Provision of thermoplastic membrane roofing system.
3. Section 07 65 00 - Flexible Flashing: Provision of flexible flashing.
5. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials
1. A653 - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.

B. AWS - American Welding Society

C. MIL - Military Standardization Documents

D. SMACNA - Sheet Metal and Air Conditioning Contractors National Association, Inc.

E. SSPC - The Society for Protective Coatings

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
1. Work of this Section shall physically protect roofing and other items as indicated from damage that would permit water leakage to building interior.
2. Install sheet metal flashing and trim to withstand wind loads, structural movement, thermally induced movement and exposure to weather without failing.
3. Install sheet metal at all 90-degree transitions where waterproofing is applied from horizontal to vertical surfaces.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Zinc-Coated Steel: Commercial quality with 0.20 percent copper, ASTM A653, G90 hot-dip galvanized, mill phosphatized where indicated for painting; 24 gauge except as otherwise indicated.

B. Surface Reglet and Counterflashing: As manufactured by Fry Reglet; C&J Metal Products, or equal.
 1. Profiles as indicated on the Drawings.

C. Miscellaneous Materials and Accessories
 1. Solder and Flux: For use with steel, provide 50 - 50 tin/lead solder, ASTM B32, with rosin flux. Re-melted or reworked solder will not be permitted.
 2. Fasteners: Same metal as flashing/sheet metal or other noncorrosive metal as recommended by sheet manufacturer. Match finish of exposed heads with material being fastened.
 3. Bituminous Coating: SSPC Paint 12, solvent type bituminous mastic, nominally free of sulfur, compounded for 15 mil dry film thickness per coat.
 4. Metal Accessories: Provide sheet metal clips, straps, anchoring devices and similar accessory units as required for installation of work, matching or compatible with material being installed, noncorrosive, size and gauge required for performance.
 5. Flexible Flashing Filler: Closed-cell polyethylene or other soft closed cell material recommended by flexible flashing manufacturer as filler under flashing loops to ensure movement with minimum stress on flashing sheet.

D. Coatings for Protection of Dissimilar Materials: Bituminous type materials conforming with MIL Standard 889.

2.02 FABRICATION

A. Shop Assembly
 1. Design and fabricate work in accordance with SMACNA, unless otherwise indicated.
 2. As far as practicable, form and fabricate sheet metal in shop. Where on-site fabrication is required, provide work equal to shop quality. Additionally, identify bulk materials from which items are field fabricated by manufacturer’s trademark printed or embossed at frequent intervals.
 3. Reproduce accurately profiles and bends indicated.
 4. Provide profiles with interactions that are sharp, even and true; with plane surfaces free from buckles and waves; and seams that follow direction of water flow.
 5. Reinforce correctly for strength and appearance.
 6. Cut, fit, and drill sheet metal as required to accommodate related, adjacent or adjoining work.
 7. Exposed Edges of Sheet Metal: Fold, bend or return exposed edges of sheet metal. Raw edges will not be permitted.
 8. Form pieces in longest practical lengths.

B. Sheet Metal Joints
 1. In general, provide lock joints; where impractical, lap, rivet, solder, or weld joints, or join as otherwise recommended by manufacturer.
2. Join joints and miters as recommended by manufacturer.
3. Where positive joining is required, weld in accordance with applicable AWS standards.
4. Turn lock joints on exposed surfaces in direction of flow.

C. Soldering
1. Neatly solder exposed surfaces.
2. Pre-tin edges minimum 1-1/2 inches both sides prior to soldering.
4. Solder all corners and joints where waterproofing is to be applied.

D. Expansion and Contraction of Sheet Metal Runs: Provide loose locking slip joint of maximum 8 feet from external and internal corners, maximum 24 feet length of straight runs, unless manufacturer recommends more frequent interval, and 1 at center of runs less than 20 feet, but more than 8 feet, unless specified otherwise following herein.

E. Provide the following items of materials and minimum gauges as indicated:
1. Cleats: Formed of same metal as that being anchored, with size 1-1/2 times larger in gauge, shape, and quantity as required to secure flashing and sheet metal work in place.
2. Base Flashing, Counter Flashing and Roof Penetration Flashing
 a. Formed with 3/4-inch locked and soldered seams, assembled into units not longer that 16 feet.
 b. Join units with 3/4-inch wide loose locked seams filled with soft grade butyl base compound, before units are assembled.
 c. Mitre corners and joints by riveted or locked and soldered joints.
3. At all vertical to horizontal transitions in waterproofing, provide minimum 8-inch high by 4-inch wide “L” metal flashing. Secure no greater than 6 inches on center at horizontal flange.
4. Sub-Sill Flashings and Sheet Metal Drip Screeds: Continuous, sizes and shapes as indicated.

2.03 GALVANIZED STEEL SHEET FINISH

A. Painting: As specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Conform with procedures and methods of installation and applicable details shown and described in SMACNA Manual.

B. Where installation requires fabrication at the Project site, conform to applicable requirements of Article titled “Fabrication” in this Section.

C. Install standard catalog products in accordance with manufacturer’s instructions, unless otherwise indicated.

D. Install work watertight; ensure that items are installed in true and accurate alignment with other items and related work, that joints are accurately fitted, that corners are reinforced and that exposed surfaces are free of dents.

E. Apply flashing compound at slip joints or wherever metal-to-metal contact occurs and movement may be anticipated to occur.
F. Flashings
1. Fasten sheet metal runs to underlaying material by nailing through slotted holes in flange at 3 inches on center, unless otherwise indicated or required by manufacturer.
2. Provide waterproof washers wherever fasteners penetrate flashings.

3.02 ADJUSTING
A. Replace damaged material with new.

3.03 SCHEDULE
A. Fabricate sheet metal items in thickness or weight needed to comply with performance requirements but not less than that listed below for each application and metal, unless otherwise indicated on the Drawings.
1. Gutters with Girth up to 15 Inches: Galvanized steel, 0.0217-inch thick (26 gauge).
2. Gutters with Girth 16 to 20 Inches: Galvanized steel, 0.0276-inch thick (24 gauge).
3. Gutters with Girth 21 to 25 Inches: Galvanized steel, 0.0336-inch thick (22 gauge).
4. Gutters with Girth 26 to 30 Inches: Galvanized steel, 0.0516-inch thick (18 gauge).
5. Downspouts: Galvanized steel, 0.0217-inch (26 gauge).
6. Diversers: Galvanized steel, 0.0276-inch thick (24 gauge).
7. Exposed Trim and Fascia: Galvanized steel, 0.0276-inch thick (24 gauge).
8. Coping: Galvanized steel, 0.0396-inch thick (20 gauge).
9. Base Flashing: Galvanized steel, 0.0276-inch thick (24 gauge).
10. Counterflashings: Galvanized steel, 0.0276-inch thick (24 gauge).
11. Flashing Receivers: Galvanized steel, 0.0276-inch thick (24 gauge).
12. Drip Edges: Galvanized steel, 0.0276-inch thick (24 gauge).
13. Eave Flashings: Galvanized steel, 0.0276-inch thick (24 gauge).
14. Equipment Support Flashings: Galvanized steel, 0.0276-inch thick (24 gauge).
15. Roof Penetration Flashing: Galvanized steel, 0.0276-inch thick (24 gauge).
16. Window Head and Sill Flashings: Galvanized steel, 0.0217-inch thick (26 gauge), unless otherwise indicated on the Drawings.

END OF SECTION
SECTION 07 65 00
FLEXIBLE FLASHING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Flexible membrane flashing at window openings and exterior wall openings, as detailed in the Drawings.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 07 62 00 - Sheet Metal Flashing and Trim: Provision of sheet metal flashing and trim.
2. Section 08 11 15 - Steel Doors and Frames: Provision of steel doors and frames.

1.02 SUBMITTALS

A. Product Data: Submit manufacturer’s most current product data and installation instructions, including manufacturer’s written instructions for evaluating, preparing, and treating substrate, technical data, and data for physical and performance properties.

1.03 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer approved by flexible flashing membrane manufacturer.

B. Mockups: With the City’s Project Manager, sheet metal pan subcontractor, window manufacturer, Architect, portland cement plaster contractor, third party quality control, waterproofing consultant, and window installer present, apply flexible flashing to 1 each of the 3 typical window opening types, recessed window opening, and door opening to demonstrate surface preparation, crack and joint treatment, corner treatment, and execution quality for approval by the parties above mentioned.
1. If the Architect determines mockups do not comply with requirements, reapply flexible flashing until mockups are approved.
2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Storage and Protection
1. Store materials in their original undamaged packages in clean, dry protected location and within temperature range required by flexible flashing membrane manufacturer.
2. Protect stored materials from direct sunlight.

1.05 PROJECT CONDITIONS

A. Environmental Requirements: Do not apply to moist or damp surfaces.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 MATERIALS

A. Flexible Flashing at Window and Door Penetrations: Self-sealing, self-healing, fully adhered, composite flexible flashing. Flashing shall be 25 mil minimum thickness sheet consisting of rubberized asphalt integrally bonded to a high density, cross-laminated polyethylene film. The rolls shall be interwound with a disposable silicone-coated release sheet. Flashing shall be from rolls of 12-inch width.

B. Flexible Flashing at Wall Caps and Other Conditions: Self-sealing, self-healing, fully adhered, composite flexible flashing. Flashing shall be 40 mil minimum thickness sheet consisting of rubberized asphalt integrally bonded to a high density, cross-laminated polyethylene film. The rolls shall be interwound with a disposable silicone-coated release sheet. Flashing shall be from rolls of 12-inch width.

C. Flexible Mastic or Flashing Compound: Compatible with flashing product, approved for use by manufacturer.

D. Liquid Membrane: For transitions and penetrations, as manufactured by Grace Construction Products, “Bituthene Liquid Membrane”; Fortifiber, or equal.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas, and conditions under which flexible flashing will be applied, with installer present, for compliance with requirements. Do not proceed with installation until unsatisfactory conditions have been corrected.

B. Installation constitutes acceptance of substrate condition.

3.02 INSTALLATION

A. Install flexible flashing in strict accordance with manufacturer’s written instructions.

B. Use elastomeric flashing compound compatible with rubberized asphalt at exposed lap joints where water intrusion could occur.

C. Surface shall be smooth, clean, dry and free of voids or other conditions hindering adhesion or regularity of flashing installation. Clean loose dust or dirt form the surface wherever wall flashing is to be applied by wiping with a clean dry cloth or brush.

D. Test surfaces for proper adhesion. Use manufacturer’s recommended surface conditioner if substrate or conditions hinder proper adhesion of flashing membrane.

E. Cut membrane to size and peel release paper from roll to expose rubberized asphalt and position against surface. Press firmly into place with a steel hand roller, fully adhering the flashing to the substrate. Where the steel hand roller will not fit, e.g. tight inside corners, the back of a utility knife, fully adhering the flashing to tight corners and folds, may be used.
F. Overlap adjacent pieces 2 inches and roll overlap with a steel hand roller.

G. Rubberized asphalt flashing shall not be applied in areas where it will be exposed to direct sunlight. In all cases, flashing shall be covered within 30 days after installation.

H. Install flashing at wall in openings in accordance with approved field mockup and in accordance with details.

I. Ensure that flexible flashing adheres continuously to substrate, and is free from bubbles, fishmouths, creases and other irregularities that affect monolithic adhesion.

J. Carefully notch and fold flexible flashing at corners and returns. Provide additional overlapping pieces as required for watertight installation.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Firesafing, firestopping, and smoke seal materials for all new penetrations at existing and repaired fire-rated assemblies.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 21 01 - Building Insulation: Provision of building insulation.
 2. Section 09 29 00 - Gypsum Board: Provision of gypsum board wall system.
 4. Division 26 - Electrical: Penetrations for electrical work.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. CBC - California Building Code, 2016 Edition

C. Intertek Testing Agency

D. UL - Underwriters Laboratories Inc.
 1. BMD - Building Materials Directory.

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. General: F-Rated Through Penetration Firestop Systems: Provide through penetration firestop systems with F ratings indicated, as determined per ASTM E814, but not less than that equaling or exceeding the fire resistance rating of the constructions penetrated.
 2. T-Rated Through Penetration Firestop Systems: Provide through penetration firestop systems with T ratings, in addition to F ratings, as determined per ASTM E814, where indicated and where systems protect penetrating items exposed to contact with adjacent materials in occupiable floor areas. T-rated assemblies are required where the following conditions exist:
 a. Where firestop systems protect penetrations located outside of wall cavities.
 b. Where firestop systems protect penetrations located outside fire resistive shaft enclosures.
 c. Where firestop systems protect penetrations located in construction containing doors required to have a temperature-rise rating.
d. Where firestop systems protect penetrating items larger than a 4 inch diameter nominal pipe or 16 square inch in overall cross-sectional area.

3. Fire Resistive Joint Sealants: Provide joint sealants with fire resistance ratings indicated, as determined per ASTM E119, but not less than that equaling or exceeding the fire resistance rating of the construction in which the joint occurs.

4. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 a. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture resistant through penetration firestop systems.
 b. For floor penetrations with annular spaces exceeding 4 inches or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means.
 c. For penetrations involving insulated piping, provide through penetration firestop systems not requiring removal of insulation.

5. For firestopping exposed to view, provide products with flame spread values of less than 25 and smoke developed values of less than 450, as determined per ASTM E84.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s data on product characteristics, performance and limitation criteria.

B. Shop Drawings: Submit shop drawings detailing materials, installation methods, and relationships to adjoining construction for each through penetration firestop system, and each kind of construction condition penetrated and kind of penetrating item. Include firestop design designation of qualified testing and inspecting agency evidencing compliance with requirements for each condition indicated.
 1. Submit documentation, including illustrations, from a qualified testing and inspecting agency that is applicable to each through penetration firestop configuration for construction and penetrating items.
 2. Where Project conditions require modification of qualified testing and inspecting agency’s illustration to suit a particular through penetration firestop condition, submit illustration approved by firestopping manufacturer’s fire protection engineer with modifications marked.

C. Schedule of Firestopping: Submit complete list, for approval, of penetrations to be sealed, indicating location, fire rating of penetrated assembly, identification of penetration seal to be sealed, fire rating of penetration seal and evidence of acceptable testing.

D. Quality Control Submittals
 1. Test Reports: Submit product test reports from, and based on tests performed by, a qualified testing and inspecting agency evidencing compliance of firestopping with requirements based on comprehensive testing of current products.
 2. Certificates
 a. Submit certification by firestopping manufacturer that products supplied comply with local regulations controlling use of volatile organic compounds (VOCs) and are nontoxic to building occupants.
 b. Product certificates signed by manufacturers of firestopping products certifying that their products comply with specified requirements.
 c. Qualification data for firms and persons specified in “Quality Assurance” article to demonstrate their capabilities and experience. Include list of completed projects with project names, addresses, names of architects and owners, and other information specified.
1.05 QUALITY ASSURANCE

A. Fire Test Response Characteristics: Provide firestopping that complies with the following requirements and those specified under the “System Performance Requirements” article:
1. Firestopping tests are performed by a qualified testing and inspecting agency. A qualified testing and inspecting agency is UL, Intertek Testing Agency, or another agency performing testing and follow-up inspection services for firestop systems that is acceptable to authorities having jurisdiction.
2. Through penetration firestop systems are identical to those tested per ASTM E814 under conditions where positive furnace pressure differential of at least 0.01-inch of water is maintained at a distance of 0.78-inch below the fill materials surrounding the penetrating items in the test assembly. Provide rated systems complying with the following requirements:
 a. Through penetration firestop system products bear classification marking of qualified testing and inspecting agency.
 b. Through penetration firestop systems correspond to those indicated by reference to through penetration firestop system designations listed by UL FRD, by Intertek Testing Agency, or by another qualified testing and inspecting agency.
3. Fire-resistive joint sealant systems are identical to those tested for fire response characteristics per ASTM E119 under conditions where the positive furnace pressure differential is at least 0.01-inch of water, as measured 0.78-inch from the face exposed to furnace fire. Provide systems complying with the following requirements:
 a. Fire-Resistance Ratings of Joint Sealants: As indicated by reference to design designations listed by UL FRD or by another qualified testing and inspecting agency.
 b. Joint sealants, including backing materials, bear classification marking of qualified testing and inspection agency.

B. Information on Drawings referring to specific design designations of through penetration firestop systems is intended to establish requirements for performance based on conditions that are expected to exist during installation. Any changes in conditions and designated systems require the Architect’s prior approval. Submit documentation showing that the performance of proposed substitutions equals or exceeds that of the systems they would replace and are acceptable to authorities having jurisdiction.

C. Installer Qualifications: Engage an experienced installer who is certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary experience, staff, and training to install manufacturer’s products per specified requirements. A manufacturer’s willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer qualification on the buyer.

D. Regulatory Requirements: Conform to CBC for fire resistance ratings and surface burning characteristics.

E. Provide firestopping products containing no detectable asbestos as determined by the method specified in 40 CFR Part 763, Subpart F, Appendix A, Section 1, “Polarized Light Microscopy”.

F. Coordinating Work: Coordinate construction of openings and penetrating items to ensure that designated through penetration firestop systems are installed per specified requirements.

G. The City will employ and pay a qualified inspection agency to check installed firestopping systems for compliance with requirements.
H. Pre-Installation Conference: Prior to the start of work which involves cutting openings in fire wall construction for penetrations, conduct a meeting with installers of such work to identify fire and smoke barriers and required configurations of penetrations and to discuss the proper procedures and time schedule for cutting, patching and sealing penetrations in such assemblies, with emphasis on avoiding unnecessary cutting and patching.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the manufacturers as defined in the Systems and Applications Schedule in Part 3 of this Section, or accepted.

2.02 MATERIALS

A. Provide materials classified by UL to provide fire barrier equal to time rating of construction being penetrated.

B. Provide 100 percent asbestos free materials that comply with applicable codes and have been tested in accordance with UL 1479 or ASTM E814.

C. Firesafing: SAFB mineral wool as manufactured by Owens Corning, “Thermafiber”; USG; Johns Manville Corporation, or equal.

PART 3 - EXECUTION

3.01 APPLICATION

A. General
 1. Provide firestopping for conditions specified whether or not firestopping is indicated, and, if indicated, whether such material is designated as insulation, safing, or sealant.
 2. Do not install insulation specified in Section 07 21 01 in place of firestopping materials specified in this Section.

B. Apply materials in accordance with printed instructions of the UL BMD, manufacturer’s instructions, or architectural detail as indicated on the Systems and Applications Schedule.

C. Apply firestopping material in sufficient thickness to achieve rating to uniform density and texture.

D. Install material at top of fire rated walls and partitions; and at openings in fire rated walls and partitions which contain penetrating sleeves, piping, ductwork, conduit and other items that require firestopping, and at floor transitions.

E. Install firestop with sufficient pressure to properly fill and seal openings to ensure effective smoke seal.

F. Where floor openings without penetrating items are more than 4 inches in width and subject to traffic or loading, install firestopping materials capable of supporting same loading as floor.
3.02 FIELD QUALITY CONTROL

A. Immediately notify the Architect if the specified firestopping systems cannot meet the requirements of the Specification.

B. All areas of work must be accessible until inspected by the Architect and the City’s applicable fire protection representative. Correct unacceptable firestops and provide additional inspection to verify compliance with this Specification at no additional cost.

3.03 CLEANING

A. Clean adjacent surfaces of firestopping materials.

B. Leave finished work in neat, clean condition with no evidence of spillovers and damage to adjacent surfaces.

3.04 SYSTEMS AND APPLICATIONS SCHEDULE

<table>
<thead>
<tr>
<th>Construction Condition</th>
<th>Manufacturer</th>
<th>Product</th>
<th>Installation Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Metal pipe or conduit through framed walls</td>
<td>Bio Fireshield or Bio Fireshield or 3M or Hilti or Hilti or Specified Technologies</td>
<td>BFS100 or Biostop 500 or CP2SWB+ or FS-One or FS-One or SpecSeal Series 100 Sealant/Putty</td>
<td>Appropriate UL System or Architectural Detail or UL System WL1021 or UL System 147A or UL System WL1054, 1058 or UL System WL1164, 1165 or UL System WL1028, 1029</td>
</tr>
<tr>
<td>B. Metal pipe or conduit through concrete floors</td>
<td>Bio Fireshield or Bio Fireshield or 3M or Hilti or Hilti or Specified Technologies</td>
<td>BFS200 or BFS100 or CP2SWB+ or FS-One or CP 606 or CP 601S or FS-One or SpecSeal Series 100 Sealant/Putty</td>
<td>Appropriate UL System or Architectural Detail or UL System CAJ1031 or UL System 319 or UL System CAJ1150, 1155, 1149 or UL System CAJ1184, 1226 or UL System CAJ1079, 1142</td>
</tr>
<tr>
<td>C. Insulated metal pipe through framed walls</td>
<td>3M or Bio Fireshield or Hilti</td>
<td>FS195, CP25N/S or Biostop 500 or FS-One</td>
<td>UL System 147 or UL System WS5015 or UL System WL5028, 5029, 5046, 5047, 5073, 5096</td>
</tr>
</tbody>
</table>
D. Insulated metal pipe through concrete floors

<table>
<thead>
<tr>
<th>Specified Technologies</th>
<th>SpecSeal Series 100 Sealant/Putty</th>
<th>UL System WL5033, 5014, 1049</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>See appropriate listing</td>
<td>UL System 91, 152, 203</td>
</tr>
<tr>
<td>or Bio Fireshield</td>
<td>Biostop 500</td>
<td>UL System CAJ5015</td>
</tr>
<tr>
<td>or Hilti</td>
<td>FS-One</td>
<td>UL System CAJ5048, 5061, 5069</td>
</tr>
<tr>
<td>or Specified</td>
<td>SpecSeal Series 100 Sealant, Wrap Strip or Mortar</td>
<td>UL System CAJ5042, 5051</td>
</tr>
<tr>
<td>Technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. Plastic pipe through framed walls

<table>
<thead>
<tr>
<th>Specified Technologies</th>
<th>SpecSeal Series 100 Sealant, Wrap Strip or Mortar</th>
<th>UL System 148</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>FS195, CP25N/S, RCI</td>
<td>Manufacturer’s Specification</td>
</tr>
<tr>
<td>or Bio Fireshield</td>
<td>BFS1-9, BCF Series</td>
<td>UL System WL2098, 2165, 2196</td>
</tr>
<tr>
<td>or Hilti</td>
<td>FS-One</td>
<td>UL System WL2047, 2048, 2029</td>
</tr>
<tr>
<td>or Specified</td>
<td>SpecSeal Series 100 Sealant, Wrap Strip or Collar</td>
<td>UL System CAJ5015</td>
</tr>
<tr>
<td>Technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. Plastic pipe through concrete floors

<table>
<thead>
<tr>
<th>Specified Technologies</th>
<th>SpecSeal Series 100 Sealant, Wrap Strip or mortar</th>
<th>UL System 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>CS195, FS195, CP25N/S, CP25S/L</td>
<td>Manufacturer’s Specification</td>
</tr>
<tr>
<td>or Bio Fireshield</td>
<td>BFS1-9, BCF Series</td>
<td>UL System FA 2058</td>
</tr>
<tr>
<td>or Hilti</td>
<td>FS-One</td>
<td>UL System FA 2065, 2066</td>
</tr>
<tr>
<td>or Specified</td>
<td>SpecSeal Series 100 Sealant, Wrap Strip or Collar</td>
<td>UL System CAJ2031, 2064, 2038, 2045, 2063</td>
</tr>
<tr>
<td>Technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1. Cable tray through concrete floors

<table>
<thead>
<tr>
<th>Specified Technologies</th>
<th>SpecSeal Mortar</th>
<th>UL System CAJ4010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Fireshield</td>
<td>K10</td>
<td>UL System CAJ4010</td>
</tr>
<tr>
<td>or 3M</td>
<td>CS195</td>
<td>UL System 105 or 66</td>
</tr>
<tr>
<td>or Hilti</td>
<td>FS-One</td>
<td>UL System CAJ3095</td>
</tr>
<tr>
<td>or Hilti</td>
<td>CP 637</td>
<td>UL System CAJ4017</td>
</tr>
<tr>
<td>or Specified</td>
<td>SpecSeal Mortar</td>
<td>UL System CAJ80162</td>
</tr>
<tr>
<td>Technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G2. Framed walls

<table>
<thead>
<tr>
<th>Specified Technologies</th>
<th>SpecSeal Series 100 Sealant, Wrap Strip or mortar</th>
<th>UL System 557</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Fireshield</td>
<td>K10</td>
<td>Appropriate UL System or Architectural Detail for 1 hr</td>
</tr>
<tr>
<td>or 3M</td>
<td>CS195</td>
<td>UL System 557</td>
</tr>
<tr>
<td>or Hilti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Material/Brand/Technology</td>
<td>Specifications</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LIVE OAK COMMUNITY CENTER UPGRADE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY OF BERKELEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERKELEY, CALIFORNIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications No. 19-11320-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.17.19 07 84 00 - 7 Firestopping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or G3. Alternately, terminate cable tray prior to fire wall (designer modify)</td>
<td>Bio Fireshield or Hilti or Specified Technologies</td>
<td>BFS100, BFS200, CP25N/S, CP25S/L, CP 672, CP 604, CP 601S, UL System 247, UL System 149, UL System WL3065, UL System WL3024, 3025, 8003</td>
</tr>
<tr>
<td>H. Telephone, fiber optic, and other small miscellaneous conductors through framed walls</td>
<td>Bio Fireshield or 3M or Hilti or Specified Technologies</td>
<td>BFS100, BFS200, CP25N/S, CP25S/L, CP 672, CP 604, CP 601S, UL System 247, UL System 149, UL System WL3065, UL System WL3024, 3025</td>
</tr>
<tr>
<td>I. Control joints, wall/floor joints, framed and concrete</td>
<td>Bio Fireshield or 3M or Hilti or Specified Technologies</td>
<td>BFS100, BFS200, CP25N/S, CP25S/L, CP 672, CP 604, CP 601S, UL System 247, UL System 149, UL System WL3065, UL System WL3024, 3025</td>
</tr>
<tr>
<td>J. Curtain wall/construction gap</td>
<td>Bio Fireshield or 3M or Hilti or Specified Technologies</td>
<td>BFS100, BFS200, CP25N/S, CP25S/L, CP 672, CP 604, CP 601S, UL System 247, UL System 149, UL System WL3065, UL System WL3024, 3025</td>
</tr>
<tr>
<td>K. Noninsulated HVAC ducts</td>
<td>Bio Fireshield or Specified Technologies</td>
<td>BFS100, BFS200, UL System WL3065, UL System WL3024, 3025, 8003</td>
</tr>
<tr>
<td>L. Seismic and other large building joints</td>
<td>Any UL listed system or Install UL rated assembly that meets ASTM C920, Class A movement</td>
<td>Hilti CP 672</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
</tbody>
</table>

1. See UL Listing or Manufacturer’s specifications for associated components not listed.

Insulated cable, bus ducts, glass pipe and other penetrations and construction conditions not listed above shall be firestopped with an approved UL system as defined by UL FRD.

END OF SECTION
SECTION 07 92 00

JOINT SEALANTS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Joint sealants and backing systems for the following locations:
 1. Exterior joints in vertical surfaces as indicated below:
 a. Control and expansion joints in cast-in-place concrete.
 b. Perimeter joints between cast-in-place concrete and frames of doors and windows.
 c. Control and expansion joints in soffit and overhead surfaces.
 d. Other joints as indicated.
 2. Exterior joints in horizontal traffic surfaces as indicated below:
 b. Other joints as indicated.
 3. Interior joints in vertical surfaces and horizontal nontraffic surfaces as indicated below:
 a. Perimeter joints of exterior openings where indicated.
 b. Tile control and expansion joints.
 c. Perimeter joints of toilet fixtures.
 d. Other joints as indicated.
 4. Interior joints in horizontal traffic surfaces as indicated below:
 a. Control and expansion joints in cast-in-place concrete slabs.
 b. Control and expansion joints in tile flooring.
 c. Other joints as indicated.
 5. Acoustical sealant for concealed joints.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 46 23 - Wood Siding: For finish painting of exterior wood siding.
 2. Section 08 01 51.10 - Restoration of Steel Windows: For repair and retrofit of existing steel windows.
 4. Section 08 71 00 - Door Hardware: Provision of door hardware.
 5. Section 08 90 00 - Louvers and Vents: Provision of louvers and vents.
 6. Section 09 29 00 - Gypsum Board: For sealants used in concealed perimeter joints of gypsum board partitions to reduce sound transmission.
 7. Section 09 30 00 - Tiling: Provision of ceramic tile.
 8. Section 09 65 00 - Resilient Flooring: Provision of resilient flooring.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. CALGreen - California Green Building Standards, 2016 Edition
C. FS - Federal Specifications
 1. TT-S-001543 - Sealing Compound, Silicone Rubber Base.
D. UL - Underwriters Laboratories Inc.

1.03 SYSTEM DESCRIPTION
A. Performance Requirements: Provide joint sealers that have been manufactured to establish and maintain watertight and airtight continuous seals without causing staining or deterioration of joint substrates.
B. Sealants used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Article 5.504.4.1.

1.04 SUBMITTALS
A. Product Data: Submit product data from manufacturers for each joint sealant product required.
B. Samples: Submit samples for initial selection purposes in form of manufacturer's standard bead samples, consisting of strips of actual products showing color to match adjacent surface, for each product exposed to view.
C. Quality Control Submittals
 1. Test Reports
 a. Compatibility and adhesion test reports from elastomeric sealant manufacturer indicating that materials forming joint substrates and joint sealant backings have been tested for compatibility and adhesion with joint sealants. Include sealant manufacturer’s interpretation of test results relative to sealant performance and recommendations for primers and substrate preparation needed to obtain adhesion.
 b. Product test reports for each type of joint sealants indicated, evidencing compliance with requirements specified.
 c. Preconstruction field test reports indicating which products and joint preparation methods demonstrate acceptable adhesion to joint substrates.
 2. Certificates
 a. Submit certification by joint sealant manufacturers that sealants plus the primers and cleaners required for sealant installations comply with local regulations controlling use of volatile organic compounds.
 b. Submit certificates from manufacturers of joint sealants attesting that their products comply with specification requirements and are suitable for the use indicated.

1.05 QUALITY ASSURANCE
A. Installer Qualifications: Engage an experienced installer who has completed joint sealant applications similar in material, design and extent to that indicated for this Project that have resulted in construction with a record of successful in-service performance.
B. Product Testing: Provide comprehensive test data for each type of joint sealant to be used based on tests conducted by a qualified independent testing laboratory on current product formulations within a 24 month period preceding date of Contractor’s submittal of test results to the Architect.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Deliver materials to the Project site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration period for use, pot life, curing time and mixing instructions for multicomponent materials.

B. Storage and Protection: Store and handle materials in compliance with manufacturer’s recommendations to prevent their deterioration or damage due to moisture, high or low temperatures, contaminants or other causes.

1.07 PROJECT CONDITIONS

A. Environmental Conditions: Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside the limits permitted by joint sealant manufacturer.
 2. When joint substrates are wet or damp.

B. Joint Width Conditions: Do not proceed with installation of joint sealants where joint widths are less than allowed by joint sealant manufacturer for application indicated.

C. Joint Substrate Conditions: Do not proceed with installation of joint sealants until contaminants capable of interfering with their adhesion are removed from joint substrates.

1.08 SEQUENCING AND SCHEDULING

A. Sequence installation of joint sealants to occur not less than 21 nor more than 30 days after completion of waterproofing, unless otherwise indicated.

PART 2 - PRODUCTS

2.01 MATERIALS

A. General Requirements
 1. Provide joint sealers compatible with one another and with substrates.
 2. Manufacturer’s standard color range shall permit matching sealants to color of contacting surfaces and future ability to paint.

B. Sealants and Caulks
 1. Type A - One Part Neutral Cure Silicone Sealant
 a. ASTM C920, non-sag, one part, low modulus, elastomeric sealant.
 b. Color: As selected by the Architect.
 2. Type B - Polyurethane Sealant, Two Component
 a. ASTM C920, Type M; Grade P; Class 25; Use T having minimum ASTM D2240 Shore A hardness of 30 plus or minus 5.
 b. Color: As selected by the Architect.
3. **Type C - Silicone Sealant, Single Component**
 a. FS TT-S-001543, mildew resistant, chemical curing, non-sagging, non-staining, non-bleeding.
 b. Color: As selected by the Architect.

4. **Type D - One Part Acid Curing Silicone Sealant**
 a. ASTM C920, One part glazing sealant.
 b. Color: As selected by the Architect.

5. **Type E - Acrylic Emulsion Sealant**
 a. ASTM C834 that accommodates joint movement of not more than 5 percent in both extension and compression for a total of 10 percent.
 b. Color: As selected by the Architect.

6. **Type F - Acoustical Sealant**
 a. Acoustical sealant shall be non-skinning, non-hardening, flexible sealant specifically designed for sealing gypsum wallboard. Sealant shall be capable of spanning 1/2-inch wide by 3/8-inch deep gaps. Synthetic rubber based products shall comply with ASTM D217 and acrylic latex based products shall comply with ASTM C834.
 b. Products
 2) At Exposed Joints: Pecora, “AC-20 FTR”; USG Acoustical Sealant, or equal.

7. **Type F1 - Sprayed Acoustical Sealant:** As manufactured by STI, “SpecSeal Smoke ‘N’ Sound Acoustical Spray”; Hilti, “CP672”, or equal.

8. **Type G - Expanding Foam Sealant**
 a. UL Class 1 fire retardant polycell expanding foam.
 b. Product: As manufactured by Macklanburg Duncan; Tremco Incorporated, or equal.

9. **Type H - Single-Component Urethane Sealant**
 a. ASTM C920, non-sag, one part.
 b. Color: As selected by the Architect.

10. **Type I - Cementitious Sealant:** Spray-applied, 40pcf, as manufactured by Monokote, “Z-146”, or equal.

2.02 ACCESSORIES

A. **Primer:** Non-staining type recommended by sealant manufacturer to suit application.

B. **Joint Cleaner:** Non-corrosive and non-staining type, recommended by sealant manufacturer; compatible with joint forming materials.

C. **Joint Backing:** ASTM D1056 round, closed cell polyethylene foam rod; oversized 30 to 50 percent larger than joint width as recommended by manufacturer of sealant material.
D. Bond Breaker: Pressure sensitive tape recommended by sealant manufacturer to suit application.

E. Backer Rod at Acoustical Sealant: Flexible closed cell, neoprene rod or polyethylene foam suitable for use as a backer to the acoustic sealant. Width of backer rod shall be a minimum of 30 percent greater and a maximum of 50 percent greater than the joint width.

F. Sheet Caulking for Junction Boxes
 1. At Non-Fire Rated Assemblies: As manufactured by Lowry’s, “Lowry’s Electrical box Sealer”; Tremco Incorporated, “Sheet Caulking”, or equal.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine joints indicated to receive joint sealants, with installer present, for compliance with requirements for joint configuration, installation tolerances and other conditions affecting joint sealant performance.

B. Do not proceed with installation of joint sealants until unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with recommendations of joint sealant manufacturer and the following requirements:
 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water and surface dirt.
 2. Clean concrete, masonry, unglazed surfaces of ceramic tile and similar porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air.
 3. Remove laitance and form release agents from concrete.
 4. Clean metal, glass, glazed surfaces of ceramic tile and other nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates or leave residues capable of interfering with adhesion of joint sealants.

B. Joint Priming: Prime joint substrates where indicated or where recommended by joint sealant manufacturer based on preconstruction joint sealant substrate tests or prior experience. Apply primer to comply with joint sealant manufacturer’s recommendations. Confine primers to areas of joint sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.
3.03 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint sealant manufacturer’s printed installation instructions applicable to products and applications indicated, except where more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations of ASTM C1193 for use of joint sealants as applicable to materials, applications and conditions indicated.

C. Acoustical Sealant Application Standard: Comply with recommendations of ASTM C919 for use of joint sealants in acoustical applications as applicable to materials, applications and conditions indicated.
 1. Use acoustical sealant to form an airtight seal at all penetrations and perimeter of sound-rated partitions, floors, and ceilings. Apply acoustical sealant as a continuous bead along gypsum board face layer at all head and sill conditions of sound-rated partitions and around the perimeter of resilient ceilings. Refer to Section 09 29 00. Use backer rod where gaps to be sealed exceed 3/8-inch.
 2. Use sheet caulking to seal the back and sides of all junction boxes (4 gang and smaller) recessed in sound-rated partitions.
 3. Apply expanding foam sealant where detailed and where multiple pipes or conduits penetrate sound rated construction.

D. Installation of Sealant Joint Backings: Install sealant joint backings to comply with the following requirements:
 1. Install joint fillers of type indicated to provide support of sealants during application and at position required to produce the cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 a. Do not leave gaps between ends of joint fillers.
 b. Do not stretch, twist, puncture or tear joint fillers.
 c. Remove absorbent joint fillers that have become wet prior to sealant application and replace with dry material.
 2. Install bond breaker tape between sealants where backer rods are not used between sealants and joint fillers or back of joints.

E. Installation of Sealants: Install sealants by proven techniques that result in sealants directly contacting and fully wetting joint substrates, completely filling recesses provided for each joint configuration and providing uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability. Install sealants at the same time sealant backings are installed.

F. Tooling of Nonsag Sealants: Immediately after sealant application and prior to time skinning or curing begins, tool sealants to form smooth, uniform beads of configuration indicated, to eliminate air pockets and to ensure contact and adhesion of sealant with sides of joint. Remove excess sealants from surfaces adjacent to joint. Do not use tooling agents that discolor sealants or adjacent surfaces or are not approved by sealant manufacturer.
 1. Provide concave joint configuration per Figure 5A in ASTM C1193, unless otherwise indicated.

G. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping, taking care not to pull or stretch material, and to comply with sealant manufacturer’s directions for installation methods, materials, and tools that produce seal continuity at ends, turns and intersections of joints. For applications at low ambient temperatures where expansion of sealant requires acceleration to produce seal, apply heat to sealant in conformance with sealant manufacturer’s recommendations.
3.04 CLEANING

A. Clean off excess sealants or sealant smears adjacent to joints as work progresses by methods and with cleaning materials approved by manufacturers of joint sealants and of products in which joints occur.

3.05 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so that and installations with repaired areas are indistinguishable from original work.

3.06 SCHEDULE

A. Type A, Non-Sag
 1. Exterior and interior control and expansion joints in vertical surfaces of cast-in-place concrete.
 2. Between metal and concrete or mortar.
 3. Interior and exterior perimeter joints between cast-in-place concrete and frames of doors and windows.
 4. Control and expansion joints in exterior soffits and overhead surfaces.

B. Type B
 2. Exterior vinyl and metal windows to metal plaster grounds, mineral fiber cement siding, and metal fascias.

C. Type C
 1. Interior ceramic tile control and expansion joints.
 2. Perimeter joints of toilet fixtures.
 3. Joints at prefabricated fiberglass or acrylic bathtubs and showers and at penetrations through gypsum board Type 4 and cementitious backer units, Type 5, as specified in Section 09 29 00.

D. Type D: Exposed joints within glazed curtain wall framing and aluminum entrance framing systems.

E. Type E: All other interior joints not indicated otherwise.

F. Type F: Concealed acoustical conditions.

G. Type G: Concealed acoustical insulation where multiple pipes or conduits penetrate sound rated construction.

H. Type H: Sealing of elevator fasteners.

END OF SECTION
SECTION 08 01 51.10

RESTORATION OF STEEL WINDOWS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Repair and retrofit of existing steel windows, as indicated on the Drawings.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 07 92 00 - Joint Sealants: Provision of joint sealers.
3. Section 08 80 00 - Glazing: For glazing standards.
4. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. AAMA - American Architectural Manufacturers Association

B. ASTM - American Society for Testing and Materials

C. CSA - Canadian Standards Association

D. WDMA - Window and Door Manufacturers Association

1.03 SUBMITTALS

A. Shop Drawings: Submit shop drawings to include the following:
 1. Layout and installation details, including anchors.
 2. Hardware, including operators.
 4. Accessories.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Chemical Stripper: Prosoco, “Enviro Stripper No. 3 or No. 4”; 3M, “Safest Stripper”, or equal.

B. Epoxies, Consolidants, and Adhesives: As manufactured by Sika Corp.; Abatron, Inc., or equal.

C. Putty: Linseed oil type, tinted to match surface finish color.
D. Anchors, Clips, and Accessories: Fabricate anchors, clips and window accessories of nonmagnetic stainless steel or hot-dip zinc coated steel complying with the requirements of ASTM B633 for SC 3 (severe) service condition; provide strength sufficient to withstand design pressure indicated.

E. Fasteners: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 for fabrication and with manufacturer’s recommendations and standard industry practices for type and size of installation fasteners.
 1. Use zinc-coated or nonferrous nails and screws for window fabrication and installation.
 2. Use stainless steel screws for hardware and accessory installation.

F. Glass: 1/8-inch thick, historic plate glass to match original adjacent panes.
 1. Glazing Standards: As specified in Section 08 80 00.

G. Joint Sealers: As specified in Section 07 92 00.

2.02 HARDWARE

A. General: Provide hardware to match existing, necessary to operate, tightly close, and securely lock windows. Do not use aluminum in frictional contact with other metals.

2.03 FINISHES

A. Painting
 1. Primer: Compatible with finish paint as specified in Section 09 90 00.
 2. Finish Painting: Opaque, as specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 STEEL WINDOW RESTORATION

A. Condition of Existing Windows: Inspect each window and report to the Architect any discrepancies between the Drawings and actual conditions.

B. Restoration of Existing Windows
 1. Make any required mechanical repairs to frames and sashes.
 2. Clean and oil windows, including operable hardware and latches at awning windows.
 3. Use wire brush to remove flaking rust particles.
 4. Treat any surface rust with a rust neutralizer (phosphate treatment) and prime the sashes and frames.
 5. Replace broken, scratched, or damaged glazing to match adjacent historical glazing, as specified in Section 08 80 00.
 6. Replace glazing beads where required to match adjacent size and profile. Patch missing putty.
 7. Repaint steel surfaces as indicated.
 8. Replace pulls, handles, locks, latches, and other hardware, replacing missing pieces as needed.

END OF SECTION
SECTION 08 11 15
STEEL DOORS AND FRAMES

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Interior non-fire rated steel doors and frames.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 65 00 - Flexible Flashing: Provision of flexible flashing.
 3. Section 08 71 00 - Door Hardware: Provision of door hardware.
 4. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. ANSI - American National Standards Institute
 1. A250.4 - Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors, Frames, Frame Anchors and Hardware Reinforcements.

B. ASTM - American Society for Testing and Materials

C. DHI - Door and Hardware Institute
 1. A115 Series - Steel Door Preparation Standards.

D. SDI - Steel Door Institute
 1. 100 - Recommended Specifications for Standard Steel Doors and Frames.
 2. 105 - Recommended Erection Instructions for Steel Frames.
 5. A250.8 - Recommended Specifications for Standard Steel Doors and Frames.

1.03 SUBMITTALS

A. Product Data: Submit product data for each type of door and frame specified, including details of construction, materials, dimensions, hardware preparation, core, label compliance, sound ratings, profiles, and finishes.
B. Shop Drawings: Submit shop drawings showing fabrication and installation of standard steel doors and frames referenced to the Architect’s door mark and hardware group. Include details of each frame type, elevations of door design types, conditions at openings, details of construction, location and installation requirements of door and frame hardware and reinforcements, and details of joints and connections. Show anchorage and accessory items.
 1. Provide schedule of doors and frames using same reference numbers for details and openings as those on the Drawings.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site
 1. Deliver doors and frames cardboard-wrapped or crated to provide protection during transit and job storage.
 2. Inspect doors and frames upon delivery for damage. Minor damages may be repaired provided refinished items are equal in all respects to new work and acceptable to the City’s Representative; otherwise, remove and replace damaged items as directed.

B. Storage and Protection: Store doors and frames at building site under cover. Place units on minimum 4 inches high wood blocking. Avoid use of non-vented plastic or canvas shelters which could create humidity chamber. If cardboard wrapper on door becomes wet, remove carton immediately. Provide 1/4-inch spaces between stacked doors to promote air circulation.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Republic Builders Products; Steelcraft Manufacturing Co.; Kewanee; Stiles Hollow Metal; Curries, or equal.

2.02 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A1008, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A1011, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Supports and Anchors: Fabricate of not less than 18 gauge sheet steel; galvanized where used with galvanized frames.

D. Inserts, Bolts, and Fasteners: Manufacturer’s standard units. Where items are to be built in at exterior walls, hot-dip galvanize in compliance with ASTM A153, Class C or D as applicable.

E. Flexible Flashing Where Required: As specified in Section 07 65 00.

F. Coatings for Protection of Dissimilar Materials
 1. Dissimilar Metals: Bituminous type materials in accordance with ASTM D1187.
 2. Aluminum in Contact with Concrete, Metal, Wood, or other Absorptive Material.
2.03 DOORS AND FRAMES

A. Provide metal doors of SDI grades and models specified below or as indicated on the Drawings or schedules:
 1. Interior Doors: Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical endurance level:
 a. Level 1 and Physical Performance Level C, (Standard Duty), Model 1 (Full Flush).
 2. Door Louvers: Provide sightproof stationary louvers where indicated, constructed of inverted V-shaped or Y-shaped blades formed of 24 gauge cold-rolled steel set into minimum 20 gauge steel frame.

B. Door Cores
 1. Core Stiffeners: Vertical steel stiffeners or steel channel grid.
 3. Core Filler: Sound deadening mineral composition, incombustible, moisture resistant, chemically inert in accordance with reviewed manufacturer's recommendations.

C. Door Frames: Provide metal frames for doors of types and styles as indicated on the Drawings and schedules and in accordance with SDI 100. Conceal fastenings, unless otherwise indicated.
 1. Interior: Fabricate fully welded frames of minimum 18 gauge cold-rolled steel.

D. Door Silencers: Except on weatherstripped and smoke gasketed frames, drill stops to receive 3 silencers on strike jambs of single door frames and 2 silencers on heads of double door frames.

2.04 FABRICATION

A. Fabricate steel door and frame units to be rigid, neat in appearance and free from defects, warp or buckle. Wherever practicable, fit and assemble units in manufacturer's plant. Clearly identify work that cannot be permanently factory-assembled before shipment, to assure proper assembly at Project site. Comply with ANSI/SDI A250.8 requirements.
 1. Internal Construction: Manufacturer's standard vertical steel stiffeners or unitized steel grid with internal sound deadener on inside of face sheets where appropriate in accordance with SDI standards.
 2. Clearances: Not more than 1/4-inch at jambs and heads between non-fire resistance rated pairs of doors. Not more than 3/4-inch at bottom.

B. Fabricate exposed faces of doors and panels, including stiles and rails of nonflush units, from only cold-rolled steel.

C. Tolerances: Comply with SDI 117.

D. Fabricate frames, concealed stiffeners, reinforcement, edge channels, louvers, and moldings from either cold-rolled or hot-rolled steel.

E. Exposed Fasteners: Unless otherwise indicated, provide countersunk flat or oval heads for exposed screws and bolts.

F. Hardware Preparation: Prepare doors and frames to receive mortised and concealed hardware in accordance with final Door Hardware Schedule and templates provided by hardware supplier. Comply with applicable requirements of DHI A115 Series Specifications for door and frame preparation for hardware.
 1. For concealed overhead door closers, provide space, cutouts, reinforcing, and provisions for fastening in top rail of doors or head of frames, as applicable.
G. Reinforce doors and frames to receive surface applied hardware. Drilling and tapping for surface applied hardware may be done at Project site.

H. Locate hardware as indicated on final shop drawings or, if not indicated, in accordance with DHI.

J. Painting: As specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 INSTALLATION

A. General: Install steel doors, frames, and accessories in accordance with final shop drawings, manufacturer’s data, and as herein specified.

B. Placing Frames: Comply with provisions of SDI 105, unless otherwise indicated.
 1. Except for frames located at existing concrete, masonry, or drywall installations, place frames prior to construction of enclosing walls and ceilings. Set frames accurately in position, plumbed, aligned and braced securely until permanent anchors are set. After wall construction is completed, remove temporary braces and spreaders leaving surfaces smooth and undamaged.

C. Door Installation: Fit hollow metal doors accurately in frames, within clearances specified in ANSI/SDI A250.8.

3.02 ADJUST AND CLEAN

A. Prime Coat Touch-Up: Immediately after erection, sand smooth any rusted or damaged areas of prime coat and apply touch-up of compatible air-drying primer.

B. Final Adjustments: Check and readjust operating hardware items, leaving steel doors and frames undamaged and in complete and proper operating condition.

END OF SECTION
SECTION 08 14 10

WOOD DOORS AND FRAMES

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Interior non-fire resistance rated flush wood doors.
 2. Wood door frames.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 2. Section 08 71 00 - Door Hardware: Provision of door hardware.
 3. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. CALGreen - California Green Building Standards, 2016 Edition

B. DHI - Door and Hardware Institute
 2. WDHS-3 - Recommended Hardware Locations for Wood Flush Doors.

C. WDMA - Window and Door Manufacturers Association

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Composite wood used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Articles 5.504.4.5 and 5.504.4.5.3.
 2. Adhesives used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Article 5.504.4.1.

1.04 SUBMITTALS

A. Product Data: Submit product data for each type of door, including details of core and edge construction, trim for openings and louvers, and factory-finishing specifications.

B. Shop Drawings: Submit shop drawings indicating location and size of each door referenced to the Architect’s door mark and hardware group, elevation of each kind of door, details of construction, location and extent of hardware blocking, requirements for factory finishing and other pertinent data.
 1. For factory-machined doors, indicate dimensions and locations of cutouts for locksets and other cutouts adjacent to light and louver openings.

C. Samples: Corner sections of doors approximately 12 inches square with door faces and edgings representing the typical range of color and grain for each species of veneer and solid lumber required.
1.05 QUALITY ASSURANCE

1.06 DELIVERY, STORAGE AND HANDLING

A. Packing and Shipping: Identify each door with individual opening numbers as designated on shop drawings, using temporary, removable or concealed markings. Use the Architect’s door numbering system.

B. Storage and Protection: Protect doors during transit, storage, and handling to prevent damage, soiling, and deterioration. Comply with requirements of referenced standard and manufacturer's instructions.

1.07 PROJECT CONDITIONS

A. Environmental Requirements: Do not deliver or install doors until building is enclosed, wet work is complete, and HVAC system is operating and will maintain temperature and relative humidity at occupancy levels during the remainder of the construction period.

1.08 WARRANTY

A. General Warranty: Door manufacturer’s warranty specified in this Article shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. Door Manufacturer’s Warranty: Submit written agreement on door manufacturer’s standard form signed by manufacturer, Installer, and Contractor, agreeing to repair or replace defective doors that have warped (bow, cup, or twist) more than 1/4-inch in a 42 inch by 84 inch section or that show telegraphing of core construction in face veneers exceeding 0.01-inch in a 3 inch span, or do not conform to tolerance limitations of referenced quality standards.

1. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors where defect was not apparent prior to hanging.

2. Warranty shall be in effect during the following period of time after date of Substantial Completion, Beneficial Occupancy or Notice of Completion, whichever is earlier.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Algoma Hardwoods, Inc.; Eggers Industries, Architectural Door Division; Marshfield Door Systems; Liberty Valley Doors, Inc., or equal.

2.02 MATERIALS

A. Interior Solid Core Doors Intended for Opaque Finish

1. Thickness: 1-3/4 inches, unless otherwise indicated.
2. Faces: Poplar.
3. Grade: Paint grade.
5. Core: Particle board core.
6. Bonding: Stiles and rails bonded to core, then entire unit abrasive planed before veneering.

B. Interior Solid Stile and Rail Doors Intended for Opaque Finish
 1. WDMA Grade: Premium.
 2. Wood Species: Hardwood, as selected by the Architect.
 4. Provide water-resistant seal and finish bottom edge of doors in wet areas.

C. Hardware: As specified in Section 08 71 00.

D. Wood Door Frames: Provide non-fire resistance rated solid wood or composite wood frames for doors of type and style as indicated on the Drawings. Conceal fastenings, unless otherwise indicated.
 1. Species: Match door.

E. Steel Door Frames: As specified in Section 08 11 15.

2.03 FABRICATION

A. Fabricate flush wood doors to comply with the following requirements:
 1. Factory machine doors for hardware that is not surface applied. Locate hardware to comply with DHI WDHS-3. Comply with final hardware schedules, door frame shop drawings, DHI A115-W series standards, and hardware templates.
 a. Coordinate measurements of hardware mortises in metal frames to verify dimensions and alignment before proceeding with factory machining.

B. Finishing: Opaque painting, as specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine installed door frames prior to hanging door.
 1. Verify that frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with plumb jambs and level heads.
 2. Reject doors with defects.

B. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Hardware: See Section 08 71 00.

B. Manufacturer’s Instructions: Install wood doors to comply with manufacturer’s instructions and referenced quality standard and as indicated.

C. Job-Fit Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer. Seal cut surfaces after fitting.
 1. Fitting Clearances for Non-Fire Rated Doors: Provide 1/8-inch at jambs and heads; 1/16-inch per leaf at meeting stiles for pairs of doors, and 1/8-inch from bottom of door to top of decorative floor finish or covering. Where threshold is shown or scheduled, provide 1/4-inch clearance from bottom of door to top of threshold.
 2. Bevel non-fire rated doors 1/8-inch in 2 inches at lock and hinge edges.
D. Field-Finished Doors: See Section 09 90 00.

3.03 ADJUSTING AND PROTECTION

A. Operation: Rehang or replace doors that do not swing or operate freely.

B. Finished Doors: Refinish or replace doors damaged during installation.

C. Protect doors as recommended by door manufacturer to ensure that wood doors will be without damage or deterioration at the time of Substantial Completion.
SECTION 08 31 13
ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes: Access doors and frames.
B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
C. Related Sections
 1. Section 05 50 00 - Metal Fabrications: Provision of wall-mounted ladder and safety post at ceiling access hatch.
 2. Section 09 29 00 - Gypsum Board: Provision of gypsum board.
 3. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES
A. UL - Underwriters Laboratories Inc.

1.03 SUBMITTALS
A. Product Data: Submit manufacturer’s data completely describing products.
B. Shop Drawings: Submit drawings showing attachment to structure in each typical condition. Refer to Division 23 regarding requirements for showing locations of access doors.

1.04 DELIVERY, STORAGE AND HANDLING
A. Packaging and Shipping: Identify type and size of each door.
B. Storage and Protection
 1. Deliver and store packaged products in original containers with seals unbroken and labels intact until time of use.
 2. Deliver products only after proper facilities are available; handle carefully to prevent damage and store on clean concrete surface or raised platform in safe, dry area.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 MATERIALS
A. Non-Fire Rated
 1. General: Equip with screw driver turned locks.
 2. Type 1: Flush steel door and flanged frame for gypsum board walls and ceiling installations.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

Access Doors and Frames

07.17.19 08 31 13 - 2

PART 2 - SPECIFICATIONS

3. Type 2: Flush steel door and flanged frame for masonry or tile installations.

4. Type 3: Flush stainless steel door and flanged frame for masonry, tile and gypsum board installations where finish material is ceramic tile.

B. Fire Rated
 1. Type A: Fire resistive steel door with recess to receive gypsum board and flanged frame for rated suspended gypsum board ceiling installations.

 2. Type B: Fire rated flush steel door and flanged frame, UL 1-1/2 hour rated, self latching with direct action knurled knob, for installation in rated walls.

C. Access Doors at Sound Rated Construction
 1. Provide doors equivalent to fire rated access door.

 2. Door Panel: Double wall insulated.
 3. 1-1/2 inch thick minimum mineral wool insulation.
 4. Continuous piano hinge.

D. Wall-Mounted Ladder: As specified in Section 05 50 00.

E. Finishes
 1. Steel: Chemically etch and apply baked-on rust inhibitive zinc dust prime coat.
 2. Stainless Steel: Reviewed manufacturer’s #4 finish.
 3. Finish Painting: As specified in Section 09 90 00.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine construction to receive access door and verify dimensions and other supporting or adjoining conditions.

B. Do not install doors until unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Coordinate details with other work supporting, adjoining or requiring access doors.

B. Verify location of items requiring access so that access door location will be compatible with planned finishing of spaces and the location of other wall or ceiling mounted equipment or fixtures.
3.03 INSTALLATION

A. Install access doors in accordance with manufacturer’s instructions and at locations authorized by the Architect in accordance with requirements for work of Division 23.

B. Securely attach frames to supporting work and ensure doors operate smoothly and are free from warp, twist and distortion.

3.04 ADJUSTING AND CLEANING

A. Thoroughly clean surfaces of grease, oil, or other impurities, touch-up abraded prime coat, and otherwise prepare for finish painting where required.

END OF SECTION
SECTION 08 33 26
OVERHEAD COILING GRILLES

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes: Overhead coiling metal grille.
B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
C. Related Section
 1. Division 26 - Electrical: For electrical connections for operation.

1.02 REFERENCES
A. NEMA - National Electrical Manufacturers Association

1.03 SUBMITTALS
A. Product Data: Submit manufacturer’s product data, roughing-in diagrams, and installation instructions for overhead coiling grille.
 1. Provide operating instructions and maintenance information.
 2. Provide electrical rough-in instructions.
B. Shop Drawings: Submit shop drawings for special components and installations that are not dimensioned or detailed in manufacturer’s data sheets.

1.04 QUALITY ASSURANCE
A. Manufacturer Qualifications: Furnish overhead coiling grille as a complete unit produced by one manufacturer, including hardware, accessories, mounting and installation components.
B. Inserts and Anchorages: Furnish inserts and anchoring devices that must be set in concrete or built into masonry for installation of overhead coiling grille unit. Provide setting drawings, templates, instructions, and directions for installing anchorage devices. Coordinate delivery with other work to avoid delay.

1.05 WARRANTY
A. Rolling grille shall be warranted for a period of 1 year from the time of shipment against defects in workmanship and materials.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Acceptable Manufacturer: Overhead Door, “Model 674”, or equal.
OVERHEAD COILING GRILLE

A. Materials and Construction
3. Guide Type: Guide channels are extruded aluminum with continuous wear strips; wall angles and any pack-out angles are galvanized steel.
4. Mounting: Interior face of wall unless otherwise indicated.
5. Brackets: Steel with black powdercoat finish.
6. Pipe: Steel sized for maximum deflection of .03-inch per linear foot.
7. Springs: Oil tempered, 20,000 cycle, torsion springs.
8. Locking: Center locking bottom bar, with 1/2-inch diameter steel throw rods; comes standard with cylinder locks on both sides or thumb turn on secured side.

B. Counterbalancing Mechanism
1. General: Counterbalance grilles by means of adjustable steel helical torsion spring, mounted around a steel shaft and in a spring barrel, and connected to grille curtain with required barrel rings. Use grease-sealed bearings or self-lubricating graphite bearings for rotating members.
2. Counterbalance Barrel: Fabricate spring barrel of hot-formed structural quality carbon steel, welded or seamless pipe, of sufficient diameter and wall thickness to support roll-up of curtain without distortion of curtain and to limit barrel deflection to not more than 0.03-inch per foot of span under full load.
3. Provide spring balance of 1 or more oil-tempered, heat-treated steel helical torsion springs. Size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Provide cast steel barrel plugs to secure ends of springs to barrel and shaft.
4. Fabricate torsion rod for counterbalance shaft of cold-rolled steel in size required to hold fixed spring ends and carry torsional load.

C. Electric Grille Operators
1. General: Furnish electric grille operator assembly of size and capacity recommended and provided by grille manufacturer; complete with electric motor and factory-prewired motor controls, gear-reduction unit, solenoid-operated brake, remote control stations, control devices, conduit and wiring from controls to motor and central stations, and accessories required for proper operation.
2. Provide hand-operated disconnect or a mechanism for automatically engaging a sprocket and chain operator and releasing brake for emergency manual operation. Mount disconnect and operator so they are accessible from floor level. Include interlock device to automatically prevent motor from operating when emergency operator is engaged.
3. Design operator so that motor may be removed without disturbing limit-switch adjustment and without affecting emergency auxiliary operator.
4. Grille Operator Type: Provide wall mounted grille operator units consisting of electric motor, worm gear drive from motor to reduction gear box, chain or worm gear drive from reduction box to gear wheel mounted on counterbalance shaft, and a disconnect-release for manual operation. Provide motor and drive assembly of horsepower and design as determined by grille manufacturer for size of grille required.
5. Electric Motors: Provide high-starting torque, reversible, Class A insulated electric motors with overload protection. Size motor to move grille in either direction, from any position, at not less than 2/3 foot per second nor more than 1 foot per second.
 a. Coordinate wiring requirements and current characteristics of motors with building electrical system.
 b. Furnish open drip-proof type motor.
6. Remote Control Station: Provide momentary-contact, 3 button control station with push-button controls labeled “Open”, “Close”, and “Stop”.
 a. Provide interior units, full-guarded, surface-mounted, heavy-duty, with general-purpose NEMA Type 1 enclosure.
7. Automatic Reversing Control: Furnish each grille with an automatic safety switch, extending the full width of grille bottom, and located within neoprene or rubber astragal mounted to bottom grille rail. Contact with switch before fully closing will immediately stop downward travel and reverse direction to fully opened position.
 a. Connect to control circuit through retracting safety cord and reel or self-coiling cable.
 b. Provide electrically actuated automatic bottom bar.

D. Safety Edge System: Provide system installed on the bottom bar of the grille that shall automatically reverse the grille if the device detects an obstruction in the downward travel of the grille.
 1. System shall consist of a rubber boot attached below the bottom bar with an electrical switch secured to the back of the bottom bar. System shall operate with air wave technology and shall not rely on pneumatic pressure or electrical strip contacts to operate properly. System shall create an air wave that shall be detected and reverse the direction of the grille.
 2. Operation of the system shall not be subject to interferences by temperature, barometric pressure, water infiltration or cuts in the rubber boot.

E. Finish: Provide manufacturer’s standard powder-coat finish for the grille and its components; color as selected by the Architect.

PART 3 - EXECUTION

3.01 INSTALLATION

A. General: Install grille and operating equipment complete with necessary hardware, jamb and head mold strips, anchors, inserts, hangers, and equipment supports according to final shop drawings, manufacturer’s instructions, and as specified.
 1. Overhead grille shall be built into the soffit as indicated and shall be covered when not in use.
 2. Overhead grille shall be tied to pressure sensor.

B. Overhead Grille Operator
 1. Install overhead grille operator according to manufacturer’s instructions. Adjust for smooth, trouble-free operation.
 2. Advise and consult with the Architect to obtain the City’s requirements for standard available programmable features or adjustable controls (such as time delays, interlocks, or safety devices), and make necessary adjustments.

C. After completing installation, including work by other trades, lubricate, test, and adjust grille to operate easily, free from warp, twist, or distortion.

D. Train the City’s maintenance personnel on procedures and schedules related to grille operation, servicing and preventive maintenance.

END OF SECTION
SECTION 08 51 13
ALUMINUM WINDOWS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Awning and fixed aluminum windows.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 05 50 00 - Metal Fabrications: For protection of dissimilar materials.
 2. Section 07 62 00 - Sheet Metal Flashing and Trim: Provision of head and sill flashings.
 3. Section 07 65 00 - Flexible Flashing: Provision of flexible flashing.
 4. Section 07 92 00 - Joint Sealants: Provision of sealants.
 5. Section 08 01 51.10 - Restoration of Steel Windows: For repair and retrofit of existing steel windows.
 6. Section 08 80 00 - Glazing: For requirements for glazing windows, including those specified to be factory-glazed.

1.02 REFERENCES

A. AA - Aluminum Association

B. AAMA - American Architectural Manufacturers Association
 2. 901.1 - Voluntary Specification for Rotary Operators in Window Applications.
 3. 904.1 - Voluntary Specifications for Friction Hinges in Window Applications.

C. ASTM - American Society for Testing and Materials
D. CSA - Canadian Standards Association

E. NAAMM - National Association of Architectural Metal Manufacturers
 1. MFM - Metal Finishes Manual for Architectural and Metal Products.

F. WDMA - Window and Door Manufacturers Association

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Uniform Load Deflection: Provide window units with no glass breakage; permanent
damage to fasteners, or deflection of any unsupported span (meeting rails, muntins,
frames, mullions) in excess of L/175 or 3/4-inch, whichever is less, at both a positive
and negative load of 30 psf (design wind pressure), when tested in accordance with
ASTM E330.
 2. Structural Performance: Test in accordance with ASTM E330. Provide window units
with no failure or permanent deflection in excess of 0.4 percent of their clear span
after removal of imposed load, for positive (inward) and negative (outward) test
pressure of 45 psf.
 3. Air Infiltration
 a. Awning Windows: Not more than 0.37 cfm per foot of operating ventilator or
 sash crack length for an inward test pressure of 1.57 psf when tested in
 accordance with ASTM E283.
 b. Fixed Windows: Not more than 0.15 cfm per foot of area for an inward test
 pressure of 1.57 psf when tested in accordance with ASTM E283.
 4. Water Resistance: No water penetration when tested in accordance with ASTM E547
 at inward test pressure differential of 4.50 psf at C30 rating.
 5. Thermal Movement: Provide for expansion and contraction resulting from ambient
 temperature range of 180 degrees Fahrenheit without buckling, joint seal failure,
 undue stress on structural elements, damaging loads on fasteners, reduction of
 performance, or stress on glass.
 6. Water Penetration: There shall be no water leakage as defined in the test method at
 an inward test pressure of 6.00 lbf per sq. ft. when tested according to ASTM E331
 and ASTM E547.
 7. Thermal Transmittance: Provide window units with a maximum U-value of 0.74
 Btu/hr x sq. ft. x degree Fahrenheit at 15 mph exterior wind velocity when tested
 according to NFRC 100.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each type of window required,
including:
 1. Construction details and fabrication methods.
 2. Profiles and dimensions of individual components.
 3. Data on finishes.
 4. Recommendations for maintenance and cleaning of exterior surfaces.

B. Shop Drawings: Submit shop drawings for each type of window required. Include
information not fully detailed in manufacturer’s standard product data and the following:
 1. Layout and installation details, including anchors.
 2. Elevations of continuous work at 1/4 inch = 1 foot scale and typical window unit
 elevations at 3/4 inch = 1 foot scale.
 3. Full size section details of typical composite members, including reinforcement.
5. Accessories.
6. Hardware, including operators.

C. Samples
1. Submit samples for Initial Color Selection: Submit samples of each specified finish on 12 inch long sections of window members. Where finishes involve normal color variations, include sample sets showing the full range of variations expected.
2. Samples for Verification Purposes: The Architect reserves the right to require additional samples that show fabrication techniques and workmanship and design of hardware and accessories.

D. Quality Control Submittals
1. Test Reports: Engage a recognized independent testing laboratory or agency to perform tests specified. Provide certified test results showing that each type, grade and size of window unit complies with performance requirements indicated.
2. Certification: Provide certification by a recognized independent testing laboratory or agency showing that each type, grade and size of window unit complies with performance requirements indicated.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer who has completed installation of aluminum windows similar in design and extent to those required for the Project and whose work has resulted in construction with a record of successful in-service performance.

B. Standards: Requirements for aluminum windows, terminology and standards of performance, and fabrication workmanship are those specified and recommended in AAMA GS 001 and applicable general recommendations published by AAMA.

1.06 PROJECT CONDITIONS

A. Field Measurements: Check actual window openings by accurate field measurement before fabrication. Show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delay of work.
1. Where necessary, proceed with fabrication without field measurements, and coordinate fabrication tolerances to ensure proper fit of window units.

1.07 WARRANTY

A. Aluminum Window Warranty: Submit a written warranty, executed by the window manufacturer, agreeing to repair or replace window units that fail in materials or workmanship within the specified warranty period. Failures include but are not necessarily limited to:
1. Structural failures including excessive deflection, excessive leakage, or air infiltration.
2. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
3. Warranty includes window extrusions, panning and trim. Insulated glass and factory glazing shall also be warranted.

B. Warranty Period: 10 years after the date of Substantial Completion, Beneficial Occupancy or Notice of Completion, whichever is earlier.
C. The warranty shall not deprive the City of other rights or remedies that the City may have under other provisions of the Contract Documents and is in addition to and runs concurrent with other warranties made by the Contractor under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturer

2.02 MATERIALS

A. Aluminum Extrusions: Provide alloy and temper recommended by window manufacturer for strength, corrosion resistance and application of required finish, but not less than 22,000 psi ultimate tensile strength and not less than 0.125-inch thick at any location for main frame and sash members.

B. Fasteners: Provide aluminum or nonmagnetic stainless steel.
 1. Reinforcement: Where fasteners screw anchor into aluminum less than 0.125-inch thick, reinforce interior with aluminum or nonmagnetic stainless steel to receive screw threads or provide standard, noncorrosive, pressed-in, splined grommet nuts.
 2. Exposed Fasteners: Except where unavoidable for application of hardware, do not use exposed fasteners. For application of hardware, use fasteners that match finish of member or hardware being fastened, as appropriate.

C. Anchors, Nail Fins, Clips, and Window Accessories: Fabricate anchors, clips and window accessories of aluminum, nonmagnetic stainless steel or hot-dip zinc coated steel complying with ASTM B633. Provide sufficient strength to withstand design pressure indicated.

D. Compression Type Glazing Strips and Weatherstripping: Unless otherwise indicated, provide compressible stripping for glazing and weatherstripping such as molded EPDM or neoprene gaskets complying with ASTM D2000 Designation 2BC415 to 3BC620, or molded PVC gaskets complying with ASTM D2287, or molded expanded EPDM or neoprene gaskets complying with ASTM C509, Grade 4.

E. Sealants: As specified in Section 07 92 00.

F. Glass and Glazing: As specified in Section 08 80 00.

G. Protection of Dissimilar Materials: As specified in Section 05 50 00.

H. Hardware, General: Provide manufacturer’s standard hardware fabricated from aluminum, stainless steel, or other corrosion-resistant material compatible with aluminum and of sufficient strength to perform the function for which it is intended.

2.03 AWNING WINDOWS

A. Window Grade and Class: Provide top-hinged, in-swinging windows; nail-on, non-motorized type; comply with requirements of AAMA Grade and Performance Class P-AW-50.
 1. Hardware: Provide the following equipment and operating hardware:
 a. Operating Device: Manually operated.
b. Hinges: Concealed 4-bar friction hinges (2 per ventilator) located on each jamb near top rail. Ventilator operation shall permit inside cleaning of outside glass face.

c. Limit Device: Manufacturer’s standard limit device (2 per ventilator) located on each jamb.

d. Lock: Combination lever handle and cam-action lock with concealed pawl and pole-operated, cam-handle lock and keeper for transoms. Provide number of cam locks to meet HC-40 requirements.

2.04 FIXED WINDOWS

A. Window Grade and Class: Provide nail-on type; comply with requirements of AAMA Grade and Performance Class F-AW-50.

2.05 FABRICATION

A. General: Fabricate aluminum window units to comply with indicated standards. Include a complete system for assembly of components and anchorage of window units.

1. Provide units that are reglazable without dismantling sash or ventilator framing.

B. Thermally Improved Construction: Fabricate window units with an integral, concealed, low-conductance, thermal barrier, located between exterior materials and window members exposed on interior, in a manner that eliminates direct metal-to-metal contact.

1. Provide thermal-break construction that has been in use for not less than 3 years, has been tested to demonstrate resistance to thermal conductance and condensation, and has been tested to show adequate strength and security of glass retention.

2. Provide hardware with low conductivity or nonmetallic material for hardware bridging thermal breaks at frame or vent sash.

3. Weep Holes: Provide weep holes and internal passages to conduct infiltrating water to exterior.

4. Provide water-shed members above side-hinged ventilators and similar lines of natural water penetration.

5. Subframes: Provide subframes with anchors for window units as shown, of profile and dimensions indicated but not less than 0.062-inch thick extruded aluminum. Miter or cope corners, and weld and dress smooth with concealed mechanical joint fasteners. Finish to match window units.

6. Glazing Stops: Provide screw-applied or snap-on glazing stops, coordinated with glass selection and glazing system indicated. Finish to match window units.

C. Preglazed Fabrication: Preglaze window units at the factory where possible and practical for applications indicated. Comply with glass and glazing requirements of Section 08 80 00 and AAMA/WDMA/CSA 101/I.S.2/A440.

2.06 ALUMINUM FINISHES

A. General

1. Comply with NAAMM’s MFM for recommendations relative to applying and designating finishes.

2. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

3. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.
B. High-Performance Organic Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.
 1. Fluoropolymer 3-Coat System: Manufacturer’s standard 3-coat, thermocured system consisting of specially formulated inhibitive primer, fluoropolymer color coat, and clear fluoropolymer topcoat, with both color coat and clear topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with AAMA 2605.
 a. Color and Gloss: As selected by the Architect from manufacturer’s full range.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine openings before beginning installation. Verify that rough opening is correct and the sill plate is level.
 1. Metal surfaces shall be dry; clean; free of grease, oil, dirt, rust and corrosion, and welding slag; without sharp edges or offsets at joints.

3.02 INSTALLATION

A. Install window units, hardware, and other components of work as shown on the Drawings and as required for watertightness in accordance with manufacturer’s instructions.

B. Install flexible flashing and galvanized sheet metal head and sill flashings into window openings as indicated on the Drawings.

C. Before inserting frame, apply heavy bead of polyurethane sealant, as specified in Section 07 92 00, on inside face of nailing fin around entire perimeter.

D. Set windows into opening, and press into place. Windows shall be plumb, level, and true to line, without warp or rack of frames or sash.
 1. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials by complying with the requirements specified under paragraph “Dissimilar Materials” in the Appendix to AAMA/WDMA/CSA 101/I.S.2/A440.

E. Anchor securely in place by nailing integral nailing fin to framing on all 4 sides. Seal fastener penetrations.

F. Additional interior and exterior perimeter sealing shall be as indicated, conforming to requirements specified in Section 07 92 00.
 1. Where priming is required, priming shall be applied before sash is installed.
 2. Give special attention to proper cleaning of painted aluminum surfaces in contact with sealant.

3.03 CLEANING

A. Clean aluminum surfaces promptly after installation of windows. Exercise care to avoid damage to protective coatings and finishes. Remove excess glazing and sealant compounds, dirt, and other substances.

B. Clean glass of preglazed units promptly after installation of windows. Comply with requirements of Section 08 80 00 for cleaning and maintenance.
3.04 PROTECTION

A. Initiate and maintain protection and other precautions required through the remainder of the construction period, to ensure that, except for normal weathering, window units will be free of damage or deterioration at the time of Substantial Completion.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Door hardware, including electric hardware.
 2. Storefront and entrance door hardware.
 4. Power supplies for electric hardware.
 5. Door position switches.
 6. Padlocks.
 7. Cylinders for doors fabricated with locking hardware.
 8. Point-to-point wiring diagrams for electric hardware.

B. Related Divisions:
 1. Division 06 – door hardware installation
 2. Division 07 – sealant at exterior thresholds
 3. Division 08 – metal doors and frames, wood doors, integrated security systems, storefront and glazed curtainwall systems.
 4. Division 28 – fire and life safety systems
 5. Division 28 – security access systems

C. Specific Omissions: Hardware for the following is specified or indicated elsewhere.
 1. Windows.
 2. Cabinets, including open wall shelving and locks.
 3. Signs.
 4. Toilet accessories, including grab bars.
 5. Installation.
 6. Rough hardware.
 7. Conduit, junction boxes & wiring.
 8. Access doors and panels.

1.02 REFERENCES

A. Use date of standard in effect as of Bid date.
 a) ANSI A156.18 Materials and Finishes
 2. BHMA – Builders Hardware Manufacturers Association
 3. DHI – Door and Hardware Institute
 4. NFPA – National Fire Protection Association
 a) NFPA 80 – Fire Doors and Windows
 b) NFPA 105 – Smoke and Draft Control Door Assemblies
 c) NFPA 252 – Fire Tests of Door Assemblies
 5. UL – Underwriters Laboratories
 a) UL10C – Positive Pressure Fire Tests of Door Assemblies.
 b) UL 305 – Panic Hardware
7. Local applicable codes
8. SDI – Steel Door Institute
9. WI – Woodwork Institute
10. AWI – Architectural Woodwork Institute
11. NAAMM – National Association of Architectural Metal Manufacturers

B. Abbreviations
1. Manufacturers: see table at 2.1.A of this section
2. Finishes: see 2.7 of this section.

1.03 SUBMITTALS & SUBSTITUTIONS

A. SUBMITTALS: Submit six copies of schedule per Section 01330. Only submittals printed one sided will be accepted and reviewed. Organize vertically formatted schedule into “Hardware Sets” with index of doors and headings, indicating complete designations of every item required for each door or opening. Minimum 10pt font size. Include following information:

1. Type, style, function, size, quantity and finish of hardware items.
2. Use BHMA Finish codes per ANSI A156.18.
3. Name, part number and manufacturer of each item.
4. Fastenings and other pertinent information.
5. Location of hardware set coordinated with floor plans and door schedule.
6. Explanation of abbreviations, symbols, and codes contained in schedule.
7. Mounting locations for hardware.
8. Door and frame sizes, materials and degrees of swing.
9. List of manufacturers used and their nearest representative with address and phone number.
10. Catalog cuts.
11. Point-to-point wiring diagrams.
12. Manufacturer’s technical data and installation instructions for electronic hardware.

B. Bid and submit manufacturer’s updated/improved item if scheduled item is discontinued.

C. Deviations: Highlight, encircle or otherwise identify deviations from “Schedule of Finish Hardware” on submittal with notations clearly designating those portions as deviating from this section.

D. If discrepancy between drawings and scheduled material in this section, bid the more expensive of the two choices, note the discrepancy in the submittal and request direction from Architect for resolution.

E. Substitutions per Division 1. Include product data and indicate benefit to the Project. Furnish operating samples on request.

F. Furnish as-built/as-installed schedule with closeout documents, including keying schedule, riser and point-to-point wiring diagrams, manufacturers’ installation, adjustment and maintenance information, and supplier’s final inspection report.
1.04 QUALITY ASSURANCE

A. Qualifications:

1. Hardware supplier: direct factory contract supplier who employs a certified architectural hardware consultant (AHC), available at reasonable times during course of work for project hardware consultation to Owner, Architect and Contractor.
 a) Responsible for detailing, scheduling and ordering of finish hardware. Detailing implies that the submitted schedule of hardware is correct and complete for the intended function and performance of the openings.

B. Hardware: Free of defects, blemishes and excessive play. Obtain each kind of hardware (latch and locksets, exit devices, hinges and closers) from one manufacturer.

C. Exit Doors: Operable from inside with single motion without the use of a key or special knowledge or effort.

D. Fire-Rated Openings: NFPA 80 compliant. Hardware UL10C / UBC Standard 7-2 (positive pressure) compliant for given type/size opening and degree of label. Provide proper latching hardware, non-flaming door closers, approved-bearing hinges, and resilient seals. Coordinate with wood door section for required intumescent seals. Furnish openings complete.

E. Furnish hardware items required to complete the work in accordance with specified performance level and design intent, complying with manufacturers’ instructions and code requirements.

1.05 DELIVERY, STORAGE AND HANDLING

A. Delivery: coordinate delivery to appropriate locations (shop or field).

1. Permanent keys and cores: secured delivery direct to Owner’s representative.

B. Acceptance at Site: Items individually packaged in manufacturers’ original containers, complete with proper fasteners and related pieces. Clearly mark packages to indicate contents, locations in hardware schedule and door numbers.

C. Storage: Provide securely locked storage area for hardware, protect from moisture, sunlight, paint, chemicals, dust, excessive heat and cold, etc.

1.06 PROJECT CONDITIONS AND COORDINATION

A. Where exact types of hardware specified are not adaptable to finished shape or size of members requiring hardware, provide suitable types having as nearly as practical the same operation and quality as type specified, subject to Architect’s approval.

B. Coordination: Coordinate hardware with other work. Furnish hardware items of proper design for use on doors and frames of the thickness, profile, swing, security and similar requirements indicated, as necessary for proper installation and function, regardless of omissions or conflicts in the information on the Contract Documents. Furnish related trades with the following information:

1. Location of embedded and attached items to concrete.
2. Location of wall-mounted hardware, including wall stops.
3. Location of finish floor materials and floor-mounted hardware.
4. At masonry construction, coordinate with the anchoring and hollow metal supplier prior to frame installation by placing a strip of insulation, wood, or foam, on the back of the hollow metal frame behind the rabbet section for continuous hinges, as well as at rim panic hardware strike locations, silencers, coordinators, and door closer arm locations. When the frame is grouted in place, the backing will allow drilling and tapping without dulling or breaking the installer’s bits.

5. Locations for conduit and raceways as needed for electrical, electronic and electro-pneumatic hardware items. Fire/life-safety system interfacing. Point-to-point wiring diagrams plus riser diagrams to related trades.

6. Coordinate: flush top rails of doors at outswinging exteriors, and throughout where adhesive-mounted seals occur.

7. Manufacturers' templates to door and frame fabricators.

C. Check Shop Drawings for doors and entrances to confirm that adequate provisions will be made for proper hardware installation.

D. Environmental considerations: segregate unused recyclable paper and paper product packaging, uninstalled metals, and plastics, and have these sent to a recycling center.

1.07 WARRANTY

A. Part of respective manufacturers’ regular terms of sale. Provide manufacturers’ written warranties:

1. Locksets: Three years
2. Exit Devices: Three years mechanical
3. Closers: Thirty years mechanical
4. Other Hardware Two years

1.08 COMMISSIONING

A. Conduct these tests prior to request for certificate of substantial completion:

1. With installer present, test door hardware operation with climate control system and stairwell pressurization system both at rest and while in full operation.
2. With installer, access control contractor and electrical contractor present, test electrical, electronic and electro-pneumatic hardware systems for satisfactory operation.
3. With installer and electrical contractor present, test hardware interfaced with fire/life-safety system for proper operation and release.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers and their abbreviations used in this schedule:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVE</td>
<td>H. B. Ives</td>
</tr>
<tr>
<td>LCN</td>
<td>LCN Closers</td>
</tr>
<tr>
<td>NGP</td>
<td>National Guard Products</td>
</tr>
<tr>
<td>SCE</td>
<td>Schlage Electronics</td>
</tr>
<tr>
<td>SCH</td>
<td>Schlage Lock Company</td>
</tr>
<tr>
<td>VON</td>
<td>Von Duprin</td>
</tr>
</tbody>
</table>

2.02 HINGING METHODS

A. Drawings typically depict doors at 90 degrees, doors will actually swing to maximum allowable. Use wide-throw conventional or continuous hinges as needed up to 8 inches in width to allow door to stand parallel to wall for true 180-degree opening. Advise architect if 8-inch width is insufficient.

B. Conform to manufacturer’s published hinge selection standard for door dimensions, weight and frequency, and to hinge selection as scheduled. Where manufacturer’s standard exceeds the scheduled product, furnish the heavier of the two choices, notify Architect of deviation from scheduled hardware.

C. Conventional Hinges: Steel or stainless steel pins and concealed bearings. Hinge open widths minimum, but of sufficient throw to permit maximum door swing.

1. Outswinging exterior doors: non-ferrous with non-removable (NRP) pins and security studs.
2. Non-ferrous material exteriors and at doors subject to corrosive atmospheric conditions.

D. Continuous Hinges:

1. Geared-type aluminum.
 a) Use wide-throw units where needed for maximum degree of swing, advise architect if commonly available hinges are insufficient.
 b) If units are used at storefront openings, color-coordinate hinge finish with storefront color. Custom anodizing and custom powdercoat finishes subject to Architect approval.

2. Pinned steel/stainless steel type: continuous stainless steel, 0.25-inch diameter stainless-steel hinge pin.
 a) Use engineered application-specific wide-throw units as needed to provide maximum swing degree of swing, advise architect if required width exceeds 8 inches.

2.03 LOCKSETS, LATCHSETS, DEADBOLTS

A. Mortise Locksets and Latchsets: as scheduled.

1. Chassis: cold-rolled steel, handing field-changeable without disassembly.
2. Universal lock case – 10 functions in one case.
3. Floating mounting tabs automatically adjusts to fit a beveled door edge.
4. Latchbolts: 0.75 inch throw stainless steel anti-friction type.
5. **Lever Trim**: through-bolted, accessible design, cast lever or solid extruded bar type levers as scheduled. Filled hollow tube design unacceptable.
 a) **Spindles**: security design independent breakaway. Breakage of outside lever does not allow access to inside lever’s hubworks to gain wrongful entry.
 b) **Inside lever applied by screwless shank mounting** – no exposed trim mount screws.
 c) Levers rotate up or down for ease of use.

6. Furnish solid cylinder collars with wave springs. Wall of collar to cover rim of mortise cylinder.

7. **Thumbturns**: accessible design not requiring pinching or twisting motions to operate.

8. **Deadbolts**: stainless steel 1-inch throw.

9. **Electric operation**: Manufacturer-installed continuous duty solenoid.

10. **Strikes**: 16 gage curved steel, bronze or brass with 1 inch deep box construction, lips of sufficient length to clear trim and protect clothing.

11. **Scheduled Lock Series and Design**: Schlage L series, 17A design.

12. **Certifications**:
 a) ANSI A156.13, 1994, Grade 1 Operational, Grade 1 Security.
 b) ANSI A156.13, 1994, Grade 4 Operational, Grade 1 Security.
 c) ANSI/ASTM F476-84 Grade 31 UL Listed.

2.04 EXIT DEVICES / PANIC HARDWARE

A. General features:

1. Independent lab-tested 1,000,000 cycles.
3. Deadlocking latchbolts, 0.75 inch projection.
4. End caps: impact-resistant, flush-mounted. No raised edges or lips to catch carts or other equipment.
5. No exposed screws to show through glass doors.
6. Non-handed basic device design with center case interchangeable with all functions, no extra parts required to effect change of function.
7. Releasable in normal operation with 15-pound maximum operating force per UBC Standard 10-4, and with 32-pound maximum pressure under 250-pound load to the door.
8. Comply with CBC Section 1008.1.10.

B. Specific features:

1. **Non-Fire Rated Devices**: cylinder dogging.
2. **Lever Trim**: breakaway type, forged brass or bronze escutcheon min. 0.130 inch thickness, compression spring drive, match lockset lever design.
3. **Fire-Labeled Devices**: UL label indicating “Fire Exit Hardware”. Vertical rod devices less bottom rod (LBR) unless otherwise scheduled.
2.05 CLOSERS

A. Surface Closers:

1. Full rack-and-pinion type cylinder with removable non-ferrous cover and cast iron body. Double heat-treated pinion shaft, single piece forged piston, chrome-silicon steel spring.
2. ISO 2000 certified. Units stamped with date-of-manufacture code.
3. Independent lab-tested 10,000,000 cycles.
5. Plates, brackets and special templating when needed for interface with particular header, door and wall conditions and neighboring hardware.
6. Advanced Variable Backcheck (AVB): where scheduled, these units commence backcheck at approximately 45 degrees.
7. Adjustable to open with not more than 5.0-pounds pressure to open at exterior doors and 5.0-pounds at interior doors. As allowed per California Building Code, Section 1133B.2.5 and 1008.1.3, local authority may increase the allowable pressure for fire doors to achieve positive latching, but not to exceed 15-pounds.
8. Separate adjusting valves for closing speed, latching speed and backcheck, fourth valve for delayed action where scheduled.
9. Extra-duty arms (EDA) at exterior doors scheduled with parallel arm units. EDA arms: rigid main and forearm, reinforced elbow.
10. Exterior door closers: tested to 100 hours of ASTM B117 salt spray test, furnish data on request.
11. Exterior doors: seasonal adjustments not required for temperatures from 120 degrees F to -30 degrees F, furnish checking fluid data on request.
12. Non-flaming fluid, will not fuel door or floor covering fires.
13. Pressure Relief Valves (PRV) not permitted.
14. Closer covers shall be metal with screw-on attachment.

2.06 OTHER HARDWARE

A. Automatic Flush Bolts: Low operating force design.

B. Overhead Stops: Non-plastic mechanisms and finished metal end caps. Field-changeable hold-open, friction and stop-only functions.

C. Kick Plates: Four beveled edges, .050 inches minimum thickness, height and width as scheduled. Sheet-metal screws of bronze or stainless steel to match other hardware.

D. Door Stops: Provide stops to protect walls, casework or other hardware.

1. Unless otherwise noted in Hardware Sets, provide floor type with appropriate fasteners. Where floor type cannot be used, provide wall type. If neither can be used, provide overhead type.

E. Seals: Finished to match adjacent frame color. Resilient seal material: polyurethane, polypropylene, nylon brush, silicone rubber or solid high-grade neoprene as scheduled. Do not furnish vinyl seal material. UL label applied to seals on rated doors. Substitute products: certify that the products equal or exceed specified material's thickness and durability.

1. Proposed substitutions: submit for approval.

3. Non-corroding fasteners at in-swinging exterior doors.

4. Fire-rated Doors, Resilient Seals: UL10C / NFPA 252 positive-pressure compliant. Coordinate with selected door manufacturers' and selected frame manufacturers' requirements. Where rigid housed resilient seals are scheduled in this section and the selected door manufacturer only requires an adhesive-mounted resilient seal, furnish rigid housed seal at minimum, or both the rigid housed seal plus the adhesive applied seal. Adhesive applied seals alone are deemed insufficient for this project where rigid housed seals are scheduled.

5. Fire-rated Doors, Intumescent Seals: Furnished by selected door manufacturer. Furnish fire-labeled opening assembly complete and in full compliance with UL10C /NFPA 252 positive-pressure. Where required, intumescent seals vary in requirement by door type and door manufacture -- careful coordination required.

G. Automatic door bottoms: low operating force units. Doors with automatic door bottoms plus head and jamb seals cannot require more than two pounds operating force to open when closer is disconnected.

H. Thresholds: As scheduled and per details. Comply with CBC Section 1133.B.2.4.1. Substitute products: certify that the products equal or exceed specified material's thickness. Proposed substitutions: submit for approval.

1. Saddle thresholds: 0.125 inches minimum thickness.

2. Exteriors: Seal perimeter to exclude water and vermin. Use sealant complying with requirements in Division 7 "Thermal and Moisture Protection". Minimum 0.25 inch diameter fasteners and lead expansion shield anchors, or Red-Head #SFS-1420 (or approved equivalent) Flat Head Sleeve Anchors (SS/FHSL).

3. Fire-rated openings, 90-minutes or less duration: use thresholds to interrupt floor covering material under the door where that material has a critical radiant flux value less than 0.22 watts per square centimeter, per NFPA 253. Use threshold unit as scheduled. If none scheduled, request direction from Architect.

 a) City of Los Angeles: regardless of critical radiant flux values of organic-material floor coverings, furnish metal, concrete, or stone thresholds at fire-rated openings.

4. Fire-rated openings, 3-hour duration: Thresholds, where scheduled, to extend full jamb depth.

5. Acoustic openings: Set units in full bed of Division-7-compliant, leave no air space between threshold and substrate.

6. Plastic plugs with wood or sheet metal screws are not an acceptable substitute for specified fastening methods.

7. Fasteners: Generally, exposed screws to be Phillips or Robertson drive. Pinned TORX drive at high security areas. Flat head sleeve anchors (FHSL) may be slotted drive. Sheet metal and wood screws: full-thread. Sleeve nuts: full length to prevent door compression.

I. Through-bolts: Do not use. Coordinate with wood doors; ensure provision of proper blocking to support wood screws for mounting panic hardware and door closers. Coordinate with metal doors and frames; ensure provision of proper reinforcement to support machine screws for mounting panic hardware and door closers.

1. Exception: surface-mounted overhead stops, holders, and friction stays.
2.07 FINISH
A. Generally: BHMA 630/626 Brushed Stainless Steel.
 1. Areas using BHMA 630: furnish push-plates, pulls and protection plates of BHMA Door closers: factory powder coated to match other hardware, unless otherwise noted.

2.08 KEYING REQUIREMENTS
A. Key System: Schlage keyway.
B. Keys
 1. New factory registered master key system.
 2. Construction keying: Demonstrate that construction key no longer operates.
 3. Furnish 10 construction keys.
C. Cylinder cores: furnish keyed at factory of lock manufacturer where permanent records are maintained. Locks and cylinders same manufacturer.

PART 3 - EXECUTION

3.01 ACCEPTABLE INSTALLERS
A. Can read and understand manufacturers' templates, suppliers' hardware schedule and printed installation instructions. Available to meet with manufacturers' representatives and related trades to discuss installation of hardware.

3.02 PREPARATION
A. Ensure that walls and frames are square and plumb before hardware installation. Make corrections before commencing hardware installation. Installation denotes acceptance of wall/frame condition.
B. Locate hardware per SDI-100 and applicable building, fire, life-safety, accessibility, and security codes.
 1. Notify Architect of code conflicts before ordering material.
 1. Locate latching hardware between 34 inches to 44 inches above the finished floor, per California Building Code, Section 1008.1.9.2 and 1133B.2.5.2.
 2. Locate panic hardware between 36 inches to 44 inches above the finished floor.
C. Overhead stops: before installing, determine proposed locations of furniture items, fixtures, and other items to be protected by the overhead stop's action.

3.03 INSTALLATION
A. Install hardware per manufacturer’s instructions and recommendations. Do not install surface-mounted items until finishes have been completed on substrate. Set units level, plumb and true to line and location. Adjust and reinforce attachment substrate for proper installation and operation. Remove and reinstall or replace work deemed defective by Architect.
1. Gaskets: install jamb-applied gaskets before closers, overhead stops, rim strikes, etc; fasten hardware over and through these seals. Install sweeps across bottoms of doors before astragals, cope sweeps around bottom pivots, trim astragals to tops of sweeps.

2. Use manufacturers’ fasteners furnished with hardware items, or submit Request for Substitution with Architect.

3. Replace fasteners damaged by power-driven tools.

B. Locate floor stops no more that 4 inches from walls and not within paths of travel. See paragraph 2.2 regarding hinge widths, door should be well clear of point of wall reveal. Point of door contact no closer to the hinge edge than half the door width. Where situation is questionable or difficult, contact Architect for direction.

C. Locate overhead stops for minimum 90 degrees at rest and for maximum allowable degree of swing.

D. Drill pilot holes for fasteners in wood doors and/or frames.

3.04 ADJUSTING

A. Adjust and check for proper operation and function. Replace units, which cannot be adjusted to operate freely and smoothly.

1. Hardware damaged by improper installation or adjustment methods: repair or replace to Owner’s satisfaction.

2. Adjust doors to fully latch with no more than 1 pound of pressure.

3. Adjust delayed-action closers on fire-rated doors to fully close from fully-opened position in no more than 10 seconds.

4. Adjust door closers per 1.9 this section.

B. Inspection of fire door assemblies and means-of-egress panic-hardware doors: Hire an independent third-party inspection service to prepare a report listing these doors, and include a statement that there are zero deficiencies with the fire-rated assemblies and the openings with panic hardware.

C. Fire-rated doors:

1. Wood doors: adjust to 0.125 inches clearance at heads, jambs, and meeting stiles.

2. Steel doors: adjust to 0.063 inches minimum to 0.188 inches maximum clearance at heads, jambs, and meeting stiles.

3. Adjust wood and steel doors to 0.75 inches maximum clearance (undercut) above threshold or finish floor material under door.

D. Final inspection: Installer to provide letter to Owner that upon completion installer has visited the Project and has accomplished the following:

1. Has re-adjusted hardware.

2. Has evaluated maintenance procedures and recommend changes or additions, and instructed Owner’s personnel.

3. Has identified items that have deteriorated or failed.

3.05 DEMONSTRATION

A. Demonstrate mechanical hardware and electrical, electronic and pneumatic hardware systems, including adjustment and maintenance procedures.
3.06 PROTECTION/CLEANING

A. Cover installed hardware, protect from paint, cleaning agents, weathering, carts/barrows, etc. Remove covering materials and clean hardware just prior to substantial completion.

B. Clean adjacent wall, frame and door surfaces soiled from installation / reinstallation process.

3.07 SCHEDULE OF FINISH HARDWARE

A. See door schedule in drawings for hardware set assignments.

SPExTRA # 464817-1

Hardware Group No. 01 - (EXTERIOR, OUT SWING, RIM PANIC LEVER, PUSH SIDE SURFACE MOUNT CLOSER, FLOOR STOP HOLDER)

For use on mark/door #(#s):

104A

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>CONTINUOUS HINGE</td>
<td>700CS</td>
<td>441 IVE</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>PANIC HARDWARE</td>
<td>98-NL-OP-110MD</td>
<td>626 VON</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626 SCH</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>626 SCH</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>LONG OFFSET PULL</td>
<td>9264 36" 20" STD</td>
<td>630 IVE</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER WITH HOLDR</td>
<td>4111 SHCUSH MC</td>
<td>689 LCN</td>
<td></td>
</tr>
</tbody>
</table>

SEALS AND THRESHOLD EXISTING

Hardware Group No. 02 - (EXTERIOR, OUT SWING, RIM PANIC LEVER, PUSH SIDE SURFACE MOUNT CLOSER WITH HOLDER)

For use on mark/door #(#s):

102A 102C 107B

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>CONTINUOUS HINGE</td>
<td>700CS</td>
<td>441 IVE</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>PANIC HARDWARE</td>
<td>98-L-17</td>
<td>626 VON</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626 SCH</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>626 SCH</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER WITH HOLDR</td>
<td>4111 SHCUSH MC</td>
<td>689 LCN</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>HEADER RAIN DRIP</td>
<td>142A</td>
<td>AA ZER</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK ZER</td>
<td></td>
</tr>
<tr>
<td>1 EA</td>
<td>RAIN DRIP DOOR BTM</td>
<td>8198AA</td>
<td>AA ZER</td>
<td></td>
</tr>
</tbody>
</table>
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

Hardware Group No. 03 - (EXTERIOR, OUT SWING, PANIC NIGHT LATCH, LONG PULL, CONCEALED DOOR CLOSER WITH HOLDER, ALUM DOOR)

For use on mark/door #s:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 EA</td>
<td>CONTINUOUS HINGE</td>
<td>700CS EPT</td>
<td>628</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>PANIC HARDWARE</td>
<td>AX-9849-EO-ADJ10-249-LBL</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>PANIC HARDWARE</td>
<td>AX-9849-NL-LBL</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>2 EA</td>
<td>LONG OFFSET PULL</td>
<td>9264 36" 20" STD</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2 EA</td>
<td>CONCEALED CLOSER WITH HOLDR</td>
<td>2033 HO WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>2 EA</td>
<td>DOOR CONTACT-FLUSH MT</td>
<td>7764</td>
<td>628</td>
<td>SCE</td>
</tr>
</tbody>
</table>

Hardware Group No. 04 - (EXTERIOR, OUT SWING, RIM PANIC NL, CARD READER, LONG PULL, PUSH SIDE SURFACE MOUNT CLOSER WITH HOLDER)

For use on mark/door #s:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>CONTINUOUS HINGE</td>
<td>700CS EPT</td>
<td>441</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>689</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC PANIC HARDWARE</td>
<td>QEL-PA-98-NL-OP-110MD</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>PRIMUS CORE</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>LONG OFFSET PULL</td>
<td>9264 36" 20" STD</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER WITH HOLDR</td>
<td>4111 SHCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>HEADER RAIN DRIP</td>
<td>142A</td>
<td>AA</td>
<td>ZER</td>
</tr>
</tbody>
</table>

(OMIT WHERE OVERHANG OCCURS)
Door Hardware

LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

07.17.19 08 71 00 - 13 Door Hardware

Hardware Group No. 05 - (INTERIOR, INSWING, PUBLIC TOILET, SPRING HINGE, FLOOR STOP, COAT HOOK)

For use on mark/door #(#s): 122

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HINGE</td>
<td>3CB1HW 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>SPRING HINGE</td>
<td>3SP1 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PRIVACY IND "OCCUPIED" PUBLIC</td>
<td>L9496P 17A L583-363</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR PEDESTAL STOP</td>
<td>FS441</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>1</td>
<td>COAT AND HAT HOOK</td>
<td>582</td>
<td>626</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 06 - (INTERIOR, INSWING, OFFICE,CLOSER, FLOOR STOP, RATED)

For use on mark/door #(#s): 115A

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>OFFICE/ENTRY LOCK</td>
<td>L9050T 17A L583-363</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FSIC CORE</td>
<td>23-030</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER</td>
<td>4011 MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
</tbody>
</table>

DOOR CONTACT LOCATED NEAR STRIKE EDGE - WIRED TO INTRUSION ALARM WALL MOUNTED CARD READER BY BUILDING INTEGRATION

07.17.19 08 71 00 - 13 Door Hardware
Hardware Group No. 07 - (INTERIOR, INSWING, OFFICE, FLOOR STOP)

For use on mark/door #(#s):
120A

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>OFFICE/ENTRY LOCK</td>
<td>L9050T 17A L583-363</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR PEDESTAL STOP/HOLDER</td>
<td>FS40</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP</td>
<td>WS406/407CCV</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>3</td>
<td>COAT AND HAT HOOK</td>
<td>582</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 08 - (INTERIOR, INSWING, CLASSROOM LOCK, CLOSER, FLOOR STOP, RATED)

For use on mark/door #(#s):
119

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM SECURITY</td>
<td>L9071T 17A L283-711</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER WITH TRACK ARM</td>
<td>4011T MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR PEDESTAL STOP</td>
<td>FS441</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 09 - (INTERIOR, INSWING, STOREROOM LOCK, CLOSER, FLOOR STOP)

For use on mark/door #(#s):
121

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER WITH TRACK ARM</td>
<td>4011T MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR PEDESTAL STOP</td>
<td>FS441</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

Hardware Group No. 10 - (INTERIOR, INSWING, STOREROOM LOCK, CLOSER, FLOOR STOP)
For use on mark/door #(#s):
110B

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>PRIMUS CORE</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER WITH TRACK ARM</td>
<td>4011T MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>FLOOR PEDESTAL STOP/HOLDER</td>
<td>FS40</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
<tr>
<td>3 EA</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 11 - (INTERIOR, INSWING, PUSH, 12" LONG PULL, FLOOR STOP, RESTROOM)
For use on mark/door #(#s):
112 113 116 117

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>PUSH PLATE</td>
<td>8200 8" X 16"</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>LONG DOOR PULL</td>
<td>9266 12" STD</td>
<td>630-316</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER WITH TRACK ARM</td>
<td>4011T MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS TKTX</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>FLOOR PEDESTAL STOP</td>
<td>FS441</td>
<td>626</td>
<td>IVE</td>
</tr>
</tbody>
</table>

LOCKING PUSH PULL

Hardware Group No. 12 - (INTERIOR, IN SWING, PUSH PULL BAR, DEADBOLT, CUSH CLOSER HOLDER, HMD)
For use on mark/door #(#s):
103B

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 EA</td>
<td>CONTINUOUS HINGE</td>
<td>700CS</td>
<td>441</td>
<td>IVE</td>
</tr>
<tr>
<td>1 EA</td>
<td>CYL X TURN DEAD LOCK</td>
<td>L460T L583-363</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>2 EA</td>
<td>MORTISE CYLINDER</td>
<td>20-061</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>2 EA</td>
<td>LONG OFFSET PULL</td>
<td>9264 36" 20" STD</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2 EA</td>
<td>SURFACE CLOSER WITH HOLDR</td>
<td>4111 DEL HCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
</tbody>
</table>

07.17.19 08 71 00 - 15 Door Hardware
Hardware Group No. 13 - (Interior, Out Swing, Office Lock, Closer, Public Toilet, Floor Stop)

For use on mark/door #(#s):

120B

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinge</td>
<td>3CB1 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>Office/Entry Lock</td>
<td>L9050T 17A L583-363</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>Surface Closer with stop arm</td>
<td>4111 DEL SCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>Floor Pedestal stop</td>
<td>FS441</td>
<td>626</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>Silencer</td>
<td>SR64</td>
<td></td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 14 - Classroom; Push Side Surface Mount Cush Closer;

For use on mark/door #(#s):

110A

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Hinge</td>
<td>3CB1HW 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>Classroom security</td>
<td>L9071T 17A L283-711</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>Primus Core</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>Surface closer with stop arm</td>
<td>4111 DEL SCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>Armor plate</td>
<td>8400 16" X 2" LDW B-CS TKTX</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>Floor Pedestal Stop/holder</td>
<td>FS40</td>
<td>626</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 15 - (Interior, Out Swing, Storeroom Lock, Closer with Cush Holdr)

For use on mark/door #(#s):

106C

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinge</td>
<td>3CB1 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>Storeroom lock</td>
<td>L9080T 17A</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>Qty</td>
<td>Description</td>
<td>Catalog Number</td>
<td>Finish</td>
<td>Mfr</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>SURFACE CLOSER WITH HOLDR</td>
<td>4111 SHCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 16 - (INT, INSWING, STOREROOM LOCK, PUSH SIDE SURFACE MOUNT SCUSH, CLOSER)

For use on mark/door #(s):

| 115B | 115C | 118 |

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>AUTO TOP FLUSH BOLT (HM DOOR)</td>
<td>FB31T</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>2</td>
<td>OH STOP & HOLDER</td>
<td>90H</td>
<td>630</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>ARMOR PLATE</td>
<td>8400 16" X 2" LDW B-CS TKTX</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>SECURITY ASTRAGAL</td>
<td>43STST FULL DOOR HEIGHT</td>
<td>STST</td>
<td>ZER</td>
</tr>
<tr>
<td>2</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 17 - (INTERIOR, OUT SWING, STOREROOM LOCK, OVERHEAD HOLDER, TALL)

For use on mark/door #(s):

104D	104E	104E~	104F	104G	104H
104I	104J	104K	105C	105D	105E
105F	108	109			

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HINGE</td>
<td>3CB1 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCK</td>
<td>L9080T 17A</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>PRIMUS CORE</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>OH STOP & HOLDER</td>
<td>90H</td>
<td>630</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>ARMOR PLATE</td>
<td>8400 16" X 2" LDW B-CS TKTX</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>3</td>
<td>SILENCER</td>
<td>SR64</td>
<td>GRY</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 18 - INTERIOR, OUTSWING, STAIRS, PANIC LEVER, PUSH SIDE SURFACE MOUNT CLOSER, FLOOR STOP)

For use on mark/door #(s):

| 104B | 104C | 105 | 106 | 114A |

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE</td>
<td>3CB1HW 4.5 X 4.5 NRP</td>
<td>652</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>FIRE EXIT HARDWARE</td>
<td>AX-98-L-F-17</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>1</td>
<td>PRIMUS CORE</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
</tbody>
</table>
Hardware Group No. 19 - (INTERIOR, OUT SWING, PANIC, LONG PULL, PUSH SIDE SURFACE MOUNT HCUSH CLOSER, KICK PLATE,)

For use on mark/door #s:
107A

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HINGE</td>
<td>3CB1HW 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>1</td>
<td>PANIC HARDWARE</td>
<td>PA-AX-9849-EO-LBL</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>PANIC HARDWARE</td>
<td>PA-AX-9849-NL-OP-110MD-LBL</td>
<td>626</td>
<td>VON</td>
</tr>
<tr>
<td>1</td>
<td>RIM CYLINDER</td>
<td>20-057 ICX</td>
<td>626</td>
<td>SCH</td>
</tr>
<tr>
<td>2</td>
<td>PRIMUS CORE</td>
<td>20-740-XP EV29 T</td>
<td>622</td>
<td>SCH</td>
</tr>
<tr>
<td>2</td>
<td>LONG OFFSET PULL</td>
<td>9264 24" STD</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER</td>
<td>4111 SHCUSH ST-1586</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS TKTX</td>
<td>630</td>
<td>IVE</td>
</tr>
</tbody>
</table>

Hardware Group No. 20 - (INTERIOR, PUSH PULL VERTICAL BAR BOTH SIDES, SURFACE MTD CLOSER WITH HOLD OPEN)

For use on mark/door #s:
102B

Each To Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE</td>
<td>3CB1HW 4.5 X 4.5</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>LONG PULLS (BTB MT)</td>
<td>PR 9266 36" P</td>
<td>630</td>
<td>IVE</td>
</tr>
<tr>
<td>2</td>
<td>SURFACE CLOSER</td>
<td>4111 DEL SHCUSH MC</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1</td>
<td>GASKETING (TEAR DROP)</td>
<td>188SBK PSA</td>
<td>BK</td>
<td>ZER</td>
</tr>
</tbody>
</table>

Miscellaneous Items

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Hand</th>
<th>Finish</th>
<th>Mfr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CONST. CONTROL KEYS</td>
<td>SCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CONTROL KEYS</td>
<td>SCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CONST. MASTER KEYS</td>
<td>SCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CHANGE KEYS</td>
<td>PER CYLINDER OR CORE</td>
<td>SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GRANDMASTER KEYS</td>
<td>PER GRANDMASTER GROUP</td>
<td>SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>EXTRA KEYBLANKS</td>
<td>PER KEYWAY</td>
<td>SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MASTER KEYS</td>
<td>PER MASTER GROUP</td>
<td>SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SPECIAL TOOLS</td>
<td>DRIVERS, WRENCHES, ETC</td>
<td>SCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BINDER</td>
<td>INST/MAINT/ADJUSTMENT INFO EA ITEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BINDER CATALOG CUTS AND HARDWARE SCHEDULE FOR JOB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LIST OF ORIGINAL FACTORY ORDER NUMBERS FOR WARRANTY VALIDATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Glass and glazing.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 06 20 00 - Finish Carpentry: Provision of exterior finish carpentry.
 2. Section 08 01 51.10 - Restoration of Steel Windows: For repair and retrofit of existing steel windows.
 4. Section 08 83 00 - Mirrors: Provision of sheet mirrors.

1.02 REFERENCES

A. ANSI - American National Standards Institute

B. ASTM - American Society for Testing and Materials

C. CBC - California Building Code, 2016 Edition

D. CPSC - Consumer Product Safety Commission

E. GANA - Glass Association of North America

F. IGCC - Insulating Glass Certification Council

G. SIGMA - Sealed Insulating Glass Manufacturers Association
 1. TM-3000 - Vertical Glazing Guidelines.

H. UL - Underwriters Laboratories Inc.
1.03 SYSTEM DESCRIPTION

A. Design Requirements
1. Provide glass and glazing that has been produced, fabricated, and installed to withstand movement without failure including loss or breakage of glass, failure of sealants or gaskets to remain watertight and airtight, deterioration of glass and glazing materials, and other defects in the work.
2. Glass Design: Glass thicknesses indicated on the Drawings are for detailing only. Confirm glass thicknesses by analyzing Project loads and in-service conditions. Provide glass lites for the various size openings in the thicknesses and strengths (annealed or heat-treated) to meet or exceed the following criteria:
 a. Minimum glass thickness, nominally, of lites in exterior walls is 0.23-inches.
 b. Minimum glass thicknesses of lites, whether composed of annealed or heat-treated glass, are selected so the worst-case probability of failure does not exceed the following: 8 lites per 1000 for lites set vertically or not over 15 degrees off vertical and under wind action. Determine minimum thickness of monolithic annealed glass according to ASTM E1300. For other than monolithic annealed glass, determine thickness per glass manufacturer’s standard method of analysis including applying adjustment factors to ASTM E1300 based on type of glass.
3. Normal thermal movement results from the following maximum change (range) in ambient and surface temperatures acting on glass framing members and glazing components. Base engineering calculation on materials’ actual surface temperatures due to both solar heat gain and nighttime sky heat loss.
 a. Temperature Change (Range): 120 degrees Fahrenheit ambient; 180 degrees Fahrenheit material surfaces.

4. Verify locations where safety glazing is required by CBC. Bring to the Architect’s attention locations not noted as such in the Drawings. Do not proceed until directed by the Architect.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each glass product and glazing material indicated.

B. Samples: Submit samples for verification purposes of 12 inch square samples of each type of glass indicated except for clear monolithic glass products, and 12 inch long samples of each color required for each type of sealant or gasket exposed to view. Install sealant or gasket sample between 2 strips of material representative in color of the adjoining framing system.

C. Quality Control Submittals
1. Test Reports
 a. Compatibility and adhesion test reports from sealant manufacturer indicating that glazing materials were tested for compatibility and adhesion with glazing sealants. Include sealant manufacturer’s interpretation of test results relative to sealant performance and recommendations for primers and substrate preparation needed for adhesion.
 b. Compatibility test report from manufacturer of insulating glass edge sealant indicating that glass edge sealants were tested for compatibility with other glazing materials including sealants, glazing tape, gaskets, setting blocks, and edge blocks.
 c. Product test reports for each type of glazing sealant and gasket indicated, evidencing compliance with requirements specified.
2. Certificates
 a. Product certificates signed by glazing materials manufacturers certifying that their products comply with specified requirements.
 b. Separate certifications are not required for glazing materials bearing manufacturer’s permanent labels designating type and thickness of glass, provided labels represent a quality control program of a recognized certification agency or independent testing agency acceptable to authorities having jurisdiction.

1.05 QUALITY ASSURANCE

A. Regulatory Requirements
 1. Glass and glazing shall meet requirements of CBC Chapter 24.
 2. Safety Requirements: Provide glass and glazing complying with ANSI Z97.1 and CBC Chapter 24 and testing requirements of CPSC 16 CFR Part 1201 for Category II materials.
 3. Fire Resistant Glazing Products: Products identical to those tested in accordance with ASTM E2074 for doors and ASTM E2010 for window assemblies; both labeled and listed by UL.
 4. Insulating Glass Certification Program: Provide insulation glass units permanently marked with appropriate label of IGCC.

B. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, except where more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 1. GANA Publication: “Glazing Manual”.

C. Single-Source Responsibility for Glass: Obtain glass from 1 source for each product indicated below:
 1. Primary glass of each type and class indicated, ASTM C1036.
 2. Heat-treated glass of each condition indicated, ASTM C1048.
 3. Insulating glass of each construction indicated.

D. Preconstruction Compatibility and Adhesion Testing: Submit to sealant manufacturers, samples of each glass, gasket, glazing accessory, and glass framing member that will contact or affect glazing sealants for compatibility and adhesion testing as indicated below.
 1. Use test methods standard with sealant manufacturer to determine if priming and other specific preparation techniques are required for rapid, optimum glazing sealants adhesion to glass and glazing channel substrates.
 2. Submit not less than 9 pieces of each type and finish of glass-framing members and each type, class, kind, condition, and form of glass (monolithic, laminated, insulating units) for adhesion testing, as well as one sample of each glazing accessory (gaskets, setting blocks, and spacers) for compatibility testing.
 3. Schedule sufficient time to test and analyze results to prevent delay in the Work.
 4. Investigate materials failing compatibility or adhesion tests and get sealant manufacturer’s written recommendations for corrective measures, including using special primers.
 5. Testing is not required when glazing sealant manufacturer can submit required preparation data that is acceptable to the Architect and is based on previous testing of current sealant products for adhesion to and compatibility with submitted glazing materials.
1.06 DELIVERY, STORAGE, AND HANDLING
 A. Protect glazing materials to comply with manufacturer’s directions and as needed to prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.07 PROJECT CONDITIONS
 A. Environmental Conditions: Do not proceed with glazing when ambient and substrate temperature conditions are outside the limits permitted by glazing materials manufacturer or when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1.08 WARRANTY
 A. General Warranty: Special warranties specified in this Article shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

 B. Manufacturer’s Special Warranty on Insulating Glass: Written warranty, made out to the City and signed by insulating-glass manufacturer agreeing to furnish replacements for insulating-glass units that deteriorate, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
 A. Acceptable Manufacturers: PPG Industries, Inc.; Guardian SunGuard; Cardinal Industries, or equal.

2.02 MATERIALS
 A. Glass Types
 1. Type 1 - Float Glass: ASTM C1036, Type I (transparent glass, flat), Class 1 (clear), Quality q3 (glazing select), 1/4-inch thick, unless otherwise noted.
 2. Type 2 - Float Glass: ASTM C1048, Kind FT (fully tempered), Type I (transparent glass, flat), Class 1 (clear), Quality q3 (glazing select), 1/4-inch thick, unless otherwise noted.
 3. Type 3 - Float Glass: Low-E, ASTM C1036, Type I (transparent glass, flat), Class 1 (clear), Quality q3 (glazing select), 1/4-inch thick, unless otherwise noted.
 a. Performance Characteristics
 1) Solar Heat Gain Coefficient (SHGC): 0.39.
 2) U-Value: 0.28.

 b. Product: As manufactured by Guardian SunGuard, “Clear Glass with SuperNeutral 68”, or equal.
 4. Type 4 - Float Glass: Low-E, ASTM C1048, Kind FT (fully tempered), Type I (transparent glass, flat), Class 1 (clear), Quality q3 (glazing select), 1/4-inch thick, unless otherwise noted.
 a. Performance Characteristics
 1) Solar Heat Gain Coefficient (SHGC): 0.39.
 2) U-Value: 0.28.

 b. Product: As manufactured by Guardian SunGuard, “Clear Glass with SuperNeutral 68”, or equal.
5. **Type 5 - Sealed Insulating Glass Unit at Exterior**: Preassembled unit composed of the following:
 a. **Outboard Lite**: Glass Type 4.
 b. **Air Space**: 1/2-inch.
 c. **Inboard Lite**: Glass Type 1.

6. **Type 6 - Sealed Insulating Glass Unit at Exterior**: Preassembled unit composed of the following:
 a. **Outboard Lite**: Glass Type 4.
 b. **Air Space**: 1/2-inch.
 c. **Inboard Lite**: Glass Type 2.

7. **Type 7 - Sealed Insulating Glass Unit at Exterior**: Preassembled unit composed of the following:
 a. **Outboard Lite**: Glass Type 4.
 1) **Spandrel Coating**: 100 percent white translucent frit on Surface #2, unless otherwise indicated.
 b. **Air Space**: 1/2-inch.
 c. **Inboard Lite**: Glass Type 1.

B. **Glazing Accessories**: Provide the following as required.
 1. **Setting Blocks, Spacers and Edge Blocks**: Neoprene, EPDM or silicone blocks as required for compatibility with glazing sealants, 80 to 90 Shore A durometer hardness.
 a. Spacers within air spaces shall be gray in color.
 3. **Glazing Tape**: Provide manufacturer’s standard solvent free butyl-polyisobutylene formulation with solids content of 100 percent; in extruded tape form; non-staining and non-migrating in contact with nonporous surfaces; packaged on rolls with release paper on 1 side; with or without continuous spacer rod as recommended by manufacturers of tape and glass for application indicated.

2.03 FABRICATION OF GLASS AND OTHER GLAZING PRODUCTS

A. Fabricate glass and other glazing products in sizes required to glaze openings indicated for the Project, with edge and face clearances, edge and surface conditions, and bite complying with recommendations of product manufacturer and referenced glazing standard as required to comply with system performance requirements.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine glass framing, with glazier present, for compliance with the following
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep system.
 3. Minimum required face or edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Do not proceed with glazing until unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings that are not firmly bonded to substrates.
3.03 GLAZING, GENERAL

A. Comply with combined recommendations of manufacturers of glass, sealants, gaskets, and other glazing materials, except where more stringent requirements are indicated, including those in referenced glazing publications.

B. Glazing channel dimensions as indicated on Drawings provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances. Adjust as required by Project conditions during installation.

C. Protect glass from edge damage during handling and installation as follows
 1. Use a rolling block in rotating glass units to prevent damage to glass corners. Do not impact glass with metal framing. Use suction cups to shift glass units within openings; do not raise or drift glass with a pry bar. Rotate glass lites with flares or bevels on bottom horizontal edges so edges are located at top of opening, unless otherwise indicated by manufacturer’s label.
 2. Remove damaged glass from Project site and legally dispose of off site. Damaged glass is glass with edge damage or other imperfections that, when installed, weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction sealant-substrate testing.

E. Install elastomeric setting blocks in sill rabbets, sized and located to comply with referenced glazing standard, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass sizes larger than 50 united inches (length plus height) as follows:
 1. Locate spacers inside, outside, and directly opposite each other. Install correct size and spacing to preserve required face clearances, except where gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

H. Provide edge blocking to comply with requirements of referenced glazing publications, unless otherwise required by glass manufacturer.

I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

3.04 TAPE GLAZING

A. Position tapes on fixed stops so that when compressed by glass their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously but not in one continuous length. Do not stretch tapes to make them fit opening.

C. Where framing joints are vertical, cover these joints by applying tapes to heads and sills first and then to jambs. Where framing joints are horizontal, cover these joints by applying tapes to jambs and then to heads and sills.
D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Do not remove release paper from tape until just before each lite is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.05 GASKET GLAZING (DRY)

A. Fabricate compression gaskets in lengths recommended by gasket manufacturer to fit openings exactly, with stretch allowance during installation.

B. Secure compression gaskets in place with joints located at corners to compress gaskets producing a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

C. Install gaskets so they protrude past face of glazing stops.

3.06 PROTECTION AND CLEANING

A. Protect exterior glass from breakage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels, and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations including weld splatter. If, despite such protection, contaminating substances do come into contact with glass, remove them immediately as recommended by glass manufacturer.

C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for build-up of dirt, scum, alkali deposits, or stains, and remove as recommended by glass manufacturer.

D. Remove and replace glass that is broken, chipped, cracked, abraded, or damaged in any way, including natural causes, accidents, and vandalism, during construction period.

E. Wash glass on both faces in each area of Project not more than 4 days prior to date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended by glass manufacturer.

END OF SECTION
This Page Intentionally Left Blank
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Glass mirrors.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 08 80 00 - Glazing: For glazing standards and requirements.

1.02 REFERENCES

A. AISI - American Iron and Steel Institute

B. ASTM - American Society for Testing and Materials

C. GANA - Glass Association of North America

1.03 SUBMITTALS

A. Samples: Submit samples, 12 inches square in size, of mirrored glass specified, including edge treatment on 2 adjoining edges of samples.

1.04 QUALITY ASSURANCE

A. Glazing Standards: Comply with recommendations of GANA, “Glazing Manual”, except where more stringent requirements are indicated. Refer to this publication for definitions of glass and glazing terms not otherwise defined in this Section or referenced standards.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Comply with manufacturer’s instructions for shipping, storing, and handling mirrored glass; avoid deterioration of silvering, damage to edges, and abrasion of glass surfaces and applied coatings. Store indoors, protected from moisture including condensation.

1.06 PROJECT CONDITIONS

A. Environmental Conditions: Do not proceed with mirrored glass installation until ambient conditions of temperature and humidity will be continuously maintained at values near those indicated for final occupancy.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Binswanger Mirror Products; Texas Mirror, Inc., or equal.

2.02 GLASS FOR MIRROR PRODUCTION

A. Tempered Glass: Tempered float glass manufactured by horizontal (roller hearth) process with roll wave distortion parallel with bottom edge of glass as installed, unless otherwise indicated, complying with ASTM C1048 for Kind FT (fully tempered), Condition A (uncoated surfaces), Type I (transparent, flat), Quality q3 (glazing select), and for class indicated below:

B. Mirror Sizes: After application of glass coating, cut mirrored glass to final sizes with nominal glass thickness of 0.23-inch (1/4-inch).
 1. Size as indicated on interior elevations.
 2. Provide maximum shipping size glass sheets, 6 feet wide by 7 feet high, unless otherwise indicated.

C. Mirror Edge Treatment
 1. Flat polished edge.
 2. Perform edge treatment and sealing in factory immediately after cutting to final sizes.

D. Film-Backed Safety Mirrors: Apply film backing with pressure-sensitive adhesive coating over mirror backing paint as recommended in writing by film-backing manufacturer to produce a surface free of bubbles, blisters, and other imperfections. Use adhesives and film backing compatible with mirror backing paint as certified by mirror manufacturer.

2.03 MISCELLANEOUS MATERIALS

A. Custom “J” Channel: Stainless steel, AISI Type 302/304, with polished No. 4 finish, 22 gauge minimum thickness, unless otherwise indicated.

B. Setting Blocks: Neoprene, 70 - 90 Shore A hardness.

C. Edge Sealer: A coating that has proven to be compatible with glass coating and approved by mirrored glass manufacturer for use in protecting against silver deterioration at mirror edges.

D. Mirror Mastic: An adhesive setting compound, produced specifically for setting mirrors by spot application, certified as compatible with glass coating by organic protective coating manufacturer and approved by mirror manufacturer.

E. Mirror Hardware: Extruded aluminum mirror hardware, of size and profile indicated, in manufacturer’s standard clear polished finish.

F. Fasteners: Fabricated of same basic metal and alloy as fastened metal and matching it in finished color and texture.

G. Anchors and Inserts: Provide devices as required for installation of mirror hardware.
PART 3 - EXECUTION

3.01 GLAZING

A. General: Install mirrors to comply with printed directions of mirror manufacturer. Mount mirrors in place to avoid distorting reflected images and provide space for air circulation between back of mirror and face of mounting surface.

B. Mastic Spot Installation System
 1. Identify and examine surfaces over which mirror is to be mounted. Comply with manufacturer’s printed installation directions for preparation of mounting surfaces including coating surfaces with mastic manufacturer’s special bond coating where applicable.
 2. Apply barrier coat to mirror backing where approved by manufacturers of mirror and backing material.
 3. Apply mastic in spots to comply with mastic manufacturer’s printed directions for coverage and to allow air circulation between back of mirror and face of mounting surface.
 4. After mastic is applied, align mirror and press into place while maintaining a minimum air space of 3/16-inch between back of mirror and mounting surface.
 5. Install permanent means of support at bottom and top edges with bottom support designed to withstand mirror weight and top support to prevent mirror from coming away from wall along top edges.
 a. Attach mirror hardware securely to mounting surfaces with mechanical fasteners installed with anchors or inserts as applicable.
 b. For continuous bottom supports, provide 1/8-inch by 4 inch setting blocks at quarter points. For channels or other continuous supports in which water could be trapped, provide two 1/4-inch diameter weeps drilled between setting blocks.
 c. Provide clips along top of mirror.

3.02 PROTECTION AND CLEANING

A. Protect mirrored glass from breakage and contaminating substances resulting from construction operations.

B. Do not permit edges of mirror to be exposed to standing water.

C. Maintain environmental conditions that will prevent mirror from being exposed to moisture from condensation or other sources for continuous periods of time.

D. Wash mirrors not more than 4 days prior to date scheduled for inspections intended to establish date for Substantial Completion. Wash glass by methods recommended by mirrored glass manufacturer. Use water or glass cleaners free from substances capable of damaging mirror edges or glass coating.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Louvers and vents.

B. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 92 00 - Joint Sealants: Provision of sealers and caulks.
 2. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. AMCA - Air Movement and Control Association
 1. 500 - Test Methods for Louvers, Dampers.

B. ASTM - American Society for Testing and Materials
 2. B221 - Standard Specification for Aluminum-Alloy Extruded Bars, Rods, Wire,
 Shapes and Tubes.
 Transmission Loss of Building Partitions and Elements.
 4. E413 - Classification for Rating Sound Insulation.

C. AWS - American Welding Society
 1. D1.2 - Structural Welding Code - Aluminum.

D. CBC - California Building Code, 2016 Edition

E. NAAMM - National Association of Architectural Metal Manufacturers
 1. MFM - Metal Finishes Manual.

F. SMACNA - Sheet Metal and Air Conditioning Contractors National Association, Inc.

G. SSPC - The Society for Protective Coatings

1.03 DEFINITIONS

A. Louver Terminology: Refer to AMCA 501 for definitions of terms for metal louvers not
 otherwise defined in this Section or in referenced standards.
1.04 SYSTEM DESCRIPTION

A. Performance Requirements

1. Structural Performance: Engineer, fabricate and install exterior metal wall louvers to withstand the effects of loads and stresses from wind and normal thermal movement without evidencing permanent deformation of louver components including blades, frames, and supports; noise or metal fatigue caused by louver blade rattle or flutter; or permanent damage to fasteners and anchors.

2. Wind Load: Design and size members to withstand dead loads and live loads caused by pressure and suction of wind for design pressure in pounds per square foot in accordance with CBC and the following.
 a. Exposure: B.
 b. Wind Speed in Miles Per Hour: 100.

3. Normal thermal movement is defined as that resulting from the following maximum change (range) in ambient temperature. Base design calculations on actual surface temperatures of metals due to both solar heat gain and nighttime sky heat loss.
 a. Temperature Change (Range): 100 degrees Fahrenheit.

4. Air-Performance, Water-Penetration, and Air-Leakage Ratings: Provide louvers complying with performance requirements indicated as demonstrated by testing manufacturer’s stock units of height and width indicated. Test units according to AMCA 500.
 a. Perform testing on unpainted, cleaned, degreased units.
 b. Perform water-penetration testing on louvers without screens.
 c. Equivalent Air-Performance Ratings: Louvers having less free area than that specified or having a lower free area velocity at the static pressure loss specified may be considered for the Work provided their total air performance is equivalent to that specified. The burden of proof of equivalency is on the Contractor. For louvers to be considered equivalent, the product of their free area, for the size specified, and their free area velocity at the static pressure loss specified must be at least equal to the product of the specified free area and velocity. Also, their free area velocity at the static pressure loss specified must not result in water penetration of more than 0.01 ounce per square foot of free area, and they must meet all other requirements.

5. Testing: Engage a qualified independent testing agency to perform specified testing for air infiltration and water infiltration. Issue written reports recording testing activities and repairs performed to the City, Architect, and General Contractor prior to placing any finishes. General Contractor shall proceed with finishes only after written direction from the City and Architect that test results have been received and reviewed.

1.05 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each type of product specified.

B. Quality Control Submittals

1. Test Reports: Submit product test reports evidencing compliance of units with performance requirements indicated.
 a. For acoustical smoke vents, submit independent laboratory acoustical test report indicating STC rating in accordance with ASTM E90 and ASTM E413.

2. Certificates: Submit product certificates signed by louver manufacturers certifying that their products comply with the specified requirements and are licensed to bear the AMCA seal based on tests made according to AMCA 500 and complying with the AMCA Certified Ratings Program.
1.06 QUALITY ASSURANCE

A. Welding Standards: Comply with applicable provisions of AWS D1.2.
 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

B. Engineer Qualifications: Arizona licensed professional engineer and experienced in providing engineering services of the kind indicated that have resulted in the installation of louvers similar to this Project in material, design and extent and that have a record of successful in-service performance.

1.07 PROJECT CONDITIONS

A. Field Measurements: Check actual louver openings by accurate field measurements before fabrication, and show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 1. Where field measurements cannot be made without delaying the Work, guarantee opening dimensions and proceed with fabricating louvers without field measurements. Coordinate construction to ensure that actual opening dimensions correspond to guaranteed dimensions.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Airolite Co.; Construction Specialties, Inc., or equal.

2.02 MATERIALS

A. Aluminum
 1. Extrusions: ASTM B221, Alloy 6063-T5.
 2. Sheet: ASTM B209, Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer to produce required finish.

B. Fasteners: Of same basic metal and alloy as fastened metal or 300 series stainless steel, unless otherwise indicated. Do not use metals that are corrosive or incompatible with joined materials.
 1. Use types and sizes to suit unit installation conditions.
 2. Use Phillips flat-head screws for exposed fasteners, unless otherwise indicated.

C. Bituminous Paint: Cold-applied asphalt mastic complying with SSPC Paint 12 except containing no asbestos fibers.

D. Flexible Flashing: As manufactured by Grace Construction Products, “Vycor V40”, or equal.

2.03 FABRICATION

A. General: Fabricate louvers to comply with requirements indicated for design, dimensions, materials, joinery, and performance.
B. Assemble louvers in shop to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

C. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

D. Maintain equal louver blade spacing to produce uniform appearance.

E. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances of louvers, adjoining construction and perimeter sealant joints.

F. Include supports, anchorages and accessories required for complete assembly.

G. Provide vertical mullions of type and at spacings indicated but not more than recommended by manufacturer, or 72 inches on center, whichever is less. At horizontal joints between louver units, provide horizontal mullions except where continuous vertical assemblies are indicated.

H. Provide sill extensions and loose sills made of same material as louvers where indicated or required for drainage to exterior and to prevent water penetrating to interior.

I. Join frame members to one another and to fixed louver blades as follows, unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary:
 1. With fillet welds, concealed from view.
 2. With fillet welds, concealed from view; or mechanical fasteners; or a combination of these methods; as standard with louver manufacturer.

2.04 LOUVERS

A. Horizontal, Drainable, Fixed-Blade Louvers: Frames and louver blades, designed to collect and drain water to exterior at sill by means of gutters in front edges of blades and channels in jambs and mullions, complying with the following requirements:
 1. Louver Depth: 1 inch, unless otherwise indicated.
 2. Louver Size: 6 inches by 14 inches. Unless otherwise indicated.
 3. Frame Thickness: 0.125-inch, unless otherwise indicated.
 4. Blade Thickness: 0.125-inch, unless otherwise indicated.
 5. Blade Angle: 45 degrees, unless otherwise indicated.
 6. Rain water scoop at attic side.

2.05 FINISHES, GENERAL

A. Comply with NAAMM MFM for recommendations relative to applying and designating finishes.

B. Finish louvers after assembly.

C. Aluminum: Finish painting, as specified in Section 09 90 00.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Locate and place louver units plumb, level, and at indicated alignment with adjacent work. Install weathered lapped into building paper coursing at wall installations with flexible flashing comparable to window installations as detailed in Construction Documents.

B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

C. Form closely fitted joints with exposed connections accurately located and secured.

D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

E. Repair finishes damaged by cutting, welding, soldering and grinding operations required for fitting and jointing. Restore finishes so there is no evidence of corrective work. Return items that cannot be refinished in the field to the shop, make required alterations and refinish entire unit, or provide new units.

F. Protect nonferrous metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry or dissimilar metals.

G. Install concealed gaskets, flashings, joint fillers and insulation, as louver installation progresses, where required to make louver joints weathertight. Comply with Section 07 92 00 for sealants applied during installation of louver.

H. Acoustical Smoke Vents
 1. Install in conformance with the manufacturer’s recommendations.
 2. Install frame and cover assembly plumb and square.

3.02 ADJUSTING AND PROTECTION

A. Protect louvers from damage of any kind during construction period including use of temporary protective coverings where needed and approved by louver manufacturer. Remove protective covering at time of Substantial Completion.

B. Restore louvers damaged during installation and construction period, so that no evidence remains of correction work. If results of restoration are unsuccessful, as judged by the Architect, remove damaged units and replace with new units.
 1. Clean and touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

3.03 CLEANING

A. Periodically clean exposed surfaces of louvers that are not protected by temporary covering to remove fingerprints and soil during construction period. Do not let soil accumulate until final cleaning.

B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Rinse surfaces thoroughly and dry.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
1. Gypsum board screw attached to metal or wood framing and furring members, joint treatment, and accessories.
2. Installation of sound deadening insulation in walls and ceilings and including acoustical sealant, tape, and the like for work of this Section.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 07 21 01 - Building Insulation: Provision of building insulation.
2. Section 07 54 00 - Thermoplastic Membrane Roofing: Provision of thermoplastic membrane roofing system.
3. Section 07 84 00 - Firestopping: Provision of firestopping at rated walls and partitions.
4. Section 07 92 00 - Joint Sealants: Provision of caulking and sealants.
5. Section 08 31 13 - Access Doors and Frames: Provision of access doors and frames.
6. Section 09 30 00 - Tiling: Provision of ceramic tile.
7. Section 09 80 00 - Acoustic Treatment: Provision of acoustic wall panels.
8. Section 09 90 00 - Painting and Coating: For finish painting.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials
4. C1002 - Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.

B. CBC - California Building Code, 2016 Edition

C. CFR - Code of Federal Regulations
D. EPA - Environmental Protection Agency

E. GA - Gypsum Association
 1. 201 - Using Gypsum Board for Walls and Ceilings.
 2. 214 - Recommended Levels of Gypsum Board Finish.
 4. 253 - Application of Gypsum Sheathing.

F. UL - Underwriters Laboratories Inc.

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s product data. Include the following
 1. Fire Resistance Data: Include required fire test results for gypsum board systems on partitions and ceilings.
 2. Sound Transmission Data: Include certified evidence that installed gypsum board systems and materials meet required STC levels.

1.04 QUALITY ASSURANCE

A. Fire Test Response Characteristics: Where fire resistance rated gypsum board assemblies are indicated, provide gypsum board assemblies that comply with the following requirements:
 1. Fire Resistance Ratings: As indicated by GA File Numbers in GA 600 or design designations in UL FRD or in the listing of another testing and inspecting agency acceptable to authorities having jurisdiction.
 2. Gypsum board assemblies indicated are identical to assemblies tested for fire resistance according to ASTM E119 by an independent testing and inspecting agency acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 MATERIALS

A. Gypsum Board Types: Where indicated on the Drawings.
 1. Type 1: Fire rated board for fire resistance rated assemblies, ASTM C1396, Type X, tapered edges, 48 inches wide, 5/8-inch thick.
 2. Type 2: Regular gypsum board, ASTM C1396, tapered edges, 48 inches wide, 1/2-inch thick.
 3. Type 3: Fire rated, water- and mold-resistant fiberglass mat-faced board, ASTM C1396, Type X, tapered edges, 48 inches wide, 5/8-inch thick.
 4. Type 4: Glass-mat, water-resistant gypsum backing board, ASTM C1178, Type X, 5/8-inch thick, as manufactured by Georgia-Pacific Corp., “Dens-Shield Tile Backer”; United States Gypsum Co., or equal.
B. Exterior Sheathing: Silicone treated gypsum core, surfaced with inorganic glass mats and gold color alkali resistant surface coating, Type X, 5/8-inch thick, as manufactured by Georgia-Pacific Corp., “DensGlass Gold Fireguard”; United States Gypsum Co., or equal.

C. Screws: ASTM C1002, machine thread for gypsum board to metal attachments.

D. Nails: ASTM C514, wood thread for metal or gypsum board attachment to wood.

E. Insulation: As specified in Section 07 21 01.

F. Adhesives: Use adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. Accessories
 3. Hat Channels: Hat-shaped, corrosion-resistant rigid furring channels, ASTM C645, 7/8-inch deep unless otherwise indicated, base metal thickness as required, as manufactured by Dietrich Metal Framing, Inc., “FC-Series”; Fry Reglet Corporation, or equal.
 4. “J” Molding: Extruded aluminum, alloy 6063 T5, depth as indicated, chemical conversion coating, clear anodized, as manufactured by Fry Reglet Corporation, “Fry Reglet “J” Molding”; Dietrich Metal Framing, Inc., or equal.

H. Joint Treatment Materials: Products of one manufacturer conforming to ASTM C475, ASTM C840, and recommendations of manufacturer of both gypsum board and joint treatment materials for application indicated. Conform to GA 201 and GA 216 for reinforcing tape, joint compound, and water.
 1. Joint Tape
 a. Cross-laminated, tapered edge, reinforced paper, or fiber glass mesh tape as recommended by setting type joint compound manufacturer.
 b. For silicone treated gypsum backer board, use 2 inch wide, 10-inch by 10-inch woven glass mesh tape.
 2. Setting Type Joint Compound: Factory prepackaged, job mixed, chemical hardening powder products formulated for uses indicated or factory premixed product. Use hot type at exterior gypsum soffits.

I. Acoustical Sealant: As specified in Section 07 92 00.

2.03 FINISHES

A. Levels of Gypsum Board Finish as Defined by GA 214. Levels are only examples and do not constitute a schedule of finish. See Drawings for levels of finish.
 1. Level 0: No taping, finishing, or accessories required.
 2. Level 1: All joints and interior angles shall have tape set in joint compound. Surface shall be free of excess joint compound. Tool marks and ridges are acceptable.
 3. Level 2: All joints and interior angles shall have tape embedded in joint compound and wiped with a joint knife leaving a thin coating of joint compound over all joints and interior angles. Fastener heads and accessories shall be covered with a coat of joint compound. Surface shall be free of excess joint compound. Tool marks and ridges are acceptable. Joint compound applied over the body of the tape at the time of tape
embedment shall be considered a separate coat of joint compound and shall satisfy
the conditions of this level.

4. Level 3: All joints and interior angles shall have tape embedded in joint compound
and one additional coat of joint compound applied over all joints and interior angles.
Fastener heads and accessories shall be covered with two separate coats of joint
compound. All joint compound shall be smooth and free of tool marks and ridges.
Note: It is recommended that the prepared surface be coated with a drywall primer
prior to the application of final finishes.

5. Level 4: All joints and interior angles shall have tape embedded in joint compound
and two separate coats of joint compound applied over all flat joints and one separate
coat of joint compound applied over interior angles. Fastener heads and accessories
shall be covered with three separate coats of joint compound. All joint compound
shall be smooth and free of tool marks and ridges. Note: It is recommended that the
prepared surface be coated with a drywall primer prior to the application of final
finishes.

6. Level 5: All joints and interior angles shall have tape embedded in joint compound
and two separate coats of joint compound applied over all flat joints and one separate
coat of joint compound applied over interior angles. Fastener heads and accessories
shall be covered with three separate coats of joint compound. A thin skim coat of
joint compound trowel applied, or a material manufactured especially for this purpose
and applied in accordance with manufacturer’s recommendations, shall be applied to
the entire surface. The surface shall be smooth and free of tool marks and ridges.
Note: It is recommended that the prepared surface be coated with a drywall primer
prior to the application of finish paint.

B. Typical Finish: Match existing or, in rooms and areas without existing finishes, provide
Level 4 finish.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Gypsum Board

1. Install and finish gypsum board to comply with ASTM C840 or GA 216.
 a. Single Layer: Install in accordance with ASTM C840, except as amended or
 required by specific fire resistive or sound isolation system detailed. In that
 instance, application shall conform to requirements of the manufacturer’s tests
 as reviewed and accepted in the submittal.
 b. Double Layer: Conform to applicable portions of ASTM C840, System
 Classification VIII for installations applied with screws. Conform to required fire
 resistance standards.

2. Apply in horizontal direction with ends and edges falling on supports. Gypsum board
 shall be of maximum length possible to reach full wall or ceiling lengths with minimal
 number of joints.

3. Position boards so that like edges abut, tapered edges against tapered edges and
 field cut ends against field cut ends. Do not place tapered edges against cut edges or
 ends. Stagger vertical joints over different studs on opposite sides of partitions.

4. Start installation of panels at exterior wall to position butt joints as far away from
 exterior wall as possible.

B. Fire Resistant Assemblies: Wherever fire rated gypsum board construction is indicated,
provide materials and installation methods, including types and spacing of fasteners, in
accordance with CBC, GA Manual, or listed assembly indicated. Apply firestopping at top of
wall and at penetrations through fire resistant assembly in accordance with Section 07 84 00.
C. Sound Retardant Installations: Follow manufacturer’s directions and specifications for conditions of installation. Install where indicated in conformance with current Project acoustic report. Install from floor surface to bottom side of next floor surface.

1. Sound-Rated Edge Condition: Stagger (i.e., ship-lap) gypsum board layers at vertical intersections. Provide a 1/4-inch nominal gap around the gypsum board face layer at floor and ceiling intersections. Fill the 1/4-inch gap with acoustical sealant to form an airtight seal.

2. Wrap with insulation and Lowry Pads and seal electrical or other outlets in sound isolating partitions.

3. Install sealant to completely fill void between gypsum board edges and adjacent surface.

D. Gypsum Sheathing

1. Comply with GA 253 and manufacturer’s written instructions.

2. Cut boards at penetrations, edges, and other obstructions of work; fit tightly against abutting construction, unless otherwise indicated.

3. Install boards with a 3/8-inch setback where non-load-bearing construction abuts structural elements.

4. Coordinate sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed exterior wall assembly.

5. Apply fasteners so screw heads bear tightly against face of sheathing boards but do not cut into facing.

6. Do not bridge building expansion joints with sheathing; cut and space edges to match spacing of structural support elements.

7. Horizontal Installation: Install sheathing with V-grooved edge down and tongue edge up. Interlock tongue with groove to bring long edges in contact with edges of adjacent boards without forcing. Abut ends of boards over centers of stud flanges, and stagger end joints of adjacent boards not less than one stud spacing. Screw-attach boards at perimeter and within field of board to each steel stud.
 a. Space fasteners approximately 8 inches on center and set back a minimum of 3/8-inch from edges and ends of boards.

8. Vertical Installation: Install board vertical edges centered over flanges of steel studs. Abut ends and edges of each board with those of adjacent boards. Screw-attach boards at perimeter and within field of board to each steel stud.
 a. Space fasteners approximately 8 inches on center and set back a minimum of 3/8-inch from edges and ends of boards.

E. Penetrations Through Sound-Rated Construction: Cut-outs shall be regular and not fracture core or tear covering of gypsum board and meet the following requirements:

1. Minimize penetrations of insulated wall and ceiling constructions. Penetrate only where necessary and fully seal airtight at the perimeter using acoustical sealant.

2. Where ducts and piping greater than 3 inches diameter penetrate insulated wall or ceiling construction, provide a clearance of 1 inch plus or minus 1/4-inch at the perimeter of the penetration.

3. Where conduit piping 3 inches diameter and less (including mechanical, hydraulic, plumbing, etc.) pass through insulated wall or ceiling construction, provide a clearance of 1/4-inch plus or minus 1/8-inch between the conduit or piping and the structure, unless otherwise indicated.

4. After the ductwork, conduit, or piping has been installed, repair the gypsum board perimeter clearance to the specified tolerance as required. Where the clearance exceeds 3/4-inch, provide a sheet metal sleeve within the partition packed with safining insulation batts and caulk both sides airtight with an acoustical sealant. Where the perimeter clearance exceeds 3/8-inch, use a flexible backing rod to caulk against.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

5. Where penetration clearances are 3/8-inch or less, caulk airtight with acoustical sealant at gypsum board.
6. All gypsum board penetrations (including those resulting from wiring, cables, and electrical junction boxes) are to be sealed airtight with acoustical sealant.
7. The back and sides of junction boxes in sound rated construction shall be sealed airtight with sheet caulking. Caulk perimeter face at gypsum board with acoustical sealant.
8. Recessed panel boards, equipment, boxes, etc., with penetration area greater than 25 square inches at sound rated partitions shall be fully enclosed and sealed with 5/8-inch thick gypsum board or 2 psf sheet lead.
9. Seal multiple conduit penetrations airtight with expanding fire foam sealant.
10. Seal other sound rated conditions with spray-applied (40pcf) cementitious sealant, as manufactured by Grace Construction Products, "Monokote Z-146", or equal.

F. Wet Locations
1. At Walls and Ceilings: Conform to ASTM C840, System Classification X.
2. Treat cut edges and holes in water resistant gypsum board with sealant.

G. Fastenings: Attach gypsum board to framing with screws, lengths and sizes as recommended by manufacturer and in accordance with CBC.

H. Accessories
1. Install corner beads at vertical and horizontal external corners; tape inside corners.
2. Install casing beads whenever edge of gypsum board would otherwise be exposed or semi-exposed, or where abutting dissimilar materials.
3. After accessories are installed, correct surface damage and defects.
4. Install trims and expansion joints where required.
5. Resilient Channel Attachment: Screw attach resilient channel through foot on 1 side of channel only to wood joists. Screw attach gypsum board through channel face only. At resilient channel assemblies, screw attached gypsum board shall not be in contact with joists, studs, or any rigid fastening.

I. Allowable Tolerances
1. Offset Between Planes of Board Faces: 1/16-inch.
2. Plane, Level, Warp and Bow: 1/8-inch in 8 feet.
3. Shim panels as necessary to comply with tolerances.

3.02 FINISHING OF GYPSUM BOARD

A. Apply joint treatment at gypsum board joints; flanges of corner bead, edge trim and penetrations, fastener heads and surface defects in accordance with ASTM C840 or GA 216. Number of coats of treatment shall be as specified above.

B. Finish Painting: As specified in Section 09 90 00.

END OF SECTION
SECTION 09 30 00
TILING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Interior porcelain ceramic floor and glazed ceramic wall tile.
 2. Bond coats, installation beds, grout materials, and accessories.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 92 00 - Joint Sealants: Provision of sealants for expansion, contraction, control, and isolation joints in tile surfaces.
 2. Section 09 29 00 - Gypsum Board: Provision of tile backer board.

1.02 REFERENCES

A. ANSI - American National Standards Institute
 1. A108.5 - Installation of Ceramic Tile with Dry-Set Portland Cement Mortar or Latex Portland Cement Mortar.
 4. A108.11 - Interior Installation of Cementitious Backer Units.
 5. A108.17 - Installation of Crack Isolation Membranes for Thin-Set Ceramic Tile and Dimension Stone.
 7. A118.4 - Specifications for Latex Portland Cement Mortar.
 8. A118.12 - Crack Isolation Membranes for Thin-Set Ceramic Tile and Dimension Stone Installation.

B. CTIOA - Ceramic Tile Institute of America

C. NFSI - National Floor Safety Institute

D. TCNA - Tile Council of North America

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each type of product specified, including installation instructions for manufactured setting and grouting products.

B. Shop Drawings: Indicate widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
C. Samples: Submit samples for initial selection purposes in form of manufacturer’s color charts consisting of actual tiles or sections of tile showing full range of colors, textures, and patterns available for each type and composition of tile indicated. Include samples of grout and accessories involving color selection.
 1. Once colors are selected, submit each type, size, and color of tile and grout selected, mounted and grouted on plywood not less than 16 inches square. Submit sets showing full range of variations expected.

D. Testing Results: Submit laboratory or field tests for wet and dry slip resistance specified prior to installation.

E. Maintenance Data: Submit list of tile manufacturer’s recommended cleaning products and procedures.

1.04 QUALITY ASSURANCE

A. Single Source: Within any given tile setting system, use the products of a single manufacturer to ensure compatibility and single source responsibility.

B. Slip Resistance: Prior to installation of tile, provide testing of tile for coefficient of friction in accordance with ANSI/NFSI B101.1 or other method endorsed by the CTIOA for new flooring.

C. Wall Anchorage: Coordinate with other Sections to ensure that anchorage for toilet accessories and other wall mounted items are installed prior to installation of tile.

1.05 MAINTENANCE

A. Extra Materials: Deliver extra materials to the City. Furnish extra materials that match products installed as described below, packaged with protective covering for storage and identified with labels clearly describing contents.

B. Tile and Trim Units: Furnish quantity of full size units equal to 3 percent of amount installed, for each type, composition, color, pattern, and size.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers
 1. Ceramic Tile: Daltile, or equal.
 2. Tile Setting and Grouting Materials: Mapei Corporation; Custom Building Products; Daltile Corp.; Laticrete International, Inc., or equal.

2.02 MATERIALS

A. Unpolished Floor Tile
 1. Type: Mosaic.
 2. Size: 1 inch by 1 inch.
 3. Color: As selected by the Architect from manufacturer’s price groups 1 and 2.
 5. Product: As manufactured by Daltile, “Keystones”, or equal.
B. Polished Wall Tile
 1. Type: Glazed ceramic.
 2. Size: 4 inches by 16 inches.
 4. Trim: Provide bullnose at top of wainscot and corners.
 5. Installation: Stacked.

C. Waterproofing: Thin, load-bearing waterproofing/crack isolation membrane; single component, self-curing liquid rubber polymer; complies with ANSI A118.12.

D. Setting Materials

E. Grouting Materials
 2. Colors: As selected by the Architect from manufacturer’s full range of colors.

F. Accessories
 1. Sealant: As provided by the grout manufacturer; match color of grout in adjacent joints; provide sanded or non-sanded type as required to match type of grout.
 2. Metal Edge Protection, Transition Strips, and Corner Guards: Stainless steel unless otherwise specified; height or profile as required by tile installation; trim to closely match tile thickness; provide edge protection at all exposed edges, tops, side, and outside corners.
 a. Tile to Floor Covering of Equal Height: As manufactured by Schlüter Systems, “Schlüter-SCHIENE”, or equal.
 b. Tile to Floor Covering of Lower Height: As manufactured by Schlüter Systems, “Schlüter-RENO-U”, or equal.
 c. Vertical Corners: Tile bullnose.
 d. Transition at Top of Wainscot: Tile bullnose.
 3. Water: Clean and potable.
 4. Pre-Grout Treatment for Interior Floor Tile: Temporary, non-sealer coating applied before grouting to facilitate grout cleanup and removal.
 a. Product: As manufactured by Aldon Corporation, “Grout Easy”, or equal.
 5. Cleaners and Sealers for Interior Tile: As recommended by the tile manufacturer.

2.03 MIXING MORTAR AND GROUT

A. Mix mortar and grout so as to comply with requirements of referenced standards and manufacturer’s instructions in order to produce mortar and grout of uniform quality with optimum performance characteristics for application indicated.

B. Prepare and proportion premixed setting beds and grout materials in accordance with manufacturer’s recommendations.
PART 3 - EXECUTION

3.01 PREPARATION

A. Blending: For tile exhibiting color variations within the ranges selected during sample submittals, verify that tile has been blended in factory and packaged accordingly so that tile units taken from one package show the same range in colors as those taken from other packages and match approved samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.02 INSTALLATION, GENERAL

A. ANSI Tile Installation Standard: Comply with parts of ANSI 108 series of tile installation standards included under “American National Standard Specifications for the Installation of Ceramic Tile” that apply to type of setting and grouting materials and methods indicated.

C. Extend tile work into recesses and under or behind equipment and fixtures to form a complete covering without interruptions except as otherwise shown. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.

D. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so that plates, collars, or covers overlap tile.

E. Jointing Pattern: Lay tile in pattern as shown. Align joints when adjoining tiles on floor, base, walls, and trim are same size. Lay out tile work and center tile fields in both directions in each space or on each wall area. Adjust to minimize tile cutting. Provide uniform joint widths unless otherwise shown.
 1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so that extent of each sheet is not apparent in finished work.

F. Expansion Joints: Locate expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated during installation of setting materials, mortar beds, and tile. Do not saw cut joints after installation of tiles.
 1. Locate joints in tile surfaces directly above joints in concrete substrates as approved during shop drawing review the Architect and the City.

G. Grout tile to comply with the requirements of the following installation standards:
 2. Seal grout joints at time of completion.

3.03 FLOOR INSTALLATION

A. Installation of Ceramic Tile Over Cementitious Bond Coat Over Optional Membrane Over Epoxy Grout Over Concrete On-Ground: Install tile to comply with TCNA installation method F115.
 1. Tile: ANSI A108.5.
3.04 WALL INSTALLATION

A. Installation of Ceramic Tile Over Cementitious Bond Coat Over Coated Glass Mat Water-Resistant Gypsum Backer Board Over Metal or Wood Studs: Install tile to comply with TCNA installation method W245.
 1. Tile: ANSI A108.5.
 2. Grout: ANSI A108.6 or A108.10.

3.05 CLEANING AND PROTECTION

A. Cleaning: Upon completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 1. Remove grout residue from tile as soon as possible.
 2. Unglazed tile may be cleaned with acid solutions only when permitted by tile and grout manufacturer’s printed instructions, but no sooner than 14 days after installation. Protect metal surfaces, cast iron, and vitreous plumbing fixtures from effects of acid cleaning. Flush surface with clean water before and after cleaning.
 a. Remove temporary protective coating by method recommended by coating manufacturer that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent it from clogging drains.
 3. Finished Tile Work: Leave finished installation clean and free of cracked, chipped, broken, unbonded, and otherwise defective tile work.
 4. Provide final protection and maintain conditions in a manner acceptable to manufacturer and installer that ensures that tile is without damage or deterioration at time of Substantial Completion.
 a. When recommended by tile manufacturer, apply a protective coat of neutral protective cleaner to completed tile walls and floors. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear.
 b. Prohibit foot and wheel traffic from tiled floors for at least 7 days after grouting is completed.
 5. Before final inspection, remove protective coverings and rinse neutral cleaner from tile surfaces.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Repair of existing Maple strip athletic flooring and addition of new flooring as required.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. DIN - Deutsches Institut Fur Normung
 1. 18032 - Sport Halls - Halls for Gymnastics, Games and Multi-Purpose Use.

C. MFMA - Maple Flooring Manufacturers Association

1.03 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show installation details including location and layout of each type of wood, athletic-flooring assembly and accessory. Include the following:
 1. Expansion provisions and trim details.

C. Samples for Initial Selection: Manufacturer’s color charts showing colors and glosses available for the floor finish.

D. Samples for Verification: For each type of wood flooring, finish, and accessory required; approximately 12 inches long and of same thickness and material indicated for the Work. Include sample sets showing the full range of normal color and texture variations expected.
 1. Provide a finished sample of new wood flooring and a finished sample of the existing wood flooring for comparison and matching.

1.04 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed wood athletic flooring similar in material, design, and extent to that indicated for this Project and whose work has resulted in wood athletic-flooring installations with a record of successful in-service performance. The responsibilities of the Installer include the following flooring assembly components:
 1. Sleepers.
 2. Acoustical subfloor components of isolation pads, insulation, and plywood floor sheathing.
 3. Wood flooring finish.
B. Manufacturer Certification: Comply with MFMA grading rules for grade and cut. Provide flooring that carries MFMA Certification Mark on each piece.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Deliver wood-flooring materials in unopened cartons or bundles.

B. Storage and Protection
1. Protect wood flooring from exposure to moisture. Do not deliver wood flooring until after concrete, masonry, plaster, ceramic tile, and similar wet work is complete and dry.
2. Store wood-flooring materials in a dry, warm, well-ventilated, weathertight location.
3. Move wood flooring into spaces where it will be installed at least seven days before installation.

1.06 PROJECT CONDITIONS

A. Conditioning: Maintain relative humidity conditions planned for building occupants, but not greater or less than the relative humidity range recommended by MFMA, and an ambient temperature between 55 and 75 degrees Fahrenheit in spaces to receive wood flooring for at least 7 days before installation, during installation, and for at least 7 days after installation. After post installation period, maintain relative humidity conditions and ambient temperature planned for building occupants.
1. Open sealed packages to allow wood flooring to acclimatize.
2. Do not install flooring until it adjusts to the relative humidity of and is at the same temperature as the space where it is to be installed.
3. Close spaces to traffic during flooring installation and for time period after installation recommended in writing by flooring and finish manufacturer, but not less than 10 days.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 FLOORING SYSTEM

A. Components: System complies with DIN 18032.
1. System Type: Anchored resilient panel.
a. Provide overall thickness 3 inches to match existing; confirm depth in field.
4. Plywood Floor Sheathing: 2 layers, as indicated.
5. Maple Flooring: 25/32-inch thick by widths and lengths to match existing, Maple grade by MFMA grading rules, unfinished.
6. Finish: Match existing color and finish, as manufactured by DuraSeal, “Gymthane Waterbased Finish” and “Gymthane Waterbased Sealer”, or equal.
2.03 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex modified, portland cement based formulation provided or approved by resilient flooring manufacturer for applications indicated.

B. Fasteners: Type and size recommended by manufacturer, but not less than those recommended by MFMA for application indicated.

C. Adhesive: As recommended by the wood flooring manufacturer.

D. Perimeter Base: Rubber, ventilating type, 3 inches by 4 inches, as manufactured by Robbins Sports Surfaces; Connor Sports, or equal.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas and conditions, with installer present, for compliance with requirements, installation tolerances, and other conditions affecting performance of wood-flooring assembly. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Concrete Slabs: Verify that concrete slabs comply with flooring manufacturer’s installation requirements.
 1. Grind high spots and fill low spots to provide a maximum 1/8-inch deviation in any direction when checked with a 10 foot straight edge.
 2. Verify that slabs are dry according to test methods recommended in writing by flooring manufacturer.

3.02 INSTALLATION

A. Flooring System, General
 1. Comply with flooring-assembly manufacturer’s written instructions, but not less than recommendations of MFMA applicable to flooring type indicated.
 2. When repairing existing flooring, remove full length of wood strip; sawcutting is not acceptable.

B. Pattern: Match existing direction of flooring, weave in patched areas with full length boards for an integrated appearance.

C. Expansion Spaces: Provide as indicated, but not less than that required by manufacturer’s written instructions and MFMA’s written recommendations at walls and other obstructions, and at interruptions and terminations of flooring.
 1. Cover expansion spaces with base molding, trim, and saddles, as indicated.

D. Installation Tolerances: 1/8-inch in 10 feet variance from level.

3.03 SANDING AND FINISHING

A. Allow installed flooring to acclimate to ambient conditions for at least 10 days before sanding.
B. Machine sand with coarse, medium, and fine grades of sandpaper to achieve a level, smooth, uniform surface without ridges or cups. Remove sanding dust by tack or vacuum.

C. Finish: Apply seal and finish coats of finish system according to manufacturer’s written instructions. Provide not less than four coats total and not less than two finish coats.
 1. Water-Based Finishes: Use finishing methods recommended by finish manufacturer to reduce grain raise and sidebonding effect.

D. Install base molding and other cover trim indicated for expansion spaces at edges and interruptions of flooring.

3.04 PROTECTION

A. Protect wood flooring during remainder of construction period to allow finish to cure and to ensure that flooring and finish are without damage or deterioration at time of Substantial Completion.

END OF SECTION
SECTION 09 65 00
RESILIENT FLOORING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Linoleum.
 2. Resilient wall base.

B. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 07 92 00 - Joint Sealants: Provision of sealants and caulks.
 2. Section 09 97 25 - Vapor Emission Treatment Systems: Provision of vapor emission
 treatment system, as required.

1.02 REFERENCES

A. ADA - Americans with Disabilities Act

B. ASTM - American Society for Testing and Materials
 Using a Radiant Heat Energy Source.
 2. E662 - Standard Test Method for Specific Optical Density of Smoke Generated by
 Solid Materials.
 3. F710 - Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.
 5. F1516 - Standard Practice for Sealing Seams of Resilient Flooring Products by the
 Heat Weld Method (when Recommended).

C. CALGreen - California Green Building Standards, 2016 Edition

1.03 SYSTEM DESCRIPTION

A. Adhesives used on the Project shall comply with CALGreen Code Nonresidential Mandatory
 Measures, Chapter 5, Division 5.5, Section 5.504, Article 5.504.4.1.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each type of product specified.

B. Shop Drawings: For each type of floor covering; include floor covering layouts, locations of
 seams, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and
 cutouts.

C. Samples for Verification: Submit samples in manufacturer’s standard size, but not less than
 6 inch by 9 inch sections of each different color and pattern of floor covering specified,
 showing full range of variations expected in these characteristics.
D. Quality Control Submittals
 1. Certificates: Submit certification by resilient flooring manufacturer that products
 supplied for installation comply with local regulations controlling use of volatile organic
 compounds (VOC’s).
 2. Installer certificates signed by floor covering manufacturer certifying that installers
 comply with requirements specified under “Quality Assurance” article.

E. Contract Closeout Submittals: Submit maintenance data for resilient floor coverings.

1.05 QUALITY ASSURANCE

A. Installer Qualifications
 1. Engage installer that is an established firm, experienced in the installation of the
 specified product and shall have access to all manufacturer’s required technical,
 maintenance, specifications and related documents.
 2. Installer shall have completed at least 3 Projects of similar magnitude, material and
 complexity. Installer shall provide 3 reference Projects including contact names and
 telephone numbers.
 3. Installer shall employ workers for this Project who are trained and certified by floor
 covering manufacturer for installation techniques required.
 4. Installer shall have a factory trained mechanic on site to supervise the entire
 installation.

1.06 PROJECT CONDITIONS

A. Environmental Requirements
 1. Maintain a minimum temperature as stipulated by flooring and adhesive manufacturer
 in spaces to receive resilient flooring materials, during installation, and for not less
 than 48 hours after installation. After this period, maintain a temperature of not less
 than 55 degrees Fahrenheit.
 2. Do not install resilient flooring materials until they are at the same temperature as the
 space where they are to be installed.
 3. Close spaces to traffic during resilient flooring materials installation.

1.07 SEQUENCING AND SCHEDULING

A. Install resilient flooring materials and accessories after other finishing operations, including
 painting, have been completed.

B. Sequence installing products specified in this Section with other construction to minimize
 possibility of damage and soiling during remainder of construction period.

C. Do not install resilient flooring materials over concrete slabs until the slabs have cured and
 are dry to bond with adhesive as determined by flooring manufacturer’s recommended bond
 and moisture test. Contractor shall be responsible for achieving required moisture content
 in concrete slab in timely manner to allow floor materials to be installed without delaying
 completion of work.

1.08 MAINTENANCE

A. Extra Materials: Furnish 10 linear feet in roll form of each different composition, wearing
 surface, color and pattern of resilient flooring and wall base installed.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers
 1. Linoleum: Forbo Flooring, Inc., “Marmoleum Fresco” or “Marmoleum Real”, or equal.
 2. Rubber Base and Accessories: Burke; Johnsonite, or equal.

2.02 MATERIALS

A. Linoleum: Floor covering shall consist of linseed oil, cork, wood flour resin binders, gum, and pigments calendered on to a natural jute backing, with the following properties:
 1. Thickness: 0.125-inch.
 3. Static Load Limit: Exceeds 700 psi in accordance with ASTM F970.
 4. Slip Resistance: Meets or exceeds ADA recommendations of 0.6 for flat surfaces.
 5. Fire Resistance
 a. Smoke Density: 450 or less in accordance with ASTM E662.
 b. Critical Radiant Flux: Class 1 in accordance with ASTM E648.
 6. Color and Pattern: As selected by the Architect from manufacturer’s full range of Marmoleum Fresco or Marmoleum Real.

B. Resilient Base: Products complying with ASTM F1861.
 1. Style: Cove with top-set toe at resilient flooring; straight at carpet.
 3. Height: 4 inches.
 4. Lengths: Coils in lengths standard with manufacturer but not less than 100 feet.
 5. Interior and Exterior Corners and Ends: Field molded.
 6. Color and Pattern: As selected by the Architect from manufacturer’s full range.

2.03 INSTALLATION ACCESSORIES

A. Concrete Slab Primer: Nonstaining type as recommended by flooring manufacturer.

B. Trowelable Underlayments and Patching Compounds: Latex modified, portland cement based formulation provided or approved by resilient flooring manufacturer for applications indicated.

C. Adhesives (Cements): Waterproof type recommended by manufacturer to suit resilient floor products and substrate conditions indicated. Adhesive shall contain less than 50 g/L VOC content and shall be compatible with vapor emission treatment system, if used, as specified in Section 09 97 25.
 1. Seam Adhesive: As recommended by the resilient flooring manufacturer.

D. Caulking: Acrylic latex silicon caulk as specified in Section 07 92 00.

E. Waterproof Adhesive: As manufactured by Master Builders, “Concreseive Paste LPL”, or equal.

F. Transition Strip: Rubber, of width indicated and height required to protect exposed edge of resilient floor coverings and in maximum available lengths to minimize running joints.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas, and conditions for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting resilient flooring performance. Verify that substrates and conditions are satisfactory for resilient flooring installation and comply with requirements specified.

B. Concrete Subfloors: Verify that concrete slabs comply with ASTM F710 and the following:
 1. Slab substrates are dry and free of curing compounds, sealers, hardeners, and other materials that may interfere with adhesive bond. Determine adhesion and dryness characteristics by performing bond and moisture tests recommended by the resilient flooring manufacturer.
 2. Subfloors are free of cracks, ridges, depressions, scale, and foreign deposits.
 3. Concrete shall be allowed to cure for 90 to 120 days and must be properly sealed.
 4. Before installing resilient flooring, concrete slab shall be tested as specified in Section 09 97 25 for moisture emission. The test shall be conducted around the perimeter of each room, at columns and where moisture may be evident. A diagram of the areas showing the locations and results of each calcium chloride test shall be submitted to the Architect.
 At each area where the moisture emission exceeds 3 pounds per 1,000 square feet per 24 hours, a sealant shall be applied as specified in Section 09 97 25.

3.02 PREPARATION

A. General: Comply with manufacturers’ installation specifications to prepare substrates indicated to receive resilient flooring accessories.

B. Remove coatings, including curing compounds, and other substances that are incompatible with flooring adhesives and that contain soap, wax, oil or silicone, by using a terrazzo or concrete grinder, a drum sander, or a polishing machine equipped with a heavy-duty wire brush.

C. Use trowelable leveling and patching compounds at 1st Floor existing concrete per manufacturer’s directions to fill cracks, holes, and depressions in substrates.

D. Broom or vacuum clean substrates to be covered by resilient flooring immediately before flooring installation. Following cleaning, examine substrates for moisture, alkaline salts, carbonation or dust.

E. The General Contractor shall be responsible for acceptability of moisture emission of existing concrete.

F. Apply concrete slab primer, if recommended by flooring manufacturer, prior to applying adhesive. Apply according to manufacturer’s directions.

3.03 INSTALLATION

A. General: Comply with manufacturers’ installation directions and other requirements indicated that are applicable to each type of installation included in Project.

B. Sheet Flooring Installation
 1. Unroll floor covering and allow to stabilize before cutting and fitting.
 2. Layout floor covering to comply with the following requirements:
 a. Terminate joints at centerline of doorways where adjacent flooring is dissimilar.
b. The Architect will approve all seaming patterns.
c. Maintain uniformity of sheet floor covering direction.
d. Arrange for minimum number of seams and place them in inconspicuous and low-traffic areas and not less than 6 inches away from parallel joints in flooring substrates.
e. Match edges of floor coverings for color shading and pattern at seams according to manufacturer’s written recommendations.
f. Avoid cross seams.
g. Scribe, cut and fit floor coverings to butt neatly and tightly to vertical surfaces and permanent fixtures, including cabinets, pipes, outlets, edgings, door frames and thresholds.

3. Adhere floor covering to substrates to comply with floor covering manufacturer’s written instructions, including those for trowel notching, adhesive mixing and adhesive open and working times.

4. Heat Welded Seams: Rout joints and heat weld with welding bead, permanently fusing sections into a seamless floor covering. Prepare, weld, and finish seams according to manufacturer’s written instructions and ASTM F1516 to produce surfaces flush with adjoining floor covering surfaces.

5. Hand roll floor covering in both directions from center out to embed floor coverings in adhesive and eliminate trapped air. At walls, door casings, and other locations where access by roller is impractical, press floor coverings firmly in place with flat-bladed instrument.

C. Resilient Wall Base Installation

1. Apply resilient wall base to walls, casework and other permanent fixtures in rooms and areas where base is required. Install wall base in lengths as long as practicable. Tightly adhere wall base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

2. Place resilient accessories so they are butted to adjacent materials of type indicated and bond to substrates with adhesive. Install reducer strips at edges of flooring that otherwise would be exposed.

3.04 CLEANING AND PROTECTION

A. Perform the following operations immediately after completing installation:

1. Remove visible adhesive and other surface blemishes using cleaner recommended by manufacturers.

2. Sweep or vacuum floor thoroughly.

3. Do not wash floor until after time period recommended by manufacturer.

4. Damp-mop resilient flooring to remove black marks and soil.

B. Protect flooring against mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period. Use protection methods indicated or recommended by flooring manufacturer.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Carpet tile and accessories.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Section
 1. Section 09 97 25 - Vapor Emission Treatment Systems: Provision of vapor emission treatment system, as required.

1.02 REFERENCES

A. AATCC - American Association of Textile Chemists and Colorists
 1. 16.3 - Colorfastness to Light: Xenon-Arc
 2. 134 - Electrostatic Propensity of Carpets.
 3. 175 - Stain Resistance: Pile Floor Coverings.

B. ASTM - American Society for Testing and Materials
 2. F710 - Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.

C. BAAQMD - Bay Area Air Quality Management District

D. CALGreen - California Green Building Standards, 2016 Edition

E. City of Berkeley
 1. EPP - Environmentally Preferable Purchasing Policy.

F. CRI - Carpet and Rug Institute
 1. 104 - Standard for Installation of Commercial Carpet.
 2. Green Label Plus Testing Program.
 3. TARR - Texture Appearance Retention Rating

G. DGS - California Department of General Services

H. DOC - Department of Commerce
 1. FF 1-70 - Methenamine Pill Test.

I. Green Seal, Inc.
 1. GS-36 - Adhesives for Commercial Use.
1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Technical
 a. Durability: TARR Rating; 3.5.
 b. Fiber: Solution dyed, 6 or 6.6 nylon; modification ratio (MR) less than 2.5.
 c. Static Control: AATCC 134; Less than 3.5 kV.
 d. Colorfastness and Fading: Xenon Arc, AATCC 16.3; Not less than 4 at 60 AFU's.
 e. Stain Resistance: ASTCC 175; Greater than 8.
 g. Gauge: 1/12 and 5/64 are acceptable.
 h. Stitches per Inch: 8.66 to 11.5.
 i. Flammability
 1) DOC FF-1-70: Pass.
 2) NFPA 258 (Smoke Density): 450 or less.
 3) ASTM E648 (Floor Radiant Panel Test): 0.45 W/cm^2 or higher.
 2. Sustainability and Environmental Requirements
 a. Comply with testing and product requirements of CRI's “Green Label Plus” program.
 b. Comply with the City of Berkeley Environmentally Preferable Purchasing Policy (EPP).
 c. Manufacturer shall have an established reclamation and recycling program for the supplied carpet at the end of its useful life.
 d. Sustainability: NSF/ANSI 140; Platinum rating.
 e. Environmental Management: ISO 14001 manufacturing facility.
 f. Carpet tile shall comply with the California Gold Sustainable Carpet Standard.
 g. All materials in the carpet tile shall be 100 percent non-PVC.
 h. Recycled Content
 1) Total by Weight: 35 percent, minimum.
 2) Post-Consumer by Weight: 10 percent, minimum.
 i. Adhesives and Sealants
 1) Meets SCAQMD Rule 1168.
 2) Meet or exceed the requirements of the BAAQMD Regulation 8, Rule 51.
 3) Aerosol adhesives shall meet the VOC limits of GS-36.

B. Regulatory Requirement: Carpet used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Articles 5.504.4.4., 5.504.4.4.1, and 5.504.4.4.2.
1.04 SUBMITTALS

A. Product Data
1. Manufacturer’s data for carpet tile describing design and performance requirements, sizes, and method of installation.
2. Product information for each type of installation accessory required.

B. Samples
1. Tile: Full size carpet tile of each type and color required.
2. Submit 4 tiles of each color/pattern for each User Group, up to 4 selected colors for confirmation of pattern, color variation, and selected size.
3. Edge Striping: 9 inches long for each type.

C. Substitution Requests: Identify product to be considered; show compliance with requirements for substitutions and the following, as applicable:
1. Detailed comparison of significant qualities of proposed substitution with those specified. Significant qualities will include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated.
2. Product data.
3. Samples.
4. Certificates and qualification data.
5. Cost information, including a proposal of change, if any, in the Contract Sum.
6. Contractor's certification that proposed substitution complies with requirements in this specification Section, except as indicated in substitution request.

D. Informational Submittals: Statement of installer qualifications.

E. Closeout Submittals
1. Extended warranties.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Firm specializing in carpet installation, with documented successful experience in installation of carpeting similar to that required for this Project.

B. Odor: Materials used in construction of carpet tiles shall not give off any odors which could be unpleasant or hazardous to building occupants, and shall meet all VOC limit requirements. This shall include offgassing and chemical migration in backing materials.

C. Mockups: First installed area or example of each type of tile carpeting or accessory shall serve as a mockup for review by the Architect and the City of workmanship and interface with adjacent construction and floor finishes.

1.06 COORDINATION

A. Sequence reinstallation of carpet with other work to minimize possibility of damage and soiling during remainder of construction period.
1.07 DELIVERY, STORAGE, AND HANDLING

A. Store carpet tiles at least 3 days prior to installation in area of installation to achieve temperature stability in accordance with CRI 104 Standard.
 1. Temperature of concrete slab substrate shall not be less than 65 degrees Fahrenheit.
 2. Maintain these conditions at least 48 hours prior to installation and 72 hours after completion.

B. Do not stack carpet tile the equivalent of more than six cartons high to avoid potential crushing.

1.08 MAINTENANCE

A. Submit manufacturer's printed instructions for maintenance of carpet tile including recommended methods and cleaning frequencies for maintaining optimum conditions of materials under anticipated traffic and exposures. Include precautions against materials and methods detrimental to carpet performance or to topical coating or to latex used between backings.

B. Attic Stock: After completion of work, deliver 1 full carton, of each carpet tile type, color, and pattern installed.
 1. Furnish accessory components as required.
 2. Furnish from same production run as materials installed.
 3. Package replacement materials in full carton of approximately 20 tiles, clearly identified by appropriate labels including dye lot number.

1.09 WARRANTY

A. Contractor: Provide the City with a 2-year written warranty, co-executed by the installing subcontractor, agreeing to repair, replace, or reset carpet tile that fails in installation materials or workmanship within the warranty period.

B. Manufacturer: Provide the City with carpet manufacturer’s 15-year standard, non-prorated warranty covering face wear, moisture barrier, soil and stain protection, wick-back, delamination, tuft bind, unraveling, and static protection.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Carpet Tile, General
 1. Face yarns shall be of same dye batch, and finish material shall be of one mill run.
 2. Consistency shall be such that any tile shall be interchangeable with any other tile, within a dye lot, with no visual difference.
 3. Carpet shall have a built-in, permanent antimicrobial treatment for protection against bacteria and fungus growth.
 4. Carton Labeling: Mark each carpet tile carton according to style, color, pattern, and dye lot.

B. Carpet Tile, Type 1
 1. Size: 24 inches by 24 inches or 18 inches by 36 inches.
 2. Installation: Vertical ashlar pattern.
 5. Dye Method: 100 percent solution dyed.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

 7. Face Weight: 24 ounces per square yard.
 8. Gauge: 5/64.
 9. Pile Height Average: 0.187-inch.
 13. Primary Backing: Non-woven synthetic fiber.
 14. Style: Awry 04365 with Ethos backing; Coordination Group 16.
 15. Color: As selected by the Architect.

C. Carpet Tile, Type 2
 1. Size: 24 inches by 24 inches.
 2. Installation: Ashlar pattern.
 3. Construction: Textured patterned loop.
 4. Fiber: “Invista Antron Legacy” type 6,6 nylon.
 5. Dye Method: 100 percent solution dyed.
 6. Soil and Stain Protection: “XGuard.”
 7. Face Weight: 18 ounces per square yard.
 8. Gauge: 1/12.
 10. Stitches per Inch: 8.66.
 11. Primary Backing: Non-woven synthetic fiber.
 12. Secondary Backing: “rEvolve” polyolefin, 100 percent non-PVC.
 15. Product: As manufactured by Mannington Commercial, or equal.

D. Carpet Tile, Type 3
 1. Size: 18 inches by 36 inches.
 2. Installation: Ashlar pattern.
 3. Construction: Textured patterned loop.
 4. Fiber: “Invista Antron Legacy” type 6,6 nylon.
 5. Dye Method: 100 percent solution dyed.
 6. Soil and Stain Protection: “XGuard.”
 7. Face Weight: 22 ounces per square yard.
 8. Gauge: 5/64.
 9. Pile Thickness: 0.126-inch.
 10. Stitches per Inch: 11.33.
 11. Primary Backing: Non-woven synthetic fiber.
 15. Product: As manufactured by Mannington Commercial, or equal.

E. Carpet Tile, Type 4
 1. Sizes
 a. 18 inches by 36 inches, installed in herringbone pattern.
 b. 24 inches by 24 inches, installed in quarter turn or brick pattern.
 2. Construction: Tufted textured loop.
 3. Fiber: “Antron Lumena” type 6,6 nylon.
 5. Soil and Stain Protection: “Xtera.”
7. Total Thickness: 0.190-inch.
8. Stitches per Inch: 10.2.
10. Style: Hitchhiker, Product Code HI000AAOK.
11. Color: As selected by the Architect.
12. Product: As manufactured by Bentley, or equal.

F. Miscellaneous Materials
1. Adhesives: Release type, waterproof, with no adverse effects on indoor air quality; as recommended by carpet tile manufacturer and meeting the VOC requirements.
 a. Adhesives shall be compatible with vapor emission treatment systems specified in Section 09 97 25.
2. Sub-Floor Filler/Underlayment: Latex cementitious paste for filling, leveling, and ramping; acceptable to manufacturer of carpet material furnished; as manufactured by ARDEX Americas, “SD-P Instantpatch”, or equal.
5. Metal Carpet Edge Protection: Extruded anodized aluminum; height and profile as required and selected for installation; as manufactured by Schlüter Systems; Pemko Manufacturing Company Inc., or equal.
7. Other Materials: As recommended by carpet manufacturer and as selected by installer to meet Project circumstances and requirements.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that substrates are dry, free of dust and harmful substances, and in satisfactory condition to receive carpeting materials.

B. Substrate Testing
1. Perform test on new concrete topping to verify substrate compliance requirements of carpet manufacturer requirements. Moisture Vapor Emission Rate (MVER) content test shall be in accordance with ASTM F1869, relative humidity tests in accordance with ASTM F2170, and alkalinity tests in accordance with ASTM F710.
 a. Where calcium chloride test results are satisfactory but there is reason to suspect that unacceptable moisture levels below the upper 2 centimeters of the concrete may still exist, a relative humidity probe shall be used to test the full depth of the slab.
2. Perform bond tests to ascertain presence of substances detrimental to obtaining adhesive bond.

C. Where tests are not satisfactory, notify Contract Administrator for review of conditions and to determine a resolution acceptable to the Contract Administrator.
1. Resolution may require treatment with vapor emission treatment systems specified in Section 09 97 25.
3.02 PREPARATION

A. General: Comply with CRI 104, Section 6.2, “Site Conditions; Floor Preparation”, and carpet tile manufacturer’s written recommendations and installation instructions to ensure that each substrate is properly prepared to receive carpet tile installation.

B. Clear away debris and scrape up cementitious deposits from concrete surfaces to receive carpet tile.

C. Remove coatings, curing compounds, and other substances from flooring substrates that are incompatible with carpet tile adhesives and that contain soap, wax, oil, or silicone. Completely remove previous adhesives prior to application of new carpet tile adhesives. Do not use solvents for removing substances. Use mechanical methods recommended in writing by the carpet tile manufacturer.

D. Use subfloor filler to fill cracks, gaps, and depressions and for leveling to required tolerance.

E. Seal powdery or porous surfaces with sealer recommended by carpet tile manufacturer.

F. Broom and vacuum clean substrates to be covered immediately before installing carpet tile. After cleaning, examine substrates for moisture, alkaline salts, carbonation, or dust. Proceed with installation only after unsatisfactory conditions have been corrected.

G. Unwrap carpet tiles in a well ventilated location prior to installation. Air the carpet tiles out in off-site location such as a ventilated warehouse for at least 2 days prior to installation.

3.03 INSTALLATION

A. General
 1. Apply in accordance with manufacturer's instructions for tile and backing, and requirements of CRI 104.
 2. Integrate and blend carpet tiles from different cartons to ensure minimal variation in color match.
 3. Cut carpet tile clean. Fit carpet tight to intersection with vertical surfaces without gaps.

B. Layout: As recommended by manufacturer for each carpet tile and layout pattern selected.

C. Apply floor adhesive in accordance with manufacturer’s instructions.

D. Join tiles snugly together. Continually check that tiles are being placed together with correct firmness.

E. When placing tiles, brush face pile back from edge and tip tile into place to prevent pile yarns from becoming entrapped in joint.

F. After installation, carpet tiles within a continuous carpet area exhibiting an unacceptable difference in appearance due to color or light reflectance variation attributed to the manufacturing process shall be selectively relocated or replaced.

3.04 FIELD QUALITY CONTROL

A. Manufacturer's agent shall supervise installation to a point at which he feels that installer is performing satisfactorily.
B. Snugness Testing
 1. Measure distance along 10 installed tiles. There should be a 1/4-inch gain in distance along 10 installed tiles.
 2. If gain is less than 1/4-inch, peaking of tiles can occur. A wide gap between tiles may occur if gain is more than 1/4-inch.

3.05 CLEANING

A. Remove and dispose of trimmings, excess pieces of carpet, and laying materials from each area as it is completed.

B. Vacuum carpet using commercial machine with face-beater element unless otherwise recommended by carpet manufacturer.

C. Remove spots. Replace carpet tiles where spots cannot be removed. Do not get solvent used for cleaning into carpet backing system.

D. Use sharp scissors to remove protruding face yarn.

3.06 PROTECTION

A. Do not allow construction traffic, other than as may be required to fit up specific carpeted area, to traverse completed work.

B. Provide specified covering as necessary to protect carpet from damage from traffic and subsequent construction operations.

C. Use plywood or hardboard covering, if heavy items are to be moved across carpet tile.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Acoustic wall panels.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Section
 1. Section 09 29 00 - Gypsum Board: Provision of gypsum board surfaces.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

1.03 SUBMITTALS

A. Product Data: Submit product data completely describing products.

B. Shop Drawings: Show complete layouts, methods, and details of construction and attachment to adjacent work.

C. Samples
 1. Provide 1 foot square samples of material proposed for use for color selection.
 2. Provide 1 linear foot of each type of extrusion.

D. Quality Assurance Submittals: Submit certificates certifying compliance of acoustical assemblies with requirements.

1.04 QUALITY ASSURANCE

A. Fire Hazard Classification: Class A, in accordance with ASTM E84, Flame Spread 25, Smoke Developed 55.

B. Noise Reduction Coefficient: 1.10 in accordance with ASTM C423.

1.05 WARRANTY

A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. Special Warranty: Submit a written warranty, executed by the manufacturer, agreeing to repair or replace components of acoustical wall panel system that fail in materials or workmanship within the specified warranty period.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturer: Acoustical Solutions, "AlphaSorb FR701 Acoustic Panel", or equal.

2.02 ACOUSTIC WALL PANEL SYSTEM

A. Provide a complete tackable system, including trim, accessories and anchoring, consisting of textile wrapped over acoustical core.
 1. Size: Custom to match existing locations.
 2. Thickness: 7/8-inch.
 3. Edge Detail: As indicated.
 4. NRC: 0.6.

2.03 MATERIALS

A. Fabric
 1. Fire Hazard Classification: Independently tested as Class A with a flame spread index of less than 25 and smoke developed of less than 55 per ASTM E84.
 2. The fabric shall be of a fiber content and locking weave so as not to be affected by heat or humidity for the life of the installation.
 3. The fabric shall be treated with soil retardant to extend usable life as recommended by the manufacturer.
 5. Color: As selected by the Architect from manufacturer’s full range.

B. Acoustical Core: 2-1/8 inch thick, rigid 6-7 pcf density glass fiber core with 1/8-inch thick face sheet of 10-12 pcf glass mat thermally bonded to the base core finish surface.
 1. Edges shall be resin hardened.

C. Fabric shall fully wrap all edges and return to the back with all corners fully tailored.

D. Perimeter Trim: Full depth, full perimeter clear anodized aluminum profile with mitered and concealed mechanically connected corners.

E. Mounting: Concealed clip mounting as detailed.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine the condition of the substrate and the conditions under which the work of this Section is to be performed. Notify the Contractor in writing of any unsatisfactory conditions. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner satisfactory to the installer.

B. Field measure each area that is to receive the wall panel system to establish the correct layout.
3.02 INSTALLATION

A. Install materials in accordance with manufacturer’s instructions, and comply with governing regulations, fire resistance rating requirements, as indicated, and industry standards applicable to the work.

B. Examine panels as they are installed for damage, imperfections, and soiling. Notify other trades to use care in working around the installed panels so as not to soil or damage the surface.

3.03 CLEANING AND PROTECTION

A. Clean exposed surfaces of wall panels as necessary. Comply with manufacturer’s instructions for cleaning and repair of minor finish damage. Remove and replace work that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

B. The Installer shall advise the Contractor of required protection, including soiling from other trades and dust control, so that the work will be without damage and deterioration at the time of acceptance by the Owner.

END OF SECTION
SECTION 09 90 00
PAINTING AND COATING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Surface preparation, painting, and finishing of new and existing exposed exterior and interior items and surfaces.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 05 50 00 - Metal Fabrications: For shop priming and finish painting of miscellaneous metals.
2. Section 06 20 00 - Finish Carpentry: For finish painting of finish carpentry.
3. Section 06 41 10 - Custom Casework: For finish painting of custom casework.
4. Section 07 46 23 - Wood Siding: For finish painting of exterior wood siding.
5. Section 07 62 00 - Sheet Metal Flashing and Trim: For finish painting of sheet metal flashing and trim.
6. Section 08 01 51.10 - Restoration of Steel Windows: For finish painting of existing steel windows.
7. Section 08 11 15 - Steel Doors and Frames: For finish painting of steel doors and frames.
8. Section 08 14 10 - Wood Doors and Frames: For finish painting of wood doors and frames.
10. Section 08 71 00 - Door Hardware: For requirements for protection of door hardware during painting.
11. Section 08 90 00 - Louvers and Vents: For finish painting of louvers and vents.
12. Section 09 29 00 - Gypsum Board: For finish painting of gypsum board.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

B. CALGreen - California Green Building Standards, 2016 Edition

C. CFR - Code of Federal Regulations

D. EPA - Environmental Protection Agency

E. FM - Factory Mutual

F. SSPC - The Society for Protective Coatings

G. UL - Underwriters Laboratories Inc.
1.03 DEFINITIONS

A. “Paint”: As used herein, means coating systems materials including primers, emulsions, epoxy, enamels, sealers, fillers, and other applied materials whether used as prime, intermediate or finish coats.

B. Standard coating terms defined in ASTM D16 apply to this Section.
 1. “Flat”: Refers to a lusterless or matte finish with a gloss range below 15 when measured at an 85-degree meter.
 2. “Eggshell”: Refers to low-sheen finish with a gloss range between 20 and 35 when measured at a 60-degree meter.
 3. “Semigloss”: Refers to medium-sheen finish with a gloss range between 35 and 70 when measured at a 60-degree meter.
 4. “Full Gloss”: Refers to high-sheen finish with a gloss range more than 70 when measured at a 60-degree meter.

1.04 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Paint exposed surfaces whether or not colors are designated in the schedules, except where a surface or material is specifically indicated not to be painted or is to remain natural. Where an item or surface is not specifically mentioned, paint the same as similar adjacent materials or surfaces. If color or finish is not designated, the Architect will select from standard colors or finishes available.
 2. Painting is not required on prefinished items, finished metal surfaces, concealed surfaces, operating parts and labels.
 3. Do not paint over UL, FM, or other code required labels or equipment name, identification, performance rating or nomenclature plates.

B. Paints and coatings used on the Project shall comply with CALGreen Code Nonresidential Mandatory Measures, Chapter 5, Division 5.5, Section 5.504, Article 5.504.4.3.

1.05 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for each paint system specified, including block fillers and primers.
 1. Provide manufacturer’s technical information including label analysis and instructions for handling, storage and application of each material proposed for use.
 2. List each material and cross reference the specific coating, finish system and application. Identify each material by the manufacturer’s catalog number and general classification.

B. Samples
 1. Following the selection of colors and glosses by the Architect, submit samples for the Architect’s review.
 a. Provide 1 sample of each color and each gloss for each material on which the finish is specified to be applied.
 b. Except as otherwise directed by the Architect, make samples approximately 8 inches by 10 inches in size.
 c. Provide field mockups for final paint color and texture approval in the form of actual application of the materials on actual surfaces to be painted for approval by the Architect. Areas shall be 4 feet by 4 feet.
 2. Revise and resubmit each sample or field mockup as requested until the required gloss, color and texture are achieved. Such samples or field mockups, when approved, will become standards of color and finish for accepting or rejecting the work of this Section.
3. Do not commence finish painting until approved samples are on file at the job site.

C. Quality Control Submittals: Provide certification by the manufacturer that products supplied comply with local regulations controlling use of volatile organic compounds (VOCs).

1.06 QUALITY ASSURANCE

A. Provide primers and undercoat paint produced by the same manufacturer as finish coats.
 1. Review other Sections of these Specifications as required, verifying the prime coats to be used and assuring compatibility of the total coating system for the various substrates.
 2. Upon request, furnish information on the characteristics of the specific finish materials to assure that compatible prime coats are used.
 3. Provide barrier coats over non-compatible primers, or remove the primer and re-prime as required.
 4. Notify the Architect in writing of anticipated problems in using the specified coating systems over prime coatings supplied under other Sections.

B. Applicator Qualifications: Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this Section.

C. Mockups: Apply samples of each paint system indicated and each color and finish selected to verify preliminary selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Exterior: Provide 10 feet by 10 feet mockup of each selected field color, as directed by the Architect.
 2. Allow for 3 field colors and 1 trim color.
 3. Allow for each color to be mocked-up twice.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Deliver materials to the job site in manufacturer’s original, unopened packages and containers bearing manufacturer’s name and label and the following information:
 1. Product name or title of material.
 2. Product description (generic classification or binder type).
 3. Manufacturer’s stock number and date of manufacture.
 4. Contents by volume for pigment and vehicle constituents.
 5. Thinning instructions.
 6. Application instructions.
 7. Color name and number.

B. Storage and Protection
 1. Store materials not in use in tightly covered containers in well ventilated area at minimum ambient temperature of 45 degrees Fahrenheit. Maintain containers used in storage in clean condition, free of foreign materials and residue.
 2. Protect from freezing. Take necessary measures to ensure that workers and work areas are protected from fire and health hazards resulting from handling, mixing, and application.
1.08 PROJECT CONDITIONS

A. Environmental Requirements
 1. Apply water based paints only when the temperature of surfaces to be painted and
 surrounding air temperatures are between 50 and 90 degrees Fahrenheit, unless otherwise
 permitted by the manufacturers’ printed instructions as approved by the Architect.
 2. Do not apply solvent-thinned paints when the temperature of surfaces to be painted
 and the surrounding air temperatures are below 45 degrees Fahrenheit, unless
 otherwise permitted by the manufacturers’ printed instructions as approved by the
 Architect.
 3. Do not apply paint in rain, fog, or mist; or when the relative humidity exceeds 85
 percent. Do not apply paint to damp or wet surfaces, unless otherwise permitted by
 the manufacturers’ printed instructions as approved by the Architect.
 4. Applications may be continued during inclement weather only within the temperature
 limits specified by the paint manufacturer as being suitable for use during application
 and drying periods.

1.09 MAINTENANCE

A. Upon completion of the work of this Section, deliver to the City’s Project Manager an extra
stock of 5 gallons of each color, type, and gloss of exterior and interior paint used in the
Work, tightly sealing each container, and clearly labeling with contents and location where
used.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Dunn Edwards; Sherwin Williams; Tnemec, or equal.

2.02 PAINT MATERIALS

A. General
 1. Paint Materials, General: Provide block fillers, primers, finish coat materials, and
 related materials that are compatible with one another and the substrates indicated
 under conditions of service and application, as demonstrated by the manufacturer,
 based on testing and field experience.
 2. Material Quality: Provide manufacturer’s best quality trade sale paint material of the
 various coating types specified. Paint material containers not displaying
 manufacturer’s product identification will not be acceptable.
 3. Chemical Components of Field-Applied Paints and Coatings: Provide products that
 comply with the following limits for VOC content, exclusive of colorants added to a tint
 base, when calculated according to 40 CFR 59, Subpart D (EPA Method 24) and the
 following chemical restrictions; these requirements do not apply to primers or finishes
 that are applied in a fabrication or finishing shop:
 a. VOC Content of Interior Paints and Coatings: Not more than 5 g/L.
 b. Aromatic Compounds: Paints and coatings shall not contain more than 1.0
 percent by weight of total aromatic compounds (hydrocarbon compounds
 containing one or more benzene rings).
 c. Restricted Components: Paints and coatings shall not contain any of the
 following:
 1) Acrolein.
 2) Acrylonitrile.
 3) Antimony.
 4) Benzene.
5) Butyl benzyl phthalate.
6) Cadmium.
7) Di (2-ethylhexyl) phthalate.
8) Di-n-butyl phthalate.
9) Di-n-octyl phthalate.
10) 1,2-dichlorobenzene.
11) Diethyl phthalate.
12) Dimethyl phthalate.
13) Ethylbenzene.
14) Formaldehyde.
15) Hexavalent chromium.
16) Isophorone.
17) Lead.
18) Mercury.
19) Methyl ethyl ketone.
20) Methyl isobutyl ketone.
21) Methylene chloride.
22) Naphthalene.
23) Toluene (methylbenzene).
24) 1,1,1-trichloroethane.
25) Vinyl chloride.

4. Colors: As selected by the Architect from manufacturer’s full range.

2.03 APPLICATION EQUIPMENT

A. For application of the approved paint, use only such equipment as is recommended for application of the particular paint by the manufacturer of the particular paint, and as approved by the Architect.

B. Prior to use of application equipment, verify that the proposed equipment is actually compatible with the material to be applied, and that integrity of the finish will not be jeopardized by use of the proposed equipment.

2.04 OTHER MATERIALS

A. Provide other materials not specifically described but required for a complete and proper installation, as selected by the Contractor subject to the approval of the Architect.

PART 3 - EXECUTION

3.01 PREPARATION

A. General: Mix and prepare paint materials in strict accordance with the manufacturers’ recommendations as approved by the Architect.

B. Surface Preparation
 1. General
 a. Perform preparation and cleaning procedures in strict accordance with the paint manufacturers’ recommendations as approved by the Architect.
 b. Remove removable items which are in place and are not scheduled to receive paint finish; or provide surface applied protection prior to surface preparation and painting operations.
 c. Following completion of painting in each space or area, reinstall the removed items by using workmen who are skilled in the necessary trades.
2. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall onto wet newly painted surfaces.

C. Preparation of Wood Surfaces
 1. Clean wood surfaces until free from dirt, oil, and other foreign substance.
 2. Smooth finished wood surfaces exposed to view, using the proper sandpaper. Where so required, use varying degrees of coarseness in sandpaper to produce a uniformly smooth and unmarred wood surface.
 3. Unless specifically approved by the Architect, do not proceed with painting of wood surfaces until the moisture content of the wood is 12 percent or less as measured by a moisture meter approved by the Architect.

D. Preparation of Metal Surfaces
 1. Thoroughly clean surfaces until free from dirt, oil and grease.
 2. Allow to dry thoroughly before application of paint.
 3. Aluminum Substrates: Remove surface oxidation.

3.02 PAINT APPLICATION

A. General
 1. Touch-up shop-applied prime coats which have been damaged, and touch-up bare areas prior to start of finish coats application.
 2. Slightly vary the color of succeeding coats.
 3. Sand and dust between coats to remove defects visible to the unaided eye from a distance of 5 feet.
 4. On removable panels and hinged panels, paint the back sides to match the exposed sides.
 5. When patch painting, paint to nearest breakpoint or entire plane if whole room; refer to Finish Schedule.

B. Drying: Allow sufficient drying time between coats, modifying the period as recommended by the material manufacturer to suite adverse weather conditions.

C. Brush Applications
 1. Brush out and work the brush coats onto the surface in an even film.
 2. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness and other surface imperfections will not be acceptable.

D. Spray Application
 1. Confine spray application to metal framework and similar surfaces where hand brush work would be inferior.
 2. Where spray application is used, apply each coat to provide the hiding equivalent of brush coats.
 3. Do not double back with spray equipment to build up film thickness of 2 coats in 1 pass.

E. Miscellaneous Surfaces and Procedures
 1. Exposed Mechanical Items
 a. Provide powder coat finish at electric panels.
 b. Finish access doors, conduits, pipes, ducts, grilles, registers, vents and items of similar nature to match the adjacent wall and ceiling surfaces, or as directed.
 c. Paint visible duct surfaces behind vents, registers, and grilles flat black.
 d. Wash metal with solvent, prime and apply 2 coats of alkyd enamel.
2. Exposed Pipe and Duct Insulation
 a. Apply 1 coat of latex paint on insulation which has been sized or primed under other Sections; apply 2 coats on such surfaces when unprepared.
 b. Match color of adjacent surfaces.
 c. Remove band before painting, and replace after painting.
3. Hardware
 a. Paint prime coated hardware to match adjacent surfaces;
 b. Paint metal portions of head seals, jamb seals, and astragal seals to match the color of the door frame unless otherwise directed by the Architect.
4. Wet Areas
 a. For oil base paints, use 1 percent phencimercuric or 4 percent tetrachlorophenol.
 b. For water emulsion and glue size surfaces, use 4 percent sodium tetrachlorophenate.
5. Interior: Use “stipple” finish where enamel is specified.

3.03 EXTERIOR PAINT SCHEDULE

A. Concrete Masonry Units
 1. Low Sheen Acrylic Finish: 2 finish coats over a primer.
 a. Primer: Exterior acrylic coating with smoothfill technology for a smooth uniform finish, applied at spreading rate recommended by the manufacturer.
 a. Product: As manufactured by Sherwin Williams, “Rejuvanate Siding Restoration Coating”, or equal.
 b. First and Second Coats: Exterior acrylic coating with smoothfill technology for a smooth uniform finish, applied at spreading rate recommended by the manufacturer.
 a. Product: As manufactured by Sherwin Williams, “Rejuvanate Siding Restoration Coating”, or equal.

B. Opaque Finish for Wood Siding and Trim: Provide 2 finish coats over a primer.
 1. Low Sheen Acrylic Finish: 2 finish coats over a primer.
 a. Primer: Exterior acrylic coating with smoothfill technology for a smooth uniform finish, applied at spreading rate recommended by the manufacturer.
 a. Product: As manufactured by Sherwin Williams, “Rejuvanate Siding Restoration Coating”, or equal.
 b. First and Second Coats: Exterior acrylic coating with smoothfill technology for a smooth uniform finish, applied at spreading rate recommended by the manufacturer.
 a. Product: As manufactured by Sherwin Williams, “Rejuvanate Siding Restoration Coating”, or equal.

C. Transparent Finish for Wood: Apply clear penetrating wood sealer as recommended by the manufacturer.
 1. Product: As manufactured by Amteco, “TWP Total Wood Preservative”, or equal.

D. Ferrous Metal: Provide the following finish system over exterior ferrous metal. Reprime all areas where primer has been scratched, scraped, or removed.
 1. Semigloss, Fluoropolymer Finish: Finish coat over intermediate coat over primer.
 a. Primer: Reddish-gray, 2-component, moisture-cured, zinc-rich primer, applied at spreading rate required to achieve manufacturer’s recommended total dry film thickness of 2.0 to 3.5 mils.
b. Intermediate Coat: Satin, polyamidoamine epoxy, applied at spreading rate required to achieve a total dry film thickness recommended by the manufacturer.
 1) Basis of Design Product: As manufactured by Tnemec, “Hi-Build Epoxoline II, Series L69”, or approved equal.

c. Finish Coat: Semigloss, high-solids fluoropolymer coating applied at spreading rate required to achieve a total dry film thickness recommended by the manufacturer.
 1) Basis of Design Product: As manufactured by Tnemec, “Fluoronar, Series 1071V”, or equal.

E. Galvanized Metal: Provide the following finish system over exterior galvanized metal:
1. Low Semigloss, Acrylic Polymer Finish: Finish coat over primer.
 a. Primer: Satin, low odor, low VOC, water-based epoxy coating, applied at spreading rate required to achieve a total dry film thickness recommended by the manufacturer.
 1) Basis of Design Product: As manufactured by Tnemec, “Typoxy, Series 27WB”, or equal.
 b. Finish Coat: Low semigloss, water-based, low VOC, high dispersion pure acrylic polymer coating, applied at spreading rate required to achieve a total dry film thickness recommended by the manufacturer.
 1) Basis of Design Product: As manufactured by Tnemec, “Enduratone, Series 1029”, or equal.

3.04 INTERIOR PAINT SCHEDULE

A. Gypsum Board and Plaster
1. Eggshell Finish Where Indicated: Finish coat(s) to cover over a primer.
 a. Primer: Latex based, interior primer applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
 b. Finish Coat: Low luster eggshell, acrylic-latex based, interior enamel applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
2. Semigloss Finish Where Indicated: Finish coat(s) to cover over a primer.
 a. Primer: Latex based, interior primer applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
 b. Finish Coat: Semigloss, acrylic latex, interior enamel applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.

B. Opaque Finish for Wood
1. Semigloss Finish: Finish coat(s) to cover over a primer.
 a. Primer: Latex based, interior primer applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
 b. Finish Coat: Semigloss, acrylic latex, interior enamel applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.

C. Transparent Finish for Wood
1. Waterborne, Satin-Varnish Finish: 2 finish coats of a waterborne, clear-satin varnish over a sealer coat and a waterborne, interior wood stain. Wipe wood filler before applying stain.
 a. Filler Coat: Paste-wood filler applied at spreading rate recommended by the manufacturer.
b. Stain Coat: Waterborne, interior wood stain applied at spreading rate recommended by the manufacturer.

c. First and Second Finish Coats: Waterborne, varnish finish applied at spreading rate recommended by the manufacturer.

D. Ferrous and Galvanized Metal
 1. Semigloss, Acrylic Enamel Finish: 1 finish coat over enamel undercoat and a primer. Primer is not required on shop-primed items.
 a. Primer: Quick drying, rust-inhibitive epoxy metal primer, as recommended by the manufacturer for this substrate, applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
 b. Undercoat: Acrylic, interior enamel undercoat or semigloss, acrylic latex, interior enamel, as recommended by the manufacturer for this substrate, applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.
 c. Finish Coat: Semigloss, acrylic latex, interior enamel applied at spreading rate required to achieve a total dry film thickness as recommended by the manufacturer.

END OF SECTION
SECTION 09 97 25

VAPOR EMISSION TREATMENT SYSTEMS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Vapor control barrier applied to new and existing concrete slabs at interior areas scheduled to receive moisture sensitive floor coverings, as required.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
1. Section 03 35 00 - Concrete Finishing: For concrete crack and surface repairs.
2. Section 09 65 00 - Resilient Flooring: Provision of resilient flooring.

1.02 REFERENCES

1.03 SUBMITTALS

A. Product Data: Provide the following.
1. Descriptive Literature: Materials and accessories.
2. Project References: Similar project completed within 5 years.
3. Installer: Direct factory/manufacturer employed personnel certificates for each installer.
4. Field Documents: Manufacturer shall provide written acceptance of on-site conditions, concrete mix design, admixtures, concrete salts, sub-slab vapor retarder, and surface applied contaminants, prior to barrier installations. No exceptions.

B. Quality Assurance Submittals: Provide the following independent test results indicating compliance
1. ASTM C309 Curing Requirements.
2. ASTM D1308 Alkali Resistance.
3. ASTM C1315 Curing/Sealing Requirements.
4. ASTM C156 Water Retention Level.
5. ASTM D4541 Floor Adhesion Testing.
1.04 QUALITY ASSURANCE

A. Qualifications
 1. Manufacturer: Manufacturing history of 10 years and product liability insurance in the amount of $1,000,000 per occurrence.
 2. Installer: Manufacturer direct installations by factory employed personnel. No exceptions.

1.05 WARRANTY

A. Manufacturer’s Warranty: Written warranty, signed by manufacturer, agreeing to replace water system that does not comply with requirements or that does not remain watertight during specified warranty period.

B. Warranty shall not exclude concrete salts, admixtures, surface contaminants, or resin and silicate surface treatments. Installations on slab surfaces deemed acceptance of on-site conditions. Manufacturer is responsible for complete review of concrete mix designs, admixtures, sub-slab vapor retarder installed, and curing methods, for written acceptance prior to installation.

C. Workmanship and Materials Warranty
 1. Manufacturing Defects Warranty Period: 10 years.
 2. Installation Defects Warranty: 10 years.
 3. Warranty Covering Improper Installations: 10 years.
 4. Moisture and Alkalinity Damage to Flooring: 10 years.
 5. Manufacturer’s limited warranty shall cover 100 percent of the cost to repair or replace floor coverings damaged by moisture and alkalinity. Coverage shall include:
 a. Installed epoxy based vapor/alkalinity barrier.
 b. Floor covering systems or resinous materials.
 c. Adhesives, patching materials and installation accessories.
 d. All installation labor charges involved.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers
 1. At New Concrete: Floor Seal Technology, Inc., “Vapor Seal 309”, or equal.
 2. At Existing Concrete: Floor Seal Technology, Inc., “MES-100”, or equal.

2.02 MATERIALS

A. At New Concrete: Provide vapor/alkalinity barrier, 36 percent modified resin based penetrating barrier, containing specifically formulated chemicals and resins to saturate slab surfaces for seamless vapor/alkali barrier to protect floor coverings from damage.

B. At Existing Concrete: Provide low emission, resin penetrant applied to slab surfaces with vapor emission and alkalinity levels caused by residual water-of-convenience and interstitial condensation of moisture from building atmosphere.

C. Materials containing water based solutions of sodium, potassium, and lithium silicates do not meet performance levels specified in this Section. Silicate based solutions are chemically reactive and do not meet the intent of ASTM C309. See ASTM documents for verification.
PART 3 - EXECUTION

3.01 EXAMINATION

A. Site Verification of Conditions: Verify that sub-slab vapor retarder meets ASTM E1745 Class A; the concrete water-to-cement ratio maximum of 0.45; sub-soil over vapor retarder is not rained on or saturated, and concrete is not poured during a day of rain.

B. Manufacturer shall accept conditions in writing prior to installation.

3.02 PREPARATION

A. General: Coordinate work with work specified under other sections to ensure proper and adequate interface of work. Protect all adjacent surfaces from drips, spray, air pollution of surrounding environment, and other damage from work.

B. Concrete Substrates: Apply when concrete is not marred by walking workman. Freshly poured concrete shall be free of surface contaminates, rain, and other sealing/curing materials.

3.03 APPLICATION

A. At New Concrete
 1. General: Apply material while concrete is still wet to produce a uniform, monolithic wearing surface.
 2. Coordinate application of components to provide optimum adhesion to substrate.
 3. Begin application by manufacturer employed personnel or factory installer when on-site conditions are accepted.
 4. Apply system coat(s) in thickness to achieve maximum performance.
 5. Barrier Application: Coverage rate for system shall be based on the surface texture and porosity of the substrates. Maximum cure time of 12 hours. Allow walking traffic in 4 hours.

B. At Existing Concrete
 1. Shot blast concrete surface to open pore and grind near edges. Remove bond breakers; remove curing compounds, and ensure a clean surface profile.
 2. All structural cracks, control joints and cold joints shall be cleaned for treatment application. Broom sweep and vacuum out debris. Any features with large, thorough passage into soil substrate shall be thoroughly dugout, vacuumed, filled with appropriate crack filling material.
 3. All cleaned structural cracks and control joints shall be treated per system requirements for a warranted system.
 4. Fill all structural cracks, control joints and cold joints, and clean and fill all divots, voids, chips or other surface feature irregularities with an approved resin/100 percent portland based type compound. Gypsum based filling materials will fail under moisture conditions and are not allowed under any circumstances.
 5. The acceptable concrete surface profile will feature a texture that is similar to a 200 grit sandpaper. Slick surfaces from curing compounds and/or release agents must be shot blasted completely off.

3.04 FIELD QUALITY CONTROL

A. Validation Testing: Perform post installation testing at 1 calcium chloride test per 1,000 square feet. Interior temperature and humidity to be similar during the City’s occupancy.
B. Reapply materials in areas above flooring manufacturer’s limits, prior to floor covering installations at no additional charge to the City.

3.05 PROTECTION

A. Protection: Protect installations during specified cure periods from any kind of traffic, topical water, and contaminants.

END OF SECTION
SECTION 10 11 00

VISUAL DISPLAY SURFACES

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Markerboards.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Section
 1. Section 09 29 00 - Gypsum Board: Provision of gypsum board surfaces.

1.02 REFERENCES

A. APA - American Plywood Association

B. UL - Underwriters’ Laboratories Inc.

1.03 SUBMITTALS

A. Product Data: Provide manufacturer’s product data for visual display surfaces.

B. Shop Drawings: Provide shop drawings for each type of visual display surface required. Include sections of typical trim members and dimensioned elevations. Show anchors, grounds, reinforcement, accessories, layout, and installation details.

C. Samples: Provide the following samples of each product for initial selection of colors, patterns, and textures, as required, and for verification of compliance with requirements indicated.
 1. Porcelain Enamel Markerboard: Manufacturer’s color charts consisting of actual sections of porcelain enamel finish showing the full range of colors available for each type of markerboard required.
 2. Aluminum Trim and Accessories: Samples of each finish type and color, on 6 inch long sections of extrusions and not less than 4 inch squares of sheet or plate, showing the full range of colors available.

D. Manufacturer’s Installation Data: Manufacturer’s recommended installation procedures which, when approved by the Architect, will become the basis for accepting or rejecting actual installation procedures used on the Work.

1.04 QUALITY ASSURANCE

A. The Drawings indicate size, profiles, and dimensional requirements of visual display boards and are based on the specific type and model indicated. Other visual display boards having equal performance characteristics by other manufacturers may be considered provided that deviations in dimensions and profiles are minor and do not change the design concept or intended performance as judged by the Architect. The burden of proof of equality is on the proposer.
1.05 PROJECT CONDITIONS

A. Field Measurements: Take field measurements prior to preparation of shop drawings and fabrication to ensure proper fitting. Show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delay.
 1. Allow for trimming and fitting wherever taking field measurements before fabrication might delay the Work.

1.06 WARRANTY

A. Porcelain Enamel Markerboard Warranty: Furnish the manufacturer’s written warranty, agreeing to replace porcelain enamel markerboards that do not retain their original writing and erasing qualities, become slick and shiny, or exhibit crazing, cracking, or flaking, provided the manufacturer’s instructions with regard to handling, installation, protection, and maintenance have been followed.
 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 MATERIALS

A. Porcelain Enamel Markerboards: Provide balanced, high pressure laminated porcelain enamel markerboards of 3-ply construction consisting of face sheet, core material, and backing.
 1. Surface: Provide face sheet of magnetic, 24 gauge vitracite face over backing. Coat the exposed face and exposed edges with a 3-coat process consisting of primer, ground coat, and color cover. Fuse cover and ground coats to steel at the manufacturer’s standard firing temperatures, but not less than 1,200 degrees Fahrenheit.
 a. Color: Low gloss white.
 2. Size: 4 feet by 8 feet, unless otherwise indicated.
 3. Chalktray: Continuous, solid extrusion-type aluminum chalktray, triangular profile, with ribbed section and formed aluminum end caps.
 4. Map Rail: Provide 2-inch wide extruded aluminum map rail with cork insert. Aluminum end stops and 4 metal map hooks per linear feet of display board width.
 5. Backing: 1/4-inch thick interior type standard underlayment bearing trademark of APA or high quality hardboard as standard with reviewed manufacturer.
 7. Adhesive: As recommended by markerboard manufacturer.

2.03 ACCESSORIES

A. Metal Trim and Accessories: Fabricate frames and trim of not less than 0.062-inch thick aluminum alloy, size and shape as indicated, to suit type of installation. Provide straight, single-length units wherever possible; keep joints to a minimum. Miter corners to a neat, hairline closure.
 1. Aluminum Finish: Manufacturer’s standard clear anodized.
B. Where the size of boards or other conditions exist that require support in addition to the normal trim, provide structural supports or modify the trim as indicated or as selected by the Architect from the manufacturer’s standard structural support accessories to suit the condition indicated.

2.04 FABRICATION

A. Porcelain Enamel Markerboards: Laminate facing sheet and backing sheet to core material under pressure with manufacturer’s recommended flexible, waterproof adhesive.

B. Assembly: Provide factory-assembled visual display units, except where field-assembled units are required.
 1. Make joints only where total length exceeds maximum manufactured length. Fabricate with the minimum number of joints, balanced around the center of the surface, as acceptable to the Architect.
 2. Provide the manufacturer’s standard vertical joint system between abutting sections of visual display surfaces.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Deliver factory-built visual display surfaces completely assembled in 1 piece without joints, wherever possible. Where dimensions exceed panel size, provide 2 or more pieces of equal length as acceptable to the Architect. When overall dimensions require delivery in separate units, prefit components at the factory, disassemble for delivery, and make final joints at the site. Use splines at joints to maintain surface alignment.

B. Install units in locations and at mounting heights indicated and in accordance with the manufacturer’s instructions. Keep perimeter lines straight, plumb, and level. Provide grounds, clips, backing materials, adhesives, brackets, anchors, trim, and accessories necessary for a complete installation.

C. Coordinate job-site assembled units with grounds, trim, and accessories. Join parts with a neat, precision fit.

3.02 ADJUST AND CLEAN

A. Verify that accessories required for each unit have been properly installed and that operating units function properly.

B. Clean units in accordance with the manufacturer’s instructions. Break in visual display surfaces only as recommended by the manufacturer.

END OF SECTION
SECTION 10 14 00
SIGNAGE

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Exterior and interior signage as indicated on the Drawings.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. ADA - Americans with Disabilities Act

B. ASTM - American Society for Testing and Materials

C. CBC - California Building Code, 2016 Edition

1.03 SYSTEM DESCRIPTION

A. Design Requirements: Design all signs as required by ADA and CBC - Title 24.

1.04 QUALITY ASSURANCE

A. Regulatory Requirements
 1. Comply with ADA and CBC requirements for signage, to include Braille.
 2. Provide signs at public toilet rooms with the following text: UNISEX.

1.05 SUBMITTALS

A. Product Data: Submit manufacturer’s product data describing materials and signs.

B. Shop Drawings
 1. Provide shop drawings showing construction details for approval before proceeding with fabrication. Include full size details of exposed edges, joints between materials, hanging, hinging and locking systems and any other details which would affect sign appearance.
 2. Fasteners: Detail methods of fastenings and provide exact specifications for all fasteners noted on shop drawings.
 3. Artwork
 a. Submit full size patterns or prints of typical copy layouts and/or graphic elements to be applied on signs. Using layouts on the Drawings as a guide, optically enlarge and hand correct images before submitting to the Architect for approval before fabrication.
 b. Elevator Lobby fire evacuation map art shall be schematically presented. Submit camera ready artwork for all floors to the Architect for approval prior to fabrication.
4. Sign Location: Provide Graphic Schedule and location plans to identify and locate all signs. Item numbers listed in the Graphic Schedule shall be found on location plans and shall identify locations of specific sign items.

C. Samples
1. On 6-inch by 6-inch pieces of actual sign materials, submit to the Architect for review and approval, 3 samples of painted and graphic finishes, in each material, color and finish, with texture to simulate actual conditions.
2. Provide listing of the material and application for each coat of each finish sample.
3. Be prepared to resubmit each sample as requested until required sheen, color and texture are approved.
4. Acrylic: Submit color and finish samples of plastics for approval before proceeding with fabrication. No substitution in color, thickness, finish or plastics will be accepted without written approval of the Architect.
5. Fasteners: Submit 1 sample of all fasteners and hardware for approval.
6. Paint: Submit 3 color and finish samples of all paints and finishes for approval prior to fabrication.

D. Operation and Maintenance: Provide the City's Project Manager with proper cleaning instructions required for continued maintenance of signs.

1.06 QUALITY ASSURANCE

A. Pre-Installation Conferences: Sign locations shown on the location plans are for general information only. Prior to installation and as required, arrange meetings with the Architect at the site for final location for all sign items.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: ASI Sign Systems, Inc.; Superior Sign Systems; Vomar Products, Inc., or equal.

2.02 MATERIALS

A. Exterior Accessibility Signs: 18 gauge steel, stretcher leveled, ASTM A1008, Class I, matte finish, galvanized; screen printed blue with white symbol in accordance with ADA.

B. Plastic Signs: Matte finish acrylic plastic, minimum 1/8-inch thick, without frame, with corners radiused. Message and background color shall be sub-surface printed. Provide with raised room numbers and Braille.

C. Mounting Tape: Double-sided vinyl foam tape; provide silicone adhesive for attachment to wall surface.

D. Fasteners: Where fasteners are indicated or required, use exposed “torx type” tamper-proof security screws.

E. Coatings for Acrylic Plastic Sheet: Use colored coatings, including inks and paints for copy and background colors, that are recommended by acrylic manufacturers for optimum adherence to acrylic surface and are non-fading for the application intended.
2.03 ACRYLIC SIGNS

A. Acrylic Signs: Comply with requirements indicated for materials, thicknesses, finishes, colors, designs, shapes, sizes, and details of construction.

B. Unframed Acrylic Signs: Fabricate signs with edges mechanically and smoothly finished to conform with the following requirements:
 1. Edge Condition: Square cut.
 2. Corner Condition: 1/2-inch radius.
 3. Produce smooth, even, level sign panel surfaces, constructed to remain flat under installed conditions within a tolerance of plus or minus 1/16-inch measured diagonally.

C. Graphic Content and Style: Provide sign copy that complies with the requirements indicated for size, style, spacing, content, position, material, finishes, and colors of letters, numbers, and other graphic devices.

D. Message Inserts: Where sign type makes provision for changeable name slots, provide laser printed name strips with text as scheduled. Obtain message from the City’s Project Manager before fabrication. Where no text is scheduled, insert blank message strip in slot for future text by the City’s Project Manager.

E. Photopolymer (Raised Copy): Machine-cut copy characters from matte finish opaque acrylic sheet and chemically weld onto the acrylic sheet forming sign panel face. Produce precisely formed characters with square cut edges free from burrs and cut marks.
 1. Panel Material: Matte-finished acrylic stock with opaque color coating surface applied; 2 colors, minimum 70 percent contrast between color 1 and color 2.
 2. Raised Copy Thickness: Not less than 1/32-inch.

2.04 FINISHES

A. Colors: For exposed sign material that requires applied colors and other characteristics related to appearance, see Drawings.

2.05 BRAILLE SYMBOLS

A. Braille Symbols: California Contracted Grade 2 Braille shall be used wherever Braille symbols are specifically required in other portions of these standards. Dots shall be 1/10-inch on centers in each cell with 2/10-inch space between cells. Dots shall be raised a minimum of 1/40-inch above the background.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine the substrate and conditions in which the work is to be installed. Correct all unsatisfactory substrate and conditions prior to start of installation.

3.02 INSTALLATION

A. General
 1. Install signage in neat and proper manner.
 2. Install sign items, including all components, in accordance with reviewed Graphic Schedule at locations shown.
 3. Install signs properly aligned, level and true to line and dimension.
B. Install with reviewed manufacturer’s adhesive or mechanical fasteners after application of finish painting at heights noted.

3.03 SCHEDULE

A. Signage font, size, color and background color as indicated on the Drawings.

B. Signage shall be in compliance with CBC.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
 1. Floor mounted overhead braced “gap free” phenolic toilet partitions.
 2. Floor to ceiling post-mounted urinal screens.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. ADA - Americans with Disabilities Act
B. ASTM - American Society for Testing and Materials
C. CBC - California Building Code, 2016 Edition
D. UL - Underwriters Laboratories Inc.

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for materials, fabrication, and installation including catalog cuts of anchors, hardware, fastenings, and accessories.

B. Samples for Initial Selection: Standard color options for each type of unit indicated for selection by the Architect.

C. Shop Drawings: Submit shop drawings for fabrication and erection of toilet compartment assemblies not fully described by product drawings, templates, and instructions for installation of anchorage devices built into other work.

1.04 QUALITY ASSURANCE

A. Regulatory Requirements: Install fire rated ceiling systems in accordance with CBC and UL FRD listing and requirements of agency having jurisdiction.

1.05 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication and indicate measurements on shop drawings.

B. Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating toilet compartments without field measurements. Coordinate wall, floor, ceilings, and other contiguous construction to ensure that actual dimensions correspond to established dimensions.
1.06 WARRANTY

A. Manufacturer's Warranty: Manufacturer's standard 25-year limited warranty for panels, doors, and stiles against breakage, corrosion, delamination, and defects in factory workmanship. Manufacturer's standard 1-year guarantee against defects in material and workmanship for stainless steel door hardware and mounting brackets.

B. General Warranty: Special warranties specified in this Article shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturer: Bobrick Washroom Equipment, Inc, or equal.

2.02 MATERIALS

A. General: Provide materials which have been selected for surface flatness and smoothness. Exposed surfaces which exhibit pitting, seam marks, roller marks, stains, discolorations, telegraphing of core material, or other imperfections on finished units are not acceptable.

B. Solid Phenolic: Solid, color-through phenolic material, meeting ASTM E84, with high pressure matte finish melamine surfaces fused to core with adhesives containing no urea formaldehyde. Edges shall be black.
 1. Product: As manufactured by Formica Group; Wilsonart, LLC, or equal.

C. Pilaster Shoes and Sleeves (Caps): Manufacturer’s standard stainless steel, Type 304.

D. Full Height (Continuous) Brackets: Manufacturer’s standard design for attaching panels and screens to walls and pilasters with stainless steel, Type 304, brackets.

E. Hardware and Accessories: Manufacturer’s standard design, heavy duty operating hardware and accessories of stainless steel, Type 304. Provide slide bolts at handicapped stalls. Mount coat hooks and bumpers 48 inches above the floor.

F. Overhead Bracing: Manufacturer’s standard continuous, extruded aluminum head rail with antigrip profile in manufacturer's standard finish.

H. Anchorages and Fasteners: Manufacturer's standard theft-proof concealed fasteners finished to match hardware.

2.03 FABRICATION

A. General: Provide standard doors, panels, screens, and pilasters fabricated for compartment system. Provide units with cutouts and drilled holes to receive compartment-mounted hardware, accessories, and grab bars, as indicated.
B. Provide manufacturer’s standard corrosion resistant supports, leveling mechanism, fasteners, and anchors at pilasters to suit floor conditions. Make provisions for setting and securing continuous head rail at top of each pilaster. Provide shoes at pilasters to conceal supports and leveling mechanism.

C. Door Dimensions: Unless otherwise indicated, furnish 24 inch wide in-swinging doors for ordinary toilet stalls and 32 inch wide (clear opening) out-swinging doors for stalls equipped for use by handicapped in accordance with ADA requirements.
 1. Provide “gap-free” option for privacy concerns; provides no sightlines between doors and stiles.

D. Post-Supported Screens: Provide panel units in sizes indicated, of same construction and finish as compartment system panels.

E. Hardware: Furnish hardware for each compartment to comply with ADA for handicapped accessibility and as follows:
 1. Hinges: Heavy-duty cutout insert type, adjustable to hold door open at any angle up to 90 degrees. Provide gravity type, spring-action cam type, or concealed torsion rod type to suit manufacturer’s standards. Mount hinges with concealed brass-threaded inserts to achieve concealed fasteners, metal-to-metal connection.
 2. Latch and Keeper: Manufacturer’s standard surface mounted latch unit, designed for handicapped accessibility, with combination rubber-faced door strike and keeper.
 3. Coat Hook: Manufacturer’s standard unit, combination hook and rubber-tipped bumper, sized to prevent door hitting mounted accessories.
 4. Door Pull: Manufacturer’s standard unit for out-swinging doors. Provide pulls on both faces of handicapped compartment doors.

2.04 FINISH

A. Color: As selected by the Architect/City from phenolic manufacturer’s full range of available colors.

PART 3 - EXECUTION

3.01 INSTALLATION

A. General: Comply with manufacturer’s recommended procedures and written installation instructions and sequence. Install compartment units rigid, straight, plumb, and level. Provide clearances of not more than 1/2-inch between pilasters and panels, and not more than 1 inch between panels and walls. Secure units in position with manufacturer’s recommended anchoring devices.

B. Secure pilasters to floor and level, plumb and tighten. Secure continuous head rail to each pilaster with not less than 2 fasteners. Hang doors and adjust so tops of doors are parallel with overhead brace when doors are in closed position.

C. Post-Supported Urinal Screens: Attach with anchoring devices to suit supporting structure. Set units level and plumb and to resist lateral impact.

3.02 ADJUST AND CLEAN

A. Hardware Adjustment: Adjust and lubricate hardware for proper operation. Set hinges on in-swinging doors to hold open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors (and entrance swing doors) to return to fully closed position.
B. Clean exposed surfaces of partition systems using materials and methods recommended by manufacturer, and provide protection as necessary to prevent damage during remainder of construction period.

END OF SECTION
SECTION 10 22 33

ACCORDION FOLDING PARTITIONS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Manually-operated accordion folding partitions, including hardware and accessories.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. ASTM - American Society for Testing and Materials

1.03 SYSTEM DESCRIPTION

A. Design Requirements: Provide acoustical accordion partitions having minimum STC ratings of 41 when tested in accordance with ASTM E90.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer’s data completely describing products.

B. Shop Drawings: Submit drawings showing complete installation details, required clearances, and relation to building structure.

C. Samples: Submit 6-inch square sample of covering fabric for color selection.

D. Quality Control Submittals
 1. Test Reports: Submit independent field tests conducted by accredited acoustical consultant showing acoustical performance.
 2. Manufacturer’s Instructions
 a. Submit installation instructions. Include manufacturer’s data, operating instructions, and maintenance data and recommended spare parts with cost and recommended quantities.
 b. Furnish installer a copy of diagrams and installation instructions.

E. Contract Closeout Submittals: Provide maintenance data for partition.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Factory trained by reviewed manufacturer.
1.06 DELIVERY, STORAGE, AND HANDLING

A. Acceptance at Site: Deliver acoustical accordion folding partitions where directed with items packed separately, complete and ready for installation with necessary fittings, trim, fasteners and accessories. Packaging shall bear manufacturer’s name and identify items according to reviewed shop drawings.

B. Storage and Protection: Protect acoustical accordion partitions and tracks prior to installation.

1.07 PROJECT CONDITIONS

A. Field Measurements: Verify dimensions and design for each opening.

1.08 SEQUENCING AND SCHEDULING

A. Coordination: Coordinate work of this Section with adjoining work as required for proper installation.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 COMPONENTS

A. Accordion Folding Partitions
 1. Type: Bi-parting, paired accordion doors with a plus or minus 2-feet pocket wall.
 2. Operation: Top supported and manually-operated.
 3. Construction: 2 parallel accordion-type walls of panels independently suspended with no pantographs or interconnections except at the lead-post.
 4. Panels: Formed of cold rolled vinyl-clad 24-gauge V-grooved steel; vinyl shall be permanently bonded by heat pressure lamination to the steel panel; panels shall be connected by full height extruded vinyl hinges.
 a. Color: As selected by the Architect.
 5. Insulation: Interior surfaces of both walls shall be completely covered with a continuous blanket of 2 lb. density foil-backed fiberglass fastened in place with steel spring-clips.
 6. Suspension System: 2 extruded aluminum tracks spaced 6 inches or 8 inches on center attached to the overhead structural support; each panel shall be suspended by a steel hanger pin and a pair of nylon-tired ball bearing rollers; each lead-post shall be suspended by an 4-wheel ball bearing trolley.
 7. Lead-Posts: 16-gauge cold rolled steel and connected to the partition by specially formed steel panels; lead-post hardware shall include standard grip-type handles and sliding latch to affect closure.
 8. Perimeter Seals: Continuous extruded vinyl sweep strips attached to the top and bottom of the partition; leading edges of lead-posts and receiver posts shall be acoustically sealed by extruded vinyl interlocking seals.
 9. Hanging Weight: 4.2 pounds per square foot.
2.03 FABRICATION

A. Factory Assembly: Assemble accordion partition components in factory to greatest extent possible.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine opening locations and verify the following:
 1. Correctness of dimensions, backing, or support conditions.
 2. Absence of defects that would adversely affect frame or door installation.

B. Do not start work until unsatisfactory conditions are corrected.

3.02 PREPARATION

A. Coordinate details with other work supporting or adjoining accordion folding partitions.

B. Furnish fastening devices as required to mount partitions properly.

3.03 INSTALLATION

A. Install acoustical accordion partitions in accordance with reviewed shop drawings and as indicated in accordance with ASTM E557.

B. Set plumb, square, level, free from twist and in exact alignment for operation; ensure proper, smooth operation.

3.04 ADJUSTING

A. Verify that assemblies are securely anchored to structure, guides are perfectly aligned, partitions are adjusted for smooth operation.

B. Upon completion, ensure partitions are free from warp, twist, or distortion and are lubricated and properly adjusted to operate freely.

C. After completion of partition and finish work and prior to final acceptance, adjust acoustical accordion doors for proper operation.

D. Replace any damaged or otherwise disfigured partitions with new prior to the City’s final acceptance.

3.05 CLEANING

A. Thoroughly clean surfaces of grease, oil, and other impurities.

B. Protect accordion folding partitions from damage, until final acceptance.

END OF SECTION
SECTION 10 28 13
TOILET ACCESSORIES

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes: Toilet accessories, including backing plates for grab bars.
B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
C. Related Sections
 1. Section 07 21 01 - Building Insulation: Provision of under sink pipe insulation.
 2. Section 08 83 00 - Mirrors: Provision of sheet mirrors.

1.02 REFERENCES
A. ADA - Americans with Disabilities Act
B. AISI - American Iron and Steel Institute
C. ASTM - American Society for Testing and Materials
 2. A653 - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
D. CBC - California Building Code, 2016 Edition

1.03 SUBMITTALS
A. Product Data: Submit manufacturer’s product data for each toilet accessory item specified, including construction details relative to materials, dimensions, gauges, profiles, mounting method, specified options, and finishes.
B. Shop Drawings: Submit setting drawings where cutouts are required in other work, including templates, substrate preparation instructions, and directions for preparing cutouts and installing anchorage devices.
C. Contract Closeout Submittals: Submit maintenance instructions including replaceable parts and service recommendations.

1.04 QUALITY ASSURANCE
A. Regulatory Requirements
 1. Grab Bars and Fasteners: Strength of grab bars, fasteners and mounting devices shall comply with CBC and ADA requirements.
 2. Grab Bar Surfaces: Conform to CBC.
3. Mounting Heights of Accessories: Comply with requirements of CBC.
4. Operating Pressure for Soap Dispensers: Comply with ADA.

B. Inserts and Anchorages: Furnish accessory manufacturers’ standard concealed inserts and anchoring devices. Coordinate delivery with other work to avoid delay.

1.05 PROJECT CONDITIONS

A. Coordination: Coordinate accessory locations, installation, and sequencing with other work to avoid interference with and ensure proper installation, operation, adjustment, cleaning, and servicing of toilet accessory items.

1.06 WARRANTY

A. Warranty: Submit a written warranty executed by mirror manufacturer, agreeing to replace any mirrors that develop visible silver spoilage defects within warranty period.

B. Warranty Period: 10 years from date of Substantial Completion.

C. Warranty shall not deprive the City of other rights the City may have under other provisions of the Contract Documents and will be in addition to and run concurrent with other warranties made by the Contractor under requirements of the Contract Documents.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Bobrick Washroom Equipment, Inc.; Bradley Corporation, or equal.

2.02 MATERIALS

A. General: Fabricate toilet accessory items form the following materials and according to requirements specified for individual accessory items.
1. Stainless Steel: AISI Type 302/304, with polished No. 4 finish, 22 gauge minimum thickness, unless otherwise indicated.
2. Galvanized Steel Sheet: ASTM A653, G60.
5. Fasteners: Screws, bolts, and other devices of same material as accessory unit, or of galvanized steel where concealed.
6. Keys: Provide universal keys for access to toilet accessory units requiring internal access for servicing, resupply. Provide a minimum of 6 keys to the City’s Project Manager.
7. Mirrors: ASTM C1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.03 ACCESSORIES

A. Toilet Accessories
4. Seat Cover and Toilet Tissue Dispenser: Recess-mounted, Type 304 stainless steel, satin finish, door unlocks with key and swings open for filling, as manufactured by Bobrick Washroom Equipment, Inc., “ClassicSeries B-3474”, or equal.
5. Seat Cover and Toilet Tissue Dispenser and Sanitary Napkin Disposal: Recess-mounted, Type 304 stainless steel, satin finish, door unlocks with key and swings open for filling, as manufactured by Bobrick Washroom Equipment, Inc., “ClassicSeries B-3574”, or equal.
7. Soap Dispensers
 a. Type 1: Surface-mounted, 22 gauge stainless steel, satin finish, as manufactured by Bobrick Washroom Equipment, Inc., “ClassicSeries B-2111”, or equal.
 b. Type 2: Lavatory-mounted, piston press design, Type 304 stainless steel with bright polished finish, high-impact-resistant plastic, as manufactured by Bobrick Washroom Equipment, Inc., “B-8226”, or equal.

B. Mounting Plates: Non-corrosive material. Provide as required.

C. Under Sink ADA Pipe Insulation: As specified in Section 07 21 01.

2.04 FABRICATION

A. General: Only a maximum 1-1/2 inch diameter, unobtrusive stamped manufacturer logo, as approved by the Architect, is permitted on exposed face of toilet or bath accessory units. On either interior surface not exposed to view or back surface, provide additional identification by either a printed, waterproof label or a stamped nameplate, indicating manufacturer’s name and product model number.

B. Surface-Mounted Toilet Accessories, General: Except where otherwise indicated, fabricate units with tight seams and joints, exposed edges rolled. Hang doors or access panels with continuous stainless steel piano hinge. Provide concealed anchorage wherever possible.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install toilet accessory units according to manufacturer’s instructions, using fasteners appropriate to substrate as recommended by unit manufacturer. Install units plumb and level, firmly anchored in locations and at heights indicated.
B. Secure mirrors to walls in concealed, tamperproof manner with special hangers, toggle bolts, or screws. Set units plumb, level, and square at locations indicated, according to manufacturer’s instructions for type of substrate involved.

C. Install grab bars to withstand a downward load of at least 250 lbf, complying with ASTM F446.

3.02 ADJUSTING AND CLEANING

A. Adjust toilet accessories for proper operation and verify that mechanisms function smoothly. Replace damaged or defective items.

B. Clean and polish all exposed surfaces strictly according to manufacturer’s recommendations after removing temporary labels and protective coatings.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Fire extinguishers complete with cabinets.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. NAAMM - National Association of Architectural Metal Manufacturers
 1. MFM - Metal Finishes Manual for Architectural Metal Products.

B. SSPC - The Society for Protective Coatings
 1. SP 1 - Surface Preparation Specification No. 1: Solvent Cleaning.
 2. SP 5 - Surface Preparation Specification No. 5: White Metal Blast Cleaning.
 3. SP 8 - Surface Preparation Specification No. 8: Pickling.

C. UL - Underwriters Laboratories Inc.

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s product data for cabinets include rough-in dimensions, details showing mounting methods, relationships of box and trim to surrounding construction, door hardware, cabinet type and materials, trim style, door construction, panel style, and materials.

B. Samples: Submit samples for initial selection purposes in the form of manufacturer’s color charts consisting of actual units or sections of units showing full range of colors, textures, and patterns available for each type of cabinet finish indicated or exposed to view.

C. Obtain Project Fire Inspector’s approval of cabinet and extinguisher model prior to purchase.

1.04 QUALITY ASSURANCE

A. Single-Source Responsibility: Obtain extinguishers and cabinets from one source from a single manufacturer.

B. UL Listed Products: Fire extinguishers shall be UL listed with UL listing mark for type, rating, and classification of extinguisher.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: Larsen’s Manufacturing Co.; J. L. Industries, or equal.
2.02 MATERIALS

A. Fire Extinguishers: Multipurpose under pressure, dry chemical type bearing UL rating of 2A-10B:C, 5 pounds nominal capacity, in enameled steel container.

B. Cabinets
 1. Recess, semi-recessed, and wall-mounted units, 1-piece steel construction with 18 gauge steel box; trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated; weld joints and grind smooth; miter and weld perimeter door frames.
 2. Provide reviewed manufacturer’s stainless steel door handles.
 3. Door Style: Manufacturer’s door with clear acrylic view panel.

C. Identify fire extinguisher in cabinet with FIRE EXTINGUISHER red lettering applied to door. Provide lettering to comply with authorities having jurisdiction for letter style, color, size, spacing, and location.

2.03 FINISHES FOR CABINETS

A. General
 1. Comply with NAAMM’s MFM for recommendations relative to applying and designating finishes.
 2. Protect mechanical finishes on exposed surfaces from damage by applying temporary strippable protective covering prior to shipping.

B. Steel Cabinet
 1. Surface Preparation: Solvent-clean surfaces complying with SSPC SP 1 to remove dirt, oil, grease, and other contaminants that could impair paint bond. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC SP 5 or SSPC SP 8.
 2. Baked Enamel Finish: Immediately after cleaning and pretreatment, apply manufacturer’s standard 2-coat baked enamel finish consisting of prime coat and thermosetting topcoat. Comply with paint manufacturer’s instructions for applying and baking to achieve a minimum dry film thickness of 2.0 mils.
 3. Color: As selected by the Architect from manufacturer’s standard options.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine walls and partitions for thickness and framing for cabinets to verify cabinet depth and mounting prior to cabinet installation.

B. Do not proceed until unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Follow manufacturer’s printed instructions for installation.

B. Install in locations and at mounting heights indicated or, if not indicated, at heights to comply with applicable regulations of governing authorities.
 1. Fasten mounting brackets and cabinets to structure, square and plumb.

END OF SECTION
SECTION 12 24 00
WINDOW SHADES

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes: Manually operated window shades, as indicated.
B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES
A. ASTM - American Society for Testing and Materials
B. FS - Federal Specifications
 1. CCC-C-521e - Cloth, Coated, Window Shade.
C. NFPA - National Fire Protection Association

1.03 SYSTEM DESCRIPTION
A. Performance Requirements
 1. Shade cloth shall be constructed of a woven screen material consisting of yarns comprised of extruded vinyl coated polyester core yarn as a composite thermoplastic shade cloth that shall be sealed at the edges, assuring binding the core yarn to the coating at the cut edge to assure a sealed edge to substantially minimize raveling. Screen clothes to have inert core yarns; i.e. fiberglass shall not be acceptable.
 2. Shade cloth shall meet requirements of FS CCC-C-521e for fire retardancy and NFPA 701 Small Scale requirements. Antimicrobial without topical treatment. Material shall meet requirements of ASTM E84, with flame spread rating of 17 and smoke density index of 118.

1.04 SUBMITTALS
A. Product Data: Submit manufacturer’s product data for shade specified. Include printed data on physical characteristics.
B. Shop Drawings: Show locations, relationship to window frames and attachment. Note dimensions of windows to be verified at job site.
C. Samples
 1. Submit minimum 1 foot square fabric swatch for review of color and texture and 4 feet by 8 feet sample for mock up to confirm light reducing quality of fabric.
 2. Submit schedule of shades using same room designations indicated on the Drawings.
D. Quality Control Submittals: Submit manufacturer’s installation instructions for each type of window treatment specified.
E. Contract Closeout Submittals: Submit maintenance data for window treatments to include in the operation and maintenance manual. Include the following:
1. Methods for maintaining treatments and finishes.
2. Precautions for cleaning materials and methods that could be detrimental to finishes and performance.

1.05 DELIVERY, STORAGE AND HANDLING

A. Deliver and store products in cartons with seals unbroken and labels intact until time of installation.

B. Provide proper storage facilities to prevent damage.

1.06 PROJECT CONDITIONS

A. Field Measurements: Check actual dimensions by accurate field measurements before fabrication, and show recorded measurements on final shop drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1.07 WARRANTY

A. Specialty Warranty
1. Manual Operating Components: Provide dealer, fabricators, associated suppliers and manufacturer’s warranty. Warranty period to be a non-prorated, Limited Lifetime “Manufacturer’s Defect” and “Fit for Use Warranty” from date of Substantial Completion and contain provisions that installation is to remain operational without fault for the warranty period and include all operating parts, including shadecloth.
2. Shade fabric to be warranted for colorfastness for minimum of 10 years, regardless of color, including white.
3. Written warranty to be 8 years from date of Substantial Completion for shade motor and control components provided installation is completed by certified MechoShade installer.
4. In the event of a warranted product failure, the shade contractor will, at not cost to the City, facilitate acquisition and delivery of all necessary components to the City.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

2.02 WINDOW SHADES

A. Provide manually operated window shades with heavy-duty commercial grade hardware where indicated.

B. Shade Material: Provide non-vinyl material to meet requirements of FS CCC-C-521e for fire retardancy and NFPA 701 Small Scale requirements; antimicrobial without topical treatment. Material shall meet requirements of ASTM E84, with flame spread rating of 17 and smoke density index of 118.
1. Solar Shades
 a. Cloth: 2-3 percent openness factor.
 b. Color: As selected by the Architect from manufacturer’s standard range.
C. Accessories: Provide accessories, brackets, fittings and fastenings as necessary for proper operation and installation of shades; conceal fasteners or finish flush, painted to match exposed metal finish.
 1. Mounting Brackets: Manufacturer’s standard for wall or ceiling mounting as indicated.

D. Manually Operated Shade System: Chain operated roller shade system with adjustable slip clutch.

E. Mounting: As indicated.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine construction to support, adjoin or otherwise contact and verify that shade dimensions are correct, painting has been completed, setting conditions are dry, clean and otherwise proper for installation.

B. Do not install shades until unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Employ mechanics skilled in installations required.

B. Adjust as required such that shades permit proper positioning over full range of movement and smooth raising and lowering without binding.

3.03 DEMONSTRATION

A. Engage a factory-authorized service representative to train the City’s maintenance personnel to adjust, operate, and maintain roller shades.

END OF SECTION
SECTION 12 36 61.16

SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes: Solid surfacing countertops and splashes.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

C. Related Sections
 1. Section 05 50 00 - Metal Fabrications: Provision of countertop supports.
 2. Section 06 41 10 - Custom Casework: Provision of custom casework.
 3. Section 07 92 00 - Joint Sealants: Provision of sealants.

1.02 REFERENCES

A. WI - Woodwork Institute

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s product literature.

B. Shop Drawings: Show all items at large scale including methods of fabrication and construction.

C. Samples: Submit 3 solid surfacing materials, 6 inches square.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturer: Caesarstone, or equal.

2.02 MATERIALS

A. Solid Surfacing: Homogeneous mixture containing 93 percent or greater pure quartz.
 1. Thickness: As indicated.
 2. Color: As selected by the Architect from manufacturer’s full range of available colors.

B. Plywood Backing for Countertops: Provide 1/2-inch marine plywood, or equal.

C. Sealant: As specified in Section 07 92 00.

2.03 FABRICATION

A. Quality Standard: Comply with WI Section 17D, “Decorative Synthetic Marble Countertops and Sinks”.
 1. Grade: Premium.
 2. Thickness of solid surfacing shall be constant and shall not vary.
B. Fabricate tops in 1 piece with shop-applied edges, unless otherwise indicated. Comply with solid surfacing material manufacturer’s recommendations for adhesives, sealers, fabrication, and finishing.
 1. Drill holes in countertops for plumbing fittings.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Anchor countertops securely to base units and other support systems as indicated. Caulk space between countertop and wall with specified sealant.
 1. Install countertops with no more than 1/8-inch in 96 inch sag, bow, or other variation from a straight line.

B. Seal joints in accordance with manufacturer’s instructions.

3.02 ADJUSTING AND CLEANING

A. Remove damaged or otherwise disfigured portions and replace with new prior to the City’s acceptance.

END OF SECTION
SECTION 12 61 00

FIXED AUDIENCE SEATING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes
1. Remove and reinstall existing fixed seating as indicated.
2. New accessible fixed seating as indicated to match existing.

B. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 REFERENCES

A. CBC - California Building Code, 2016 Edition

B. FS - Federal Specification
 1. FF-B-575 - Bolts, Hexagon and Square.
 2. FF-S-325 - Shield, Expansion, Nail, Expansion, and Nail, Drive Screw (Devices, Anchoring, Masonry).

1.03 SYSTEM DESCRIPTION

A. Performance Requirements
 1. Comply with Title 24 regulations.
 2. Install seating with end standards aligning from first to last row and with backs and seats varied in width, optimizing sightlines.
 3. Expansion fasteners shall conform to all CBC requirements and regulations.

1.04 SUBMITTALS

A. Shop Drawings: Submit shop drawings showing seating layout, seat-numbering scheme, chair sizes, and aisle widths.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer who is certified in writing by the seating manufacturer as qualified to install manufacturer’s seating.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Acceptable Manufacturers: KI Inc.; Hussey Seating Company; Seating Concepts, or equal.

2.02 MATERIALS

A. Fixed Seating: Relocate existing seating and provide new seating to match existing where indicated on the Drawings.
B. Drilled-In Expansion Anchors: FS FF-S-325, Group VIII (anchors, expansion, drilled-in only), Type 1 (internally threaded tubular expansion anchor); and machine bolts complying with FS FF-B-575, Grade 5.
 1. Expansion anchors shall be furnished by the original fixed seating manufacturer.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Follow manufacturer’s printed instructions for installation.

B. Standards: Anchored with not less than 2 anchoring devices.

C. Install seating using manufacturer’s recommended hardware and fasteners. Seating in curved rows shall be installed at smooth radius.

D. Verify moving components operate smoothly and quietly.

3.02 PROTECTION

A. Repair minor abrasions and imperfections in painted finishes with a coating that matches the factory-applied finish.

B. Replace upholstery fabric damaged during installation. Replacement for damage is Contractor’s cost.

C. No wet cleaning permitted.

END OF SECTION
SECTION 21 05 17
SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 – GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.04 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

PART 2 - PRODUCTS

2.01 SLEEVES
A. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop.
B. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, hot dipped galvanized, with plain ends and integral welded waterstop collar.
C. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.02 STACK-SLEEVE FITTINGS
A. Description: Manufactured, Dura-coated or Duco-coated cast-iron sleeve with integral clamping flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.
1. Underdeck Clamp: Clamping ring with setscrews.

2.03 SLEEVE-SEAL SYSTEMS

A. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
4. Pressure Plates: Stainless steel, Type 316.
5. Connecting Bolts and Nuts: Stainless steel, Type 316, of length required to secure pressure plates to sealing elements.

2.04 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

B. Plastic or rubber waterstop collar with center opening to match piping OD.

2.05 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.06 SILICONE SEALANTS

A. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.
B. Silicone Foam: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.01 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.02 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Use silicone sealant to seal around the outside of stack-sleeve fittings.
B. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- or smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.03 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.04 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.05 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.

 2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 b. Piping NPS 6 and Larger: Steel pipe sleeves with sleeve-seal system.

 3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 b. Piping NPS 6 and Larger: Steel pipe sleeves with sleeve-seal system.

 4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves or Stack-sleeve fittings.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.

 5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION
SECTION 21 05 18
ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
B. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

2.2 FLOOR PLATES
A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. Escutcheons for New Piping:
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
c. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
d. Bare Piping in Unfinished Service Spaces: One-piece cast brass with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor plate.
 2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Check valves.
 2. Bronze OS&Y gate valves.
 3. Iron OS&Y gate valves.
 4. NRS gate valves.
 5. Indicator posts.
 6. Trim and drain valves.

1.3 DEFINITIONS
A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
B. NRS: Nonrising stem.
C. OS&Y: Outside screw and yoke.
D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and weld ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HCBZ - Indicator Posts, Gate Valve.
 b. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VQGU - Valves, Trim and Drain.

B. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

C. ASME Compliance:

1. ASME B16.1 for flanges on iron valves.
2. ASME B1.20.1 for threads for threaded-end valves.
3. ASME B31.9 for building services piping valves.

D. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. NFPA Compliance: Comply with NFPA 24 for valves.

F. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Actuator Types:

1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
2. Handwheel: For other than quarter-turn trim and drain valves.
3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.
2.2 CHECK VALVES
 A. Description:
 3. Type: Single swing check.
 4. Body Material: Cast iron, ductile iron, or bronze.
 5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
 6. Clapper Seat: Brass, bronze, or stainless steel.
 7. Hinge Shaft: Bronze or stainless steel.

2.3 BRONZE OS&Y GATE VALVES
 A. Description:
 3. Body and Bonnet Material: Bronze or brass.
 4. Wedge: One-piece bronze or brass.
 5. Wedge Seat: Bronze.
 6. Stem: Bronze or brass.
 7. Packing: Non-asbestos PTFE.

2.4 IRON OS&Y GATE VALVES
 A. Description:
 3. Body and Bonnet Material: Cast or ductile iron.
 4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
 5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
 6. Stem: Brass or bronze.
 7. Packing: Non-asbestos PTFE.

2.5 NRS GATE VALVES
 A. Description:
 3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.

2.6 INDICATOR POSTS

A. Description:
2. Type: Underground.
3. Base Barrel Material: Cast or ductile iron.
4. Extension Barrel: Cast or ductile iron.
5. Cap: Cast or ductile iron.

2.7 TRIM AND DRAIN VALVES

A. Ball Valves:
1. Description:
 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

B. Angle Valves:
1. Description:
 b. Body Material: Brass or bronze.
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

C. Globe Valves:
1. Description:
 c. Ends: Threaded.
 d. Stem: Bronze.
e. Disc Holder and Nut: Bronze.
f. Disc Seat: Nitrile.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:
 1. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are
installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION
SECTION 21 05 48

VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Restraint channel bracings.
2. Seismic-restraint accessories.
3. Mechanical anchor bolts.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, due to seismic forces required to select vibration isolators, and due to seismic restraints.

3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

1.5 INFORMATIONAL SUBMITTALS

 A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for fire-suppression piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
 B. Qualification Data: For professional engineer and testing agency.
 C. Welding certificates.
 D. Field quality-control reports.

1.6 QUALITY ASSURANCE

 A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
 B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
 C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
PART 2 - PRODUCTS

2.1 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted hot-dipped galvanized steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.2 SEISMIC-RESTRAINT ACCESSORIES

A. Hanger-Rod Stiffener: Hot-dipped Galvanized Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

B. Hinged and Swivel Brace Attachments: Multifunctional hot-dipped galvanized steel connectors for attaching hangers to rigid channel bracings.

C. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.3 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Hilti KB-TZ Stainless Steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 ‘Cast-in-Place Concrete.

B. Piping Restraints:
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.
 4. Brace at end of line.

C. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days’ advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

END OF SECTION
This Page Intentionally Left Blank
SECTION 21 05 53
IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Valve tags.
5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.
D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Stainless steel, 0.025 inch thick, with predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for
greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

E. Pipe-Label Colors:

1. Background Color: Safety Red.
4. Identification Paint: White, exterior, alkyd enamel. Paint may be in pressurized spray-can form.

2.4 VALVE TAGS

A. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.

1. Tag Material: stainless steel, 0.025 inch thick, with predrilled holes for attachment hardware.
2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping: Painting of piping is specified in Section 099123 "Interior Painting."

B. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.
3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 a. Wet-Pipe Sprinkler System: 2 inches, round.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Yard-type fire-department connections.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection.

PART 2 - PRODUCTS

2.1 YARD-TYPE FIRE-DEPARTMENT CONNECTION

A. Standard: UL 405.

B. Type: Exposed, freestanding.

C. Pressure Rating: 175 psig minimum.

D. Body Material: Corrosion-resistant metal.

E. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.

F. Caps: Brass, lugged type, with gasket and chain.

G. Escutcheon Plate: Round, brass, floor type.

H. Outlet: Bottom, with pipe threads.

I. Number of Inlets: Two.

J. Sleeve: Brass.
K. Sleeve Height: 18 inches.

L. Escutcheon Plate Marking: Similar to "AUTO SPKR & STANDPIPE."

M. Finish, Including Sleeve: Polished chrome plated.

N. Outlet Size: NPS 4.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fire-department connections.

B. Examine roughing-in for fire-suppression standpipe system to verify actual locations of piping connections before fire-department connection installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-type fire-department connections.

B. Install yard-type fire-department connections in concrete slab support. Comply with requirements for concrete in Section 033000 "Cast-in-Place Concrete."

C. Install two protective pipe bollards on sides of each fire-department connection. Comply with requirements for bollards in Section 055000 "Metal Fabrications."

D. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION
SECTION 21 13 13

WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Cover system for sprinkler piping.
4. Sprinklers.
5. Alarm devices.
7. Control panels.
8. Pressure gages.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For wet-pipe sprinkler systems.

 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Domestic water piping.
2. HVAC hydronic piping.
3. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Fan filter units.
 d. Utility piping risers.
 e. Condensate drainage piping.

B. Qualification Data: For qualified Installer and professional engineer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Fire-hydrant flow test report.

F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 “Quality Requirements,” to design wet-pipe sprinkler systems.

1. Available Maximum Day Demand Hydraulic Model Analysis test records indicate the following conditions:
 b. Time: 08:53:47 a.m.
 c. Performed by: EBMUD.
 d. Location of Possible Fire Service Connection: Off of the 6-inch main (6C34) in Shattuck Avenue, on the east side of Shattuck Avenue, approximately 57 feet north of Berryman Street.
 e. Pressure Zone: Berryman.
 f. Connection Point Elevation: 277 feet.
 g. Connection Point Static Pressure: 93 psi.
 h. Residual Pressure at 750 gpm: 90 psi.
 i. Residual Pressure at 1500 gpm: 85 psi.

2. Sprinkler system design shall be approved by authorities having jurisdiction.

 a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 b. Sprinkler Occupancy Hazard Classifications:
 1) Office and Public Areas: Light Hazard.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.

4. Maximum Protection Area per Sprinkler: According to UL listing.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.
2.2 STEEL PIPE AND FITTINGS

A. Schedule 40, Galvanized- and Black-Steel Pipe: ASTM A 135/A 135M; ASTM A 795/A 795M, Type E; or ASME B36.10M wrought steel, with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

B. Malleable- or Ductile-Iron Unions: UL 860.

C. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

D. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Pressure Rating: 175-psig minimum.
 2. Galvanized Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting, with dimensions matching steel pipe.
 3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Grooved.

F. Alarm Valves:
 2. Design: For horizontal or vertical installation.
 3. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
 4. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:
 4. Type: Mechanical-tee and -cross fittings.
 5. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
3. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded or grooved.

C. Branch Line Testers:
3. Body Material: Same as connected piping.
4. Inlet: Threaded.
5. Drain Outlet: Threaded and capped.
6. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
3. Body Material: Cast- or ductile-iron housing with sight glass.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded.

2.5 SPRINKLERS

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:

2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes: Chrome plated.

E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Grid Mounting: Chrome-plated steel, one piece, flat
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
2.6 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
 2. Type: Vibrating, metal alarm bell.
 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Pressure Switches:
 2. Type: Electrically supervised water-flow switch with retard feature.
 4. Design Operation: Rising pressure signals water flow.

D. Valve Supervisory Switches:
 2. Type: Electrically supervised.
 4. Design: Signals that controlled valve is in other than fully open position.
 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 PRESSURE GAGES

A. Standard: UL 393.

B. Dial Size: 3-1/2- to 4-1/2-inch diameter.

C. Pressure Gage Range: 0 to 250-psig minimum.

D. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.
3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

M. Fill sprinkler system piping with water.

N. Install sleeves for piping penetrations of walls, ceilings, and floors.

O. Install sleeve seals for piping penetrations of concrete walls and slabs.

P. Install escutcheons for piping penetrations of walls, ceilings, and floors.
3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and NFPA 13 for supports.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Specialty Valves:
 1. Install valves in vertical position for proper direction of flow, in main supply to system.
 2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.
3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 CLEANING

A. Clean dirt and debris from sprinklers.

B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.
3.11 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

B. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be the following:
 1. Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be the following:
 1. Schedule 40, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be the following:
 1. Schedule 40, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.12 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Pendent sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Upright Pendent and Sidewall Sprinklers: brass plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION
SECTION 22 05 17
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar, zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS
A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.

2. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.

2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."
3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves.

2. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Interior Partitions:

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

2. Escutcheons for Existing Piping:
 a. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 22 05 23.12
BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.03 DEFINITIONS
A. CWP: Cold working pressure.

1.04 ACTION SUBMITTALS
A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61.

1.05 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS
2.01 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch (50-mm) stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.02 BRASS BALL VALVES

A. Two-Piece, Brass Ball Valves with Full Port and Brass Trim:
 1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE
2.03 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze or Brass Trim:

1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.02 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.
E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.03 General Requirements for Valve Applications

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

3.04 Domestic Hot- and Cold-Water Valve Schedule

A. Pipe NPS 2 (DN 50) and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Two-piece, brass ball valves with full port and brass trim.
3. Two-piece, bronze ball valves with full port and bronze or brass trim.

End of Section
SECTION 22 05 23.14
CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig .
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. End Connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves with bronze disc, Class 125, with soldered end connections.
SECTION 22 05 29

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Sections:

1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Section 220516 "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
3. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts. Entire assembly must be hot-dipped galvanized.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:

1. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

2. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.

4. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.
3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
3. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
4. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 22 05 48
VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Housed-spring isolators.
 4. Restrained-spring isolators.
 5. Housed-restrained-spring isolators.
 6. Elastomeric hangers.
 7. Spring hangers.
 8. Snubbers.
 9. Restraint channel bracings.
 12. Mechanical anchor bolts.

1.3 DEFINITIONS
C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
b. Annotate to indicate application of each product submitted and compliance with requirements.

3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, due to seismic forces required to select vibration isolators, and due to seismic restraints.
3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
4. Seismic-Restraint Details:

a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.

b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:
 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 2. Size: Factory or field cut to match requirements of supported equipment.
 3. Pad Material: Oil and water resistant with elastomeric properties.
 4. Surface Pattern: Ribbed pattern.
 5. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:
 1. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
1. **Outside Spring Diameter**: Not less than 80 percent of the compressed height of the spring at rated load.
2. **Minimum Additional Travel**: 50 percent of the required deflection at rated load.
3. **Lateral Stiffness**: More than 80 percent of rated vertical stiffness.
4. **Overload Capacity**: Support 200 percent of rated load, fully compressed, without deformation or failure.
5. **Two-Part Telescoping Housing**: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.

2.4 RESTRAINED-SPRING ISOLATORS

A. **Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint**:
 1. **Housing**: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.
 2. **Restraint**: Limit stop as required for equipment and authorities having jurisdiction.
 3. **Outside Spring Diameter**: Not less than 80 percent of the compressed height of the spring at rated load.
 4. **Minimum Additional Travel**: 50 percent of the required deflection at rated load.
 5. **Lateral Stiffness**: More than 80 percent of rated vertical stiffness.
 6. **Overload Capacity**: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.5 HOUSED-RESTRAINED-SPRING ISOLATORS

A. **Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing**:
 1. **Two-Part Telescoping Housing**: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
 2. **Outside Spring Diameter**: Not less than 80 percent of the compressed height of the spring at rated load.
 3. **Minimum Additional Travel**: 50 percent of the required deflection at rated load.
 4. **Lateral Stiffness**: More than 80 percent of rated vertical stiffness.
 5. **Overload Capacity**: Support 200 percent of rated load, fully compressed, without deformation or failure.
2.6 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.7 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.8 SNUBBERS

A. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion.

2.9 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.
2.10 RESTRAINT CABLES
A. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.11 SEISMIC-RESTRAINT ACCESSORIES
A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.12 MECHANICAL ANCHOR BOLTS
A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.13 ADHESIVE ANCHOR BOLTS
A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:

1. Install seismic snubbers on plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

E. Piping Restraints:

1. Comply with requirements in MSS SP-127.
2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer’s recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 221116 “Domestic Water Piping” for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days’ advance notice.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION
SECTION 22 05 53
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Metal Labels for Equipment:
 1. Material and Thickness: stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Letter Color: Black.
 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Red.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/2 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."

B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Domestic Water Piping
 a. Background: Safety green.

2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Safety black.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches, round.

2. Valve-Tag Colors:

3. Letter Colors:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
This Page Intentionally Left Blank
SECTION 22 07 19
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Domestic hot-water piping.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.
C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

materials, sealers, attachments, cements, and jackets, with requirements indicated. Include
dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship
program or another craft training program certified by the Department of Labor, Bureau of
Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing
identical products according to ASTM E 84 by a testing agency acceptable to authorities having
jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and
cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed
index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed
index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate
ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in
Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before
preparing piping Shop Drawings, establish and maintain clearance requirements for installation
of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after
installing and testing heat tracing. Insulation application may begin on segments that have
satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of
construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 3. Solids Content: 60 percent by volume and 66 percent by weight.
2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
3. Service Temperature Range: 0 to plus 180 deg F.

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.
D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for...
above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

A. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
B. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of
inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/4 and Smaller: Insulation shall be:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

2. NPS 1-1/2 and Larger: Insulation shall be:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:

1. All Pipe Sizes: Insulation shall be:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:

1. None.

D. Piping, Exposed:
1. None.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Copper tube and fittings.
 2. Piping joining materials.
 3. Encasement for piping.
 4. Transition fittings.
 5. Dielectric fittings.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

1.5 FIELD CONDITIONS
A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Owner no fewer than ten days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Owner's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

C. Comply with NSF Standard 372 for low lead.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
2.4 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105/A21.5.

B. Form: Sheet or tube.

C. Color: Natural.

2.5 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 2. Pressure Rating: 125 psig minimum at 180 deg F.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

G. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

H. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

L. Install piping to permit valve servicing.

M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

N. Install piping free of sags and bends.

O. Install fittings for changes in direction and branch connections.

P. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

Q. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."
3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Support piping and tubing not listed in this article according to MSS SP-58 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 3. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.
3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
3.10 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
3.12 **PIPING SCHEDULE**

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.

E. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be:
 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed joints.

F. Aboveground domestic water piping, NPS 2 and smaller, shall be:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.

3.13 **VALVE SCHEDULE**

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
This Page Intentionally Left Blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Hose bibbs.
 2. Wall hydrants.
 3. Water-hammer arresters.
 4. Air vents.
 5. Trap-seal primer valves.
 7. Flexible connectors.
 8.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For domestic water piping specialties.
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For domestic water piping specialties to include in
 emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14.
2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 HOSE BIBBS

A. Hose Bibbs:

5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Include operating key with each operating-key hose bibb.
9. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.4 WALL HYDRANTS

A. Moderate-Climate Wall Hydrants:

3. Operation: Loose key.
5. Outlet:

 a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 b. Garden-hose thread complying with ASME B1.20.7.

7. Box and Cover Finish: Chrome plated.
8. Outlet:

 a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 b. Garden-hose thread complying with ASME B1.20.7.
9. Operating Key(s): One with each wall hydrant.

2.5 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

2. Type: Copper tube with piston.
3. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.6 AIR VENTS

A. Bolted-Construction Automatic Air Vents <Insert drawing designation if any>:
 1. Body: Bronze.
 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F (60 deg C).
 3. Float: Replaceable, corrosion-resistant metal.
 5. Size: NPS 1/2 minimum inlet.

2.7 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 4. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 5. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.8 SPECIALTY VALVES

A. Comply with requirements for general-duty metal valves in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

2.9 FLEXIBLE CONNECTORS

A. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
1. Locate backflow preventers in same room as connected equipment or system.

2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.

3. Do not install bypass piping around backflow preventers.

B. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

C. Install balancing valves in locations where they can easily be adjusted.

D. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve.

E. Install ground hydrants with 1 cu. yd. of crushed gravel around drain hole. Set ground hydrants with box flush with grade.

F. Install water-hammer arresters in water piping according to PDI-WH 201.

G. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Reduced-pressure-principle backflow preventers.
2. Water pressure-reducing valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device’s reference standard.
B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For hubless, single-stack drainage system. Include plans, elevations, sections, and details.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 FIELD CONDITIONS

A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Owner no fewer than ten days in advance of proposed interruption of sanitary waste service.
 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 PIPING MATERIALS

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Heavy-Duty, Hubless-Piping Couplings:

2. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
2. Unshielded, Nonpressure Transition Couplings:
b. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

c. End Connections: Same size as and compatible with pipes to be joined.

d. Sleeve Materials:

2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

3. Shielded, Nonpressure Transition Couplings:

b. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

c. End Connections: Same size as and compatible with pipes to be joined.

B. Dielectric Fittings:

1. Dielectric Unions:

a. Description:

 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.

1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.

2. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 a. Reducing size of waste piping in direction of flow is prohibited.

L. Lay buried building waste piping beginning at low point of each system.
 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 3. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 2 percent downward in direction of flow for piping NPS 4 and larger.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Install engineered soil and waste and vent piping systems as follows:
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Plumbing Specialties:
 1. Install backwater valves in sanitary waster gravity-flow piping.
 a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 3. Install drains in sanitary waste gravity-flow piping.
 a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

S. Install sleeves for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs.
 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."
3.3 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 1. Cut threads full and clean using sharp dies.
 2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 c. Do not use pipe sections that have cracked or open welds.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in ODs.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

3.5 VALVE INSTALLATION

A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping" for general-duty valve installation requirements.

B. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."
3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install hot-dipped galvanized carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install hot-dipped galvanized carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
6. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.
3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:
 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor.
 6. Comply with requirements for backwater valves, cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 7. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping.

B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping NPS 4 and smaller shall be:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cleanouts.
 2. Roof flashing assemblies.
 3. Through-penetration firestop assemblies.

1.3 DEFINITIONS
B. FOG: Fats, oils, and greases.
C. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, and accessories.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS
A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 CLEANOUTS

A. Cast-Iron Exposed Cleanouts:
 1. Standard: ASME A112.36.2M.
 2. Size: Same as connected drainage piping.
 3. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 4. Closure: Countersunk or raised-head, cast-iron plug.
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Exposed Floor Cleanouts:
 1. Standard: ASME A112.36.2M for cast-iron soil pipe with cast-iron ferrule cleanout.
 2. Size: Same as connected branch.
 3. Type: Cast-iron soil pipe with cast-iron ferrule.
 4. Body or Ferrule: Cast iron.
 5. Clamping Device: Not required.
 6. Outlet Connection: Threaded.
 7. Closure: Cast-iron plug.
 8. Adjustable Housing Material: Cast iron with threads.
 10. Frame and Cover Shape: Round.
 11. Top Loading Classification: Heavy Duty.
 12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts:
 1. Standard: ASME A112.36.2M. Include wall access.
 2. Size: Same as connected drainage piping.
 3. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 4. Closure Plug:
 a. Cast iron.
 b. Countersunk or raised head.
 c. Drilled and threaded for cover attachment screw.
 d. Size: Same as or not more than one size smaller than cleanout size.

2.3 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:
 1. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch- thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

2. Size: Same as connected soil, waste, or vent stack.
3. Sleeve: Molded-PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:

1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch- minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

B. Floor-Drain, Trap-Seal Primer Fittings:

1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Air-Gap Fittings:

1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backwater valves in building drain piping.

1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

F. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

G. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
 1. Comply with requirements in Section 078413 "Penetration Firestopping."

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

L. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

M. Install wood-blocking reinforcement for wall-mounting-type specialties.

N. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.

C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

D. Set flashing on floors and roofs in solid coating of bituminous cement.

E. Secure flashing into sleeve and specialty clamping ring or device.

F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 13 19.13
SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Floor drains.

1.3 DEFINITIONS
A. ABS: Acrylonitrile-butadiene styrene.
B. FRP: Fiberglass-reinforced plastic.
C. HDPE: High-density polyethylene.
D. PE: Polyethylene.
E. PP: Polypropylene.
F. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES
A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14 for plastic sanitary piping specialty components.

2.2 FLOOR DRAINS
A. Cast-Iron Floor Drains:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Zurn.

2. Fixture: Zurn Model ZN-415-Y-P.

5. Body Material: Dura-coated cast iron body.

7. Anchor Flange: Not required.

15. Top Shape: Round.

17. Funnel: Not required.

18. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.

2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.

3. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 a. Maintain integrity of waterproof membranes where penetrated.

5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.

C. Comply with requirements in Section 221323 "Sanitary Waste Interceptors" for grease interceptors, grease-removal devices, oil interceptors, sand interceptors, and solid interceptors.

D. Install piping adjacent to equipment to allow service and maintenance.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 22 13 23
SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Grease interceptors.

1.3 DEFINITIONS
A. FRP: Fiberglass-reinforced plastic.
B. PP: Polypropylene plastic.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of plastic interceptor. Include materials of fabrication, dimensions, rated capacities, retention capacities, operating characteristics, size and location of each pipe connection, furnished specialties, and accessories.
B. Shop Drawings: For each type and size of precast concrete interceptor indicated.
 1. Include materials of construction, dimensions, rated capacities, retention capacities, location and size of each pipe connection, furnished specialties, and accessories.

1.5 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Interceptors, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Piping connections. Include size, location, and elevation of each.
 2. Interface with underground structures and utility services.

1.6 FIELD CONDITIONS
A. Interruption of Existing Sewer Services: Do not interrupt services to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sewer services according to requirements indicated:
1. Notify Owner no fewer than seven days in advance of proposed interruption of service.
2. Do not proceed with interruption of sewer services without Owner's written permission.

PART 2 - PRODUCTS

2.1 GREASE INTERCEPTORS

A. Plastic Grease Interceptors:
 3. Plumbing and Drainage Institute Seal: Required.
 5. Body Dimensions: 28" width x 37" length x 21" height.
 6. Body Extension: Field cut adjustable riser system with water/gas tight seal and polypropylene cover with 1000 lbs. load rating capacity.

B. Capacities and Characteristics:
 1. Length by Width by Depth: 28" width x 37" length x 21" height.
 2. Number of Compartments: One.
 3. Flow Rate: 50 gpm.
 4. Retention Capacity: Refer to plumbing drawings, Grease Interceptor schedule, for liquid, grease, and solid capacities.
 5. Inlet and Outlet Pipe Size: 4 inch.
 a. Centerline of Inlet to Floor: 15 inches.
 b. Centerline of Outlet to Floor: 15 inches.
 7. Cleanout: Field installed on inlet and outlet. Refer to plumbing drawings.
 8. Trapped Outlet Required: No.
 10. Mounting: Below grade.
 11. Flow-Control Fitting: Built-in flow control.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 INSTALLATION

A. Equipment Mounting:
1. Install grease interceptors on cast-in-place concrete equipment base below grade.
2. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

B. Set interceptors level and plumb.

C. Set tops of grating frames and grates flush with finished surface.

D. Set plastic interceptors level and plumb.

E. Install grease interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 1. Below Grade Installation: Set unit and extension, if required, with cover 3 inches above finished grade.
 2. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.

F. Install grease interceptor components in accordance with manufacturer's instructions and approved product data submittals.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Make piping connections between interceptors and piping systems.

3.4 IDENTIFICATION

A. Identification materials and installation are specified in Section 312000 "Earth Moving."
 1. Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 2. Use warning tapes or detectable warning tape over ferrous piping.
 3. Use detectable warning tape over nonferrous piping and over edges of underground structures.

B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Grease interceptors.

3.5 PROTECTION

A. Protect sanitary waste interceptors from damage during construction period.

B. Repair damage to adjacent materials caused by sanitary waste interceptor installation.

END OF SECTION
SECTION 22 33 00

ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Commercial, electric, storage, domestic-water heaters.
 2. Thermostat-control, electric, tankless, domestic-water heaters.
 3. Domestic-water heater accessories.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:

 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For commercial domestic-water heaters, accessories, and components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Product Certificates: For each type of commercial, electric, domestic-water heater, from manufacturer.

C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

D. Source quality-control reports.

E. Field quality-control reports.

F. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

A. Commercial, Electric, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bock.

 a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.

 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.

 b. Pressure Rating: 150 psig.

 c. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining material into tappings.

4. Factory-Installed Storage-Tank Appurtenances:

 a. Anode Rod: Replaceable magnesium.

 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.

 c. Insulation: Comply with ASHRAE/IESNA 90.1.

 d. Jacket: Steel with enameled finish.

 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.

 f. Temperature Control: Adjustable thermostat.

 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.

 h. Relief Valves: ASME rated and stamped for combination temperature-and-pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

5. Special Requirements: NSF 5 construction.

B. Commercial, Storage, Point-of-use, Electric, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Bock.

3. **Storage-Tank Construction:** Steel, vertical arrangement.

 a. **Tappings:** ASME B1.20.1 pipe thread.
 b. **Pressure Rating:** 150 psig.
 c. **Interior Finish:** Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining material into tappings.

4. **Factory-Installed Storage-Tank Appurtenances:**

 a. **Anode Rod:** Replaceable magnesium.
 b. **Dip Tube:** Required unless cold-water inlet is near bottom of tank.
 c. **Drain Valve:** ASSE 1005.
 d. **Insulation:** Comply with ASHRAE/IESNA 90.1 or ASHRAE 90.2.
 e. **Jacket:** Steel with enameled finish.
 f. **Heat-Trap Fittings:** Inlet type in cold-water inlet and outlet type in hot-water outlet.
 g. **Heating Elements:** One.
 h. **Temperature Control:** Surface mounted adjustable thermostat.
 i. **Safety Control:** High-temperature-limit cutoff device or system.
 j. **Relief Valve:** ASME rated and stamped for combination temperature-and-pressure relief valves. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.

5. **Special Requirements:** NSF 5 construction with legs for off-floor installation.

C. **Capacity and Characteristics:** Refer to plumbing drawings.

2.2 ELECTRIC, TANKLESS, DOMESTIC-WATER HEATERS

A. **Thermostat-Control, Electric, Tankless, Domestic-Water Heaters:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 a. **EEMAX / SPEX 4208T-N4X.**

2. **Standard:** UL 499 for electric, tankless, (domestic-water heater) heating appliance.

3. **Construction:** Copper piping or tubing complying with NSF 61 Annex G barrier materials for potable water, without storage capacity.

 a. **Connections:** ASME B1.20.1 pipe thread.
 b. **Pressure Rating:** 150 psig.
 c. **Heating Element:** Resistance heating system.
 d. **Temperature Control:** Thermostat.
 e. **Safety Control:** High-temperature-limit cutoff device or system.
 f. **Jacket:** Aluminum or steel with enameled finish or plastic.

4. **Support:** Provide stainless steel wall-mounted recess panel with CAT 74 lock on panel enclosure door.

5. **Capacity and Characteristics:**

 a. **Flow Rate:** 0.5 gpm at 55 deg F temperature rise.
 b. **Temperature Setting:** 110 deg F factory preset.
2.3 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Description: Steel pressure-rated tank constructed with welded joints and factory-installed b	butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 2. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

3. Capacity and Characteristics:

B. Drain Pans: Stainless steel type 316 with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

D. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of seismically supporting domestic-water heater and water.

2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

B. Install commercial, electric, domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain or mop sink.

D. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

E. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

F. Fill electric, domestic-water heaters with water.

G. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 “Quality Requirements” for retesting and reinspecting requirements and Section 017300 “Execution” for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Owner’s maintenance personnel to adjust, operate, and maintain commercial and tankless, electric, domestic-water heaters.

END OF SECTION
This Page Intentionally Left Blank
SECTION 22 42 13.13
COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Water closets.
2. Flushometer valves.
3. Toilet seats.
4. Supports.

1.3 DEFINITIONS

A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.

B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
1. Flush Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS

A. Water Closets: Floor mounted, bottom outlet, top spud.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Toto.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.28 gal. per flush.
 h. Spud Size and Location: NPS 1-1/2; top.
 i. Color: White.

3. Bowl-to-Drain Connecting Fitting: ASME A112.4.3.
4. Flushometer Valve: Toto Model TMT1LN32#CP.
5. Toilet Seat: Toto Model SC534#01.

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Toto.
2. Toto Model TMT1LN32#CP.
5. Features: Include integral check stop and backflow-prevention device.
7. Exposed Flushometer-Valve Finish: Chrome plated.
8. Panel Finish: Chrome plated or stainless steel.
10. Consumption: 1.28 gal. per flush.
2.3 TOILET SEATS

A. Toilet Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Toto.
2. Toto Model SC534#01.
5. Type: Commercial (Heavy duty).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

1. Install level and plumb according to roughing-in drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.

B. Support Installation:

C. Flushometer-Valve Installation:

1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:
1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.
 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS
 A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
 B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
 C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
 D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING
 A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
 B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION
 A. Clean water closets and fittings with manufacturers’ recommended cleaning methods and materials.
 B. Install protective covering for installed water closets and fittings.
 C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Urinals.
 2. Flushometer valves.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for urinals.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For manual flushometer valves to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.
PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals: Wall hung, back outlet, washout, accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. Fixture:
 c. Material: Vitreous china.
 d. Type: Washout with extended shields.
 e. Strainer: Manufacturer's standard strainer with integral trap.
 f. Water Consumption: Low.
 g. Spud Size and Location: NPS 3/4, top.
 h. Outlet Size and Location: NPS 2, back.
 i. Color: White.
 4. Waste Fitting:
 b. Size: NPS 2.
 5. Support: Zurn Z1221 plate type system for urinal support. Type I Urinal Carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture. Include rectangular, steel uprights.

2.2 URINAL FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves <Insert designation>:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Sloan Valve Company.
 2. Royal Model 186 HEU.
 5. Features: Include integral check stop and backflow-prevention device.
 7. Exposed Flushometer-Valve Finish: Chrome plated.
 8. Panel Finish: Chrome plated or stainless steel.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

10. Consumption: 0.125 gal. per flush.

2.3 SUPPORTS

A. Type I Urinal Carrier:
 1. Carrier: Zurn Z1221 – plate type system for urinal support.
 2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:
 1. Install urinals level and plumb according to roughing-in drawings.
 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
 3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
 1. Install supports, affixed to building substrate, for wall-hung urinals.
 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
 3. Use carriers without waste fitting for urinals with tubular waste piping.
 4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.

C. Flushometer-Valve Installation:
 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to urinal color.

3.3 CONNECTIONS
A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING
A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION
A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed urinals and fittings.
C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 42 16.13
COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Fixture:
 b. Type: For wall hanging.
 c. Nominal Size: Rectangle 20"x18".
 d. Faucet-Hole Punching: Two holes at 4 inch centers, or three holes at 2 inch centers as called for in the drawings.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Zurn plate type carrier with floor-mounted upright.

2. Faucet: Kohler K-15592-F-CP.

2.2 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, single-control mixing, commercial, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kohler: K-15592-F-CP.
 c. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 d. Body Type: Centerset.
 e. Body Material: Commercial, solid brass.
 g. Maximum Flow Rate: 0.5 gpm.
 h. Mounting Type: Deck, exposed.
 i. Valve Handle(s): Single lever.
 j. Spout: Rigid type.
 k. Spout Outlet: Aerator.
 m. Drain: Grid style lavatory drain.
2.3 LAMINAR-FLOW, FAUCET-SPOUT OUTLETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout-outlet materials that will be in contact with potable water.

B. Description: Chrome-plated-brass, faucet-spout outlet that produces non-aerating, laminar stream. Include external or internal thread that mates with faucet outlet for attachment to faucets where indicated and flow-rate range that includes flow of faucet.

2.4 SUPPORTS

A. Type II Lavatory Carrier:
 1. Carrier: Zurn Z1231 - Concealed arm system.
 2. Standard: ASME A112.6.1M.

2.5 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. ASME A112.18.6, braided-stainless-steel, flexible hose riser.

2.6 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall and chrome-plated, brass or steel wall flange.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
B. Examine counters and walls for suitable conditions where lavatories will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install lavatories level and plumb according to roughing-in drawings.
B. Install supports, affixed to building substrate, for wall-mounted lavatories.
C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS
A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING
A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
B. Adjust water pressure at faucets to produce proper flow.
3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 22 42 16.16
COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Mop sinks.
 2. Classroom Sinks.
 3. Handwash sinks.
 4. Prep sinks.
 5. Three-compartment sinks.
 6. Sink faucets.
 7. Laminar-flow, faucet-spout outlets.
 8. Supply fittings.
 10. Supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 2. Include rated capacities, operating characteristics and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 MOP SINK

A. Mop Sink MS-1: Refer to Food Service Equipment drawings and specifications.

2.2 CLASSROOM SINKS

A. Sinks SK-1: One bowl, counter mounted, stainless steel.
 1. Stainless-Steel Sinks:
 a. Elkay Model LRADQ2522 or Equal.
 2. Fixture:
 b. Overall Dimensions: 25” x 22” x 6-1/2”.
 c. Bowl:
 1) Dimensions: 21” x 15-3/4” x 6-1/2”.
 2) Drain: 3-1/2-inch.
 a) Location: Rear center.
 3. Faucet: Zurn Z831B4-XL-G-3F.
 5. Waste Fittings: Comply with requirements in "Waste Fittings" Article, except include continuous waste for multibowl sinks.
 a. Disposer: Not required.
 b. Dishwasher Air-Gap Fitting: Not required.
 c. Hot-Water Dispenser: Not required.

B. Sinks SK-2: One bowl, counter mounted, stainless steel.
 1. Stainless-Steel Sinks:
 a. Elkay Model DLRQ252210 or Equal.
 2. Fixture:
 b. Overall Dimensions: 25” x 22” x 10-3/8”.
 c. Bowl:
 1) Dimensions: 21” x 15-3/4” x 10”.

07.17.19 22 42 16.16 - 2 Commercial Sinks
2) Drain: 3-1/2-inch.
 a) Location: Center.
3. Faucet: Zurn Z831B4-XL-G-3F.
5. Waste Fittings: Comply with requirements in "Waste Fittings" Article, except include continuous waste for multibowl sinks.
 a. Disposer: Not required.
 b. Dishwasher Air-Gap Fitting: Not required.

2.3 HANDWASH SINKS

A. Handwash Sinks SK-5: Refer to Food Service Equipment drawings and specifications.

2.4 PREP SINKS

A. Prep Sinks SK-4: Refer to Food Service Equipment drawings and specifications.

2.5 THREE-COMPARTMENT SINKS

A. Three-compartment Sinks SK-3: Refer to Food Service Equipment drawings and specifications.

2.6 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets (MS-1): Refer to Food Service Equipment drawings and specifications.

 a. Zurn Z831B4-XL-G-3F.
 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
 4. Body Type: Widespread.
 7. Maximum Flow Rate: 0.5 gpm.
 8. Handle(s): Wrist blade, 4 inches.
 9. Mounting Type: Deck, exposed.
 10. Spout Type: Swing gooseneck.
D. Sink Faucets (SK-3, SK-4, and SK-5):

1. Refer to Food Service Equipment drawings and specifications.

2.7 LAMINAR-FLOW, FAUCET-SPOUT OUTLETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex 61, "Drinking Water System Components - Health Effects," for faucet-spout-outlet materials that will be in contact with potable water.

B. Description: Chrome-plated brass, faucet-spout outlet that produces non-aerating, laminar stream. Include external or internal thread that mates with faucet outlet for attachment to faucets where indicated and flow-rate range that includes flow of faucet.

2.8 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Set floor-mounted sinks in leveling bed of cement grout.

C. Install water-supply piping with stop on each supply to each sink faucet.

1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."

2. Install stops in locations where they can be easily reached for operation.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION
This Page Intentionally Left Blank
SECTION 22 47 13

DRINKING FOUNTAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes drinking fountains and related components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of drinking fountain.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For drinking fountains to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 DRINKING FOUNTAINS

A. Drinking Fountains Stainless steel, wall mounted.
 1. Standards:
 b. Comply with NSF 61 Annex G.
 2. Type Receptor: With back.
 3. Receptor Shape: Rectangular.
 5. Bubblers: One, with adjustable stream regulator, located on deck.
 8. Drain: Grid type with NPS 1-1/4 tailpiece.
11. Support: Type I water cooler carrier.

2.2 SUPPORTS

A. Type I Water Cooler Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
B. Examine walls and floors for suitable conditions where fixtures will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
B. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Ball Valves for Plumbing Piping".
D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Install ball shutoff valve on water supply to each fixture. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

3.5 CLEANING

A. After installing fixtures, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 23 05 17
SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079000 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078400 "Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Concrete Roof Slabs:
 a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
2. Interior Partitions:
 a. Piping Smaller Than NPS 6 (DN 150) Galvanized-steel-pipe sleeves.

END OF SECTION
SECTION 23 05 18
ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
c. Insulated Piping: One-piece, stamped-steel type.
d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons using new materials.

END OF SECTION
SECTION 23 05 29
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Pipe stands.
 B. Related Sections:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze
 hangers for pipe and equipment supports.
 2. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation
 devices.
 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS
 A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS
 A. Delegated Design: Design trapeze pipe hangers and equipment supports, including
 comprehensive engineering analysis by a qualified professional engineer, using performance
 requirements and design criteria indicated.
 B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand
 the effects of gravity loads and stresses within limits and under conditions indicated according
 to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting
 combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of
 supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, “Structural Welding Code - Steel.”

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
1. **Description:** MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2. **Hanger Rods:** Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. **Description:** Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
2. **Standard:** MFMA-4.
3. **Channels:** Continuous slotted steel channel with inturned lips.
4. **Channel Nuts:** Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
5. **Hanger Rods:** Continuous-thread rod, nuts, and washer made of carbon steel.
6. **Metallic Coating:** Hot-dipped galvanized.

2.4 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

C. High-Type, Single-Pipe Stand:

1. **Description:** Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
2. **Base:** Stainless steel.
3. **Vertical Members:** Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. **Horizontal Member:** Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

D. High-Type, Multiple-Pipe Stand:

1. **Description:** Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
2. **Bases:** One or more; plastic.
3. **Vertical Members:** Two or more protective-coated-steel channels.
4. **Horizontal Member:** Protective-coated-steel channel.
5. **Pipe Supports:** Galvanized-steel, clevis-type pipe hangers.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

K. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).
3.4 PAINTING

A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099000 Painting and Coating."

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
2. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
3. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
2. **Steel Clevises (MSS Type 14):** For 120 to 450 deg F (49 to 232 deg C) piping installations.
3. **Swivel Turnbuckles (MSS Type 15):** For use with MSS Type 11, split pipe rings.
4. **Malleable-Iron Sockets (MSS Type 16):** For attaching hanger rods to various types of building attachments.
5. **Steel Weldless Eye Nuts (MSS Type 17):** For 120 to 450 deg F (49 to 232 deg C) piping installations.

L. **Comply with MSS SP-69** for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. **Comply with MFMA-103** for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Elastomeric isolation pads.
 2. Spring hangers.
 3. Restraint channel bracings.
 4. Restraint cables.
 5. Seismic-restraint accessories.
 6. Mechanical anchor bolts.
 7. Adhesive anchor bolts.
 8. Vibration isolation equipment bases.

B. Related Requirements:
 1. Section 220548 "Vibration and Seismic Controls for Plumbing" for devices for plumbing equipment and systems.

1.3 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic forces required to select vibration isolators and seismic restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer.

C. Welding certificates.

D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.

a. Component Importance Factor: 1.0
b. Component Response Modification Factor: See ASCE 7-05, Chapter 13, Table 13.6-1 for individual factors.

c. Component Amplification Factor: See ASCE 7-05, Chapter 13, Table 13.6-1 for individual factors.

3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 1.10
4. Design Spectral Response Acceleration at 1.0-Second Period: 0.609
5. Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they are subjected.

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2. Size: Factory or field cut to match requirements of supported equipment.
3. Pad Material: Oil and water resistant with elastomeric properties.
5. Infused nonwoven cotton or synthetic fibers.

2.3 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Adjustable Vertical Stop: Steel washer with neoprene washer “up-stop” on lower threaded rod.
8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.4 RESTRAINT CHANNEL BRACINGS

A. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.5 RESTRAINT CABLES

A. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.
2.6 SEISMIC-RESTRAINT ACCESSORIES

A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

2.7 MECHANICAL ANCHOR BOLTS

A. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.8 ADHESIVE ANCHOR BOLTS

A. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.9 VIBRATION ISOLATION EQUIPMENT BASES

A. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.

2. 2 inch deflection structurally calculated isolation roof curb.

3. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.

4. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

B. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

C. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
 3. Brace a change of direction longer than 12 feet (3.7 m).

D. Install cables so they do not bend across edges of adjacent equipment or building structure.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are
encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.

4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

7. Measure isolator deflection.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.6 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points.
END OF SECTION
SECTION 23 05 53

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Pipe labels.
3. Duct labels.
4. Stencils.
5. Valve tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: stainless steel, 0.025-inch (0.64-mm minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Letter Color: Black.
4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
5. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.
2.3 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: White.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).

F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

2.4 STENCILS

A. Stencils for Piping:

 1. Lettering Size: At least 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm) and proportionately larger lettering for greater viewing distances.

 3. Stencil Paint: Exterior, gloss, acrylic enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

 4. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

B. Stencils for Ducts:

 1. Lettering Size: Minimum letter height of 1-1/4 inches (32 mm) for viewing distances up to 15 feet (4-1/2 m) and proportionately larger lettering for greater viewing distances.

 4. Identification Paint: Exterior, acrylic enamel. Paint may be in pressurized spray-can form.

C. Stencils for Access Panels and Door Labels, Equipment Labels, and Similar Operational Instructions:
1. Lettering Size: Minimum letter height of 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm) and proportionately larger lettering for greater viewing distances.
2. Stencil Material: Aluminum.
4. Identification Paint: Exterior, acrylic enamel. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

A. Description: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.

1. Tag Material: stainless steel, 0.025-inch (0.64-mm minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain or beaded chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.
3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 099670 "High-Performance Coatings."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:
1. Refrigerant Piping: Black letters on a safety-orange background.

3.5 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue: For cold-air supply ducts.
2. Yellow: For hot-air supply ducts.

B. Stenciled Duct Label Option: Stenciled labels showing service and flow direction may be provided instead of plastic-laminated duct labels, at Installer's option.

C. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 10 feet (15 m) in each space where ducts are exposed or concealed by removable ceiling system.
3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 a. Refrigerant: 2 inches (50 mm), square.

2. Valve-Tag Colors:
 a. Toxic and Corrosive Fluids: Black letters on a safety-orange background.

END OF SECTION
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems with variable frequency drives.

1.3 DEFINITIONS
B. TAB: Testing, adjusting, and balancing.
C. TABB: Testing, Adjusting, and Balancing Bureau.
D. TAB Specialist: An entity engaged to perform TAB Work.

1.4 ACTION SUBMITTALS

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: Within 15 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
D. Certified TAB reports.
E. Sample report forms.
F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC as a TAB technician.

B. TAB Conference: Meet with Owner on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days’ advance notice of scheduled meeting time and location.
 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. TAB Report Forms: Use standard TAB contractor's forms approved by Owner.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

F. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

G. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
1.8 **COORDINATION**

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 **TAB SPECIALISTS**

A. Subject to compliance with requirements, engage one of the following:

1. RS Analysis, Inc. Contact Anthony Tamburini (650.583.9400.)

3. MESA3, Inc. Contact Dean Ferreira (408.928.3000)

3.2 **EXAMINATION**

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 233113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment.
performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

K. Examine operating safety interlocks and controls on HVAC equipment.

L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:

1. Permanent electrical-power wiring is complete.
2. Automatic temperature-control systems are operational.
3. Equipment and duct access doors are securely closed.
4. Balance, and fire dampers are open.
5. Isolating and balancing valves are open and control valves are operational.
6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
7. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" and in this Section.

1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," and Section 230719 "HVAC Piping Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.

 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

 1. Measure airflow of submain and branch ducts.

 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer’s written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

 2. Adjust patterns of adjustable outlets for proper distribution without drafts.
3.7 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer’s name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.8 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.9 TOLERANCES

A. Set HVAC system’s air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

3.10 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems’ balancing devices. Recommend changes and additions to systems’ balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
3.11 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers’ test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer’s name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Settings for supply-air, static-pressure controller.
 g. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.

E. Fan Coil Unit Test Reports: fan coil units, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches (mm), and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches (mm), and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm (L/s).
 b. Total system static pressure in inches wg (Pa).
 c. Fan rpm.
 d. Discharge static pressure in inches wg (Pa).
 e. Filter static-pressure differential in inches wg (Pa).
 f. Preheat-coil static-pressure differential in inches wg (Pa).
 g. Cooling-coil static-pressure differential in inches wg (Pa).
 h. Heating-coil static-pressure differential in inches wg (Pa).
 i. Outdoor airflow in cfm (L/s).
 j. Return airflow in cfm (L/s).
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm (L/s).
 b. Average face velocity in fpm (m/s).
 c. Air pressure drop in inches wg (Pa).
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
 e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 h. Refrigerant expansion valve and refrigerant types.
 i. Refrigerant suction pressure in psig (kPa).
 j. Refrigerant suction temperature in deg F (deg C).

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm (L/s).
 b. Entering-air temperature in deg F (deg C).
 c. Leaving-air temperature in deg F (deg C).
 d. Air temperature differential in deg F (deg C).
 e. Entering-air static pressure in inches wg (Pa).
 f. Leaving-air static pressure in inches wg (Pa).
 g. Air static-pressure differential in inches wg (Pa).
 h. Low-fire fuel input in Btu/h (kW).
 i. High-fire fuel input in Btu/h (kW).
 j. Manifold pressure in psig (kPa).
 k. High-temperature-limit setting in deg F (deg C).
 l. Operating set point in Btu/h (kW).
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h (kW).

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches (mm), and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches (mm), and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm (L/s).
 b. Total system static pressure in inches wg (Pa).
 c. Fan rpm.
 d. Discharge static pressure in inches wg (Pa).
 e. Suction static pressure in inches wg (Pa).

H. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and fan coil-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F (deg C).
 d. Duct static pressure in inches wg (Pa).
 e. Duct size in inches (mm).
 f. Duct area in sq. ft. (sq. m).
 g. Indicated air flow rate in cfm (L/s).
 h. Indicated velocity in fpm (m/s).
 i. Actual air flow rate in cfm (L/s).
 j. Actual average velocity in fpm (m/s).
 k. Barometric pressure in psig (Pa).

3.12 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 c. Verify that balancing devices are marked with final balance position.
 d. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Owner.
2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Owner.

3. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.13 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes insulating the following duct services:
 1. Indoor, concealed, Type I, commercial, kitchen hood exhaust.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

1.04 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Field quality-control reports.

1.05 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having
jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.07 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.08 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.01 INSULATION MATERIALS

A. Comply with requirements in "Duct Insulation Schedule, General," and "Indoor Duct and Plenum Insulation Schedule," articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Fire Rated Grease Duct Insulation Systems: Flexible blanket composed of high temperature fibers classified for applications to 2192°F and fully encapsulated in a durable glass fiber reinforced foil facing for easy handling and installation. Minimum 1-1/2" thick, 6 pcf density. Grease duct installation UL Listed with butt joints at all seams on both layers. The duct enclosure system shall be listed by UL per ASTM E 2336 and ISO 6944 for 1-, 2- and 3-hour rating and zero clearance to combustibles, and tested per ASTM E84 for a flame/smoke rating less than 25/50. UL and ULC Listed for 1 and 2 hour fire resistive enclosure protection, zero clearance for kitchen exhaust ducts, electrical circuit protection, and as a component in UL firestop designs for fire resistance rated floors, ceilings, and walls. Core fibers manufactured
using alkaline-earth silicate wool with low biopersistence and therefore increased safety for installers. Compliant to IMC, NFPA 96, UMC, CMC. Under UL’s Follow-Up Service Program to ensure the consistent quality essential to the life-safety application.

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Morgan Pyroscat DuctWrap XL or approved equal.

D. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

2.02 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.03 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

2.04 TAPES

A. Tape: Aluminum Foil, complying with ASTM E 2336.
 1. Width: 3 inches (75 mm).
 2. Thickness: 6.5 mils (0.16 mm).
 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 6. Tape Disks and Squares: Precut disks or squares of tape.

2.05 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 3/4 inch (19 mm) wide with wing seal or closed seal.

B. Insulation Pins and Hangers:
1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated.

2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 b. Spindle: Stainless: Stainless steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
D. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.

2.06 CORNER ANGLES

A. Stainless-Steel Corner Angles: 0.024 inch (0.61 mm) thick, minimum 1 by 1 inch (25 by 25 mm), stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 316.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.02 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.03 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

3.04 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install
insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.

4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated):
Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Comply with requirements in Section 078400 "Firestopping" Firestopping and fire-resistant joint sealers.

3.05 INSTALLATION OF INSULATION

A. Follow manufacturer guidelines for installation of insulation and per the following: Installation on Grease Duct per ASTM E2336:

1. Installation on Grease Duct per ASTM E2336: System requires two layers of insulation applied directly to the duct with tight butt joints at all seams on both layers. The first layer of insulation is cut to a length sufficient to wrap around the duct and provide a tight butt joint where the blanket ends meet. Adjacent blankets on the first layer are butted tightly together with longitudinal seams offset minimum 6" (150mm). The second layer of insulation is installed in the same method as the first layer, with seams between layers offset a minimum of 6" (150mm). Banding and/or pinning per Section D is used to permanently secure the insulation to the duct. All cut edges of the insulation shall be taped with minimum 3" wide aluminum foil tape.

2. Through Penetration Firestop System: When the duct penetrates a fire rated assembly an approved fire stop system must be employed. Prior to installing any firestop system the surfaces of all openings and penetrating items must be clean and dry. The blanket must be compressed into the annular space. The packing material must be recessed a minimum depth from the surface of the concrete or gypsum assembly. The recessed opening must be filled with a minimum thickness of an approved firestop sealant. The packing material type and compression, minimum recess and approved firestop sealant and thickness (typically 1/4" (6mm)) shall be as specified in an approved UL / ULC firestop design listing. When there is not sufficient annular space around the duct to run the enclosure system continuous through the fire rated assembly, the enclosure may terminate above and below the floor/ceiling assembly or on either side of a wall assembly. When this method is used, the enclosure must be mechanically attached on either side of the fire rated assembly spaced a maximum of 1-1/2" from the fire rated assembly.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
d. Do not over compress insulation during installation.
e. Impale insulation over pins and attach speed washers.
f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. Provide insulation on rectangular duct elbows and transitions with a full insulation section for each surface.

5. Mechanically attach duct enclosure with banding and/or pinning in accordance with manufacturer instructions.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.06 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.07 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect. Inspector shall provide continuous inspection of the field-applied grease duct enclosure during installation. Prior to closing the ceiling, installation of the grease duct enclosure shall be inspected by the City inspector.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.08 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
 1. Indoor, exposed, Type I, commercial, kitchen hood exhaust.

B. Items Not Field Insulated:
 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 2. Factory-insulated flexible ducts.
 3. Factory-insulated plenums and casings.
 4. Flexible connectors.
 5. Vibration-control devices.
 6. Factory-insulated access panels and doors.

3.09 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket; thickness as required to achieve 2-hour fire rating.

END OF SECTION
SECTION 23 07 19
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following HVAC piping systems:
 1. Condensate drains piping, indoors.
 2. Refrigerant equalizer, suction gas, liquid, and high/low pressure gas piping, indoors and outdoors.
B. Related Sections:
 1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 3. Detail removable insulation at piping specialties.
 4. Detail application of field-applied jackets.
 5. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials by Armacell LLC, AP Armaflex or approved equal.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.

3. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:

 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal.

2. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.

4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.

2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).

4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078400 "Firestopping" for firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078400 "Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

07.17.19 23 07 19 - 8 HVAC Piping Insulation

each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.

2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
C. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.8 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch (19 mm) thick.

B. Refrigerant Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 2 inches (50 mm) thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. Painted Aluminum, Smooth 0.024 inch (0.61 mm) thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
1. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.

D. Piping, Exposed:
1. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.

END OF SECTION
This Page Intentionally Left Blank
SECTION 23 09 23
DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. DDC system for monitoring and controlling of HVAC systems.
2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

1.3 DEFINITIONS

A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.

B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:

2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.

D. Binary: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.

E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.

G. COV: Changes of value.

H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.

I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.

J. DOCSIS: Data-Over Cable Service Interface Specifications.

K. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.

L. HLC: Heavy load conditions.

M. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. “Digital,” (DI and (DO), is sometimes used interchangeably with “Binary,” (BI) and (BO), respectively.

N. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

O. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.

P. MTBF: Mean time between failures.

Q. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.

R. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.

S. Peer to Peer: Networking architecture that treats all network stations as equal partners.

T. PUE: Performance usage effectiveness.

U. RAM: Random access memory.

V. RF: Radio frequency.

W. Router: Device connecting two or more networks at network layer.

X. Server: Computer used to maintain system configuration, historical and programming database.
Y. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

Z. UPS: Uninterruptible power supply.

AA. USB: Universal Serial Bus.

BB. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.

CC. VAV: Variable air volume.

DD. WLED: White light emitting diode.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Multiple Submissions:

1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.

2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.

3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.

B. Product Data: For each type of product include the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.

2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

4. Installation, operation and maintenance instructions including factors effecting performance.

5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 a. Gateways.
 b. Routers.
 c. Protocol analyzers.
 d. DDC controllers.
 e. Enclosures.
 f. Electrical power devices.
g. UPS units.
h. Accessories.
i. Instruments.
j. Control dampers and actuators.

6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.

7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

C. Software Submittal:

1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
5. Listing and description of each engineering equation used with reference source.
6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
7. Description of operator interface to alphanumeric and graphic programming.
8. Description of each network communication protocol.
9. Description of system database, including all data included in database, database capacity and limitations to expand database.
10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.
11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Shop Drawings:

1. General Requirements:
 a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 c. Prepare Drawings using CAD.
 d. Drawings Size: 34" x 22".

2. Include plans, elevations, sections, and mounting details where applicable.
3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
4. Plan Drawings indicating the following:
a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
c. Each desktop operator workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
e. Network communication cable and raceway routing.
f. Information, drawn to scale, of controllers and panels.
g. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.

5. Schematic drawings for each controlled HVAC system indicating the following:
 a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 c. A graphic showing location of control I/O in proper relationship to HVAC system.
 d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
 g. Narrative sequence of operation.
 h. Graphic sequence of operation, showing all inputs and output logical blocks.

6. Control panel drawings indicating the following:
 a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 c. Front, rear, and side elevations and nameplate legend.
 d. Unique drawing for each panel.

7. DDC system network riser diagram indicating the following:
 a. Each device connected to network with unique identification for each.
 b. Interconnection of each different network in DDC system.
 c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or fiber-optic cable type. Indicate raceway type and size for each.
 d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

8. DDC system electrical power riser diagram indicating the following:
a. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
c. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
d. Power wiring type and size, race type, and size for each.

9. Monitoring and control signal diagrams indicating the following:
 a. Control signal cable and wiring between controllers and I/O.
 b. Point-to-point schematic wiring diagrams for each product.
 c. Control signal tubing to sensors, switches and transmitters.
 d. Process signal tubing to sensors, switches and transmitters.

10. Color graphics indicating the following:
 a. Itemized list of color graphic displays to be provided.
 b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 c. Intended operator access between related hierarchical display screens.

E. System Description:

1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
3. System and product operation under each potential failure condition including, but not limited to, the following:
 a. Loss of power.
 b. Loss of network communication signal.
 c. Loss of controller signals to inputs and outpoints.
 d. Operator workstation failure.
 e. Server failure.
 f. Gateway failure.
 g. Network failure
 h. Controller failure.
 i. Instrument failure.
 j. Control damper and valve actuator failure.

4. Complete bibliography of documentation and media to be delivered to Owner.
5. Description of testing plans and procedures.
6. Description of Owner training.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:
1. Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 a. Product installation location shown in relationship to room, duct, pipe and equipment.
 b. Structural members to which products will be attached.
 c. Wall-mounted instruments located in finished space showing relationship to light switches, fire-alarm devices and other installed devices.
 d. Size and location of wall access panels for products installed behind walls and requiring access.

2. Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 a. Ceiling components.
 b. Size and location of access panels for products installed above inaccessible ceiling assemblies and requiring access.
 c. Items penetrating finished ceiling including the following:
 1) Lighting fixtures.
 2) Air outlets and inlets.
 3) Speakers.
 4) Sprinklers.
 5) Access panels.
 6) Motion sensors.
 7) Pressure sensors.
 8) Temperature sensors and other DDC control system instruments.

B. Qualification Data:

1. Systems Provider Qualification Data:
 a. Resume of project manager assigned to Project.
 b. Resumes of application engineering staff assigned to Project.
 c. Resumes of installation and programming technicians assigned to Project.
 d. Resumes of service technicians assigned to Project.
 e. Brief description of past project including physical address, floor area, number of floors, building system cooling and heating capacity and building’s primary function.
 f. Description of past project DDC system, noting similarities to Project scope and complexity indicated.
 g. Names of staff assigned to past project that will also be assigned to execute work of this Project.
 h. Owner contact information for past project including name, phone number, and e-mail address.
 i. Contractor contact information for past project including name, phone number, and e-mail address.
 j. Architect and Engineer contact information for past project including name, phone number, and e-mail address.

2. Manufacturer’s qualification data.
3. Testing agency’s qualifications data.
C. Product Certificates:

1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.

D. Source quality-control reports.

E. Field quality-control reports.

F. Sample Warranty: For manufacturer's warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
c. As-built versions of submittal Product Data.
d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
g. Engineering, installation, and maintenance manuals that explain how to:

1) Design and install new points, panels, and other hardware.
2) Perform preventive maintenance and calibration.
3) Debug hardware problems.
4) Repair or replace hardware.

h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
j. List of recommended spare parts with part numbers and suppliers.
k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
l. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
m. Licenses, guarantees, and warranty documents.
n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.

o. Owner training materials.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Include product manufacturers’ recommended parts lists for proper product operation over four -year period following warranty period. Parts list shall be indicated for each year.

C. Furnish quantity indicated of matching product(s) in Project inventory for each unique size and type of following:
 1. Programmable Application Controller: One.
 2. Application-Specific Controller: One.
 3. Room Pressure Sensor and Transmitter: One.
 4. Room Temperature Sensor and Transmitter: One.
 5. General-Purpose Relay: One.
 10. DC Power Supply: One.

1.9 QUALITY ASSURANCE

A. DDC System Manufacturer Qualifications:
 1. Nationally recognized manufacturer of DDC systems and products.
 2. DDC systems with similar requirements to those indicated for a continuous period of 10 years within time of bid.
 3. DDC systems and products that have been successfully tested and in use on at least five past projects.
 4. Having complete published catalog literature, installation, operation and maintenance manuals for all products intended for use.
 5. Having full-time in-house employees for the following:
 a. Product research and development.
 b. Product and application engineering.
 c. Product manufacturing, testing and quality control.
 d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
 e. Owner operator training.

B. DDC System Provider Qualifications:
 1. Authorized representative of, and trained by, DDC system manufacturer.
 2. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
3. Demonstrated past experience on five projects of similar complexity, scope and value.
4. Each person assigned to Project shall have demonstrated past experience.
5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
6. Service and maintenance staff assigned to support Project during warranty period.
7. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
8. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 a. Install updates only after receiving Owner's written authorization.

3. Warranty service shall occur during normal business hours and commence within 16 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.
 a. For DDC System Equipment: Five-year parts and labor warranty for each.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Pelican Wireless Systems (No Substitution)

2.2 DDC SYSTEM DESCRIPTION

A. System shall include a network of commercial Internet-programmable thermostats, their accessories, and any other networked devices required for complete climate management. Devices shall communicate across a wireless network using IEEE 802.15.4 technical standards. Wireless communication shall be of an automated mesh communication type, which self-establishes network addresses, communication routes, and all other setup requirements to establish connection across the entire facility. A single Ethernet-connected Gateway shall be able to connect the wireless mesh network to the Internet, allowing for climate management through a cloud based web-application. This network design is to be used to isolate the DDC System from the owner's private Ethernet network (LAN) and/or WiFi networks. IEEE 802.11 or any other wireless standard of communication or a wired network communication protocol between devices is not acceptable by these DDC System specifications. The Gateway is to connect to a single outbound Ethernet connection on the owner's wide area network (WAN)
over a TCP/IP connection. The owner’s firewall shall not require any inbound port assignments for the Gateway to connect to the cloud servers. The Gateway shall not require a Public IP and it shall not run any standard available operating systems, such as Windows or Linux.

B. Access and control of DDC System shall be through a web-based graphical management platform. The DDC System platform shall sit on a cloud server and be accessible on both local personal computers and remotely by use of a web-browser that supports HTML5 or later.

C. No on-site servers are to be installed or used for the DDC System. No licensing fees or future licensing fees shall be required as part of the DDC System. These specifications and guidelines are to create a cohesive and secure network that provides full management over the facility’s climate through the cloud DDC System.

D. The DDC System shall accommodate an unlimited simultaneous multiple-user operation. Access to the DDC System shall be limiting based on security permissions of each operator’s role managed by owner site Administrators

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 COMMUNICATION

A. This project shall be comprised of a network of devices that use an IEEE 802.15.4 self-creating and self-healing wireless mesh communication network to reach an Ethernet Gateway.

B. The Gateway shall communicate to cloud servers via a single Ethernet connection at the owner’s wide area network (WAN) over a TCP/IP connection. The facility’s firewall shall not require any inbound port assignments for the Gateway to connect to the cloud servers. The Gateway shall not require a Public IP.

C. No BACnet, modBus, LON, or any other device-to-device wired communication protocol shall be used in the communication network.

2.4 DDC SYSTEM OPERATOR INTERFACES

A. The BAS shall be controlled, managed, and configured using a Web-App on any personal computer, smartphone, and/or tablet that runs a browser with HTML5 or newer.

B. The Web-App platform shall run on cloud servers which allow for virtual access. Platform shall not run on a local on-site server.

C. The Web-App shall support at a minimum, the following functions:

1. Personal user log-on identifications (email addresses) and unique passwords shall be required.
2. Custom HTML programming shall not be required to display any graphics, data, or build the Web-App. There shall be no development cost, commissioning costs, or software upgrade cost required to obtain and use the Web-App.
3. Storage of historical data shall reside on the cloud server and shall not sit within the client's computer, internal network, or other devices. A DDC System, which requires on-site data storage, is not acceptable.
4. System shall allow for administrator and user defined access privileges.
5. A Push/Pull OpenAPI interface with XML data output shall be available.
6. Servers shall not run a Windows operating system.

D. Control and Override

1. The BAS shall provide view, override, and edit of the status of any object and property in the system. The status of the device shall be defined graphically and shall not require any custom programs or programming.
2. Temporary Overrides. The BAS shall be able to provide temporary override (wherever an override is allowed) and automatically remove the override after a specified period of time.
3. Any override and edit of a object virtually or at the device, if allowable, shall be historically tracked.

E. Scheduling

1. The BAS shall provide users with scheduling of application devices through a graphical interface. Scheduling shall include, but is not limited to:
 a. Occupied/Unoccupied Schedules. Shall allow 12 scheduled set-time changes in a single day, be configurable for Daily, Weekly, and Weekday/Weekend layouts, and shall be able to be unique to individual devices or easily shared between multiple devices, where applicable.
 b. Event Schedules. Shall allow for advanced one-time or repeating event type schedules. Event schedules shall override Occupied/Unoccupied Schedules. After the Event schedule ends, the device shall revert back to the Occupied/Unoccupied Schedule automatically.
 c. Vacation Schedules. A 360-day Calendar shall provide override of schedules during vacation days. Thermostats shall be able to automatically or be manually switched to follow Vacation Schedules instead of Occupied/Unoccupied Schedules.

F. Alarm Notification

1. Alarm Notification(s) shall be generated if there are failures detected by devices part of the BAS. These failures shall be, but are not limited to: temperature deviations, temperatures missing targets, temperatures too high or too low, failures of equipment, etc. Alarm Notification(s) shall be posted on the BAS and shall be able to be sent either via email or text message to an unlimited number of users.

G. Reports and Logs

1. Data shall be logged and stored on cloud servers for all devices part of BAS in real-time. Every device real-time “state change”, when applicable, shall be stored and viewable for at least one week, with the option of up to two (2) years.
 a. Each space temperature
 b. Each temperature set point(s)
 c. Each current call: heat, cool, number of stages, fan, economizer, etc.
 d. Each damper position
 e. Each valve position
 f. Each CO² change
 g. Each CO² setting
 h. Each current call for ventilation due to high CO²
 i. Each Humidity change
 j. Each Humidity set point
 k. Each current call for dehumidification or humidification
 l. Each Fan speed adjustment
m. Supply duct static pressure
n. Supply, Return, Outside air temperatures

2. Data shall be represented on historical graphs that allow for easy viewing of device state change at different times.
3. Data shall be represented on historical graphs that allow for easy viewing of device state change at different times.

2.5 APPLICATION-SPECIFIC CONTROLLERS

A. Application Specific Controllers shall not require custom programming and shall control specific equipment through simple configuration settings done through the cloud-based BAS. All configuration changes shall automatically upload into the device once set on the BAS and shall be stored by the device’s internal memory.

B. Gateways are devices which connected to an Ethernet port and act as a bridge between the BAS cloud servers and the wireless mesh network.
1. Shall be capable of providing Internet connection to up to 2,000 devices.
2. Shall be capable of automatically addressing routing tables to all devices part of wireless mesh network and shall not require manual programming or addressing.
3. Shall communicate to cloud servers over a TCP/IP outbound-only connection.
4. Shall not require a Public IP address, custom VPNs, or any on-site servers.
5. Shall communicate to other BAS devices over the dedicated and isolated 802.15.4 IEEE technical standard.

C. Internet-Enabled Thermostats are controllers which detect a space/zone temperature and operate equipment or dampers which supply heating, cooling, ventilation, or a combination of the three mechanical states, to their space/zone. Examples are thermostats for VAV, VVT, Fan-Powered Boxes, Fan Coil, Blower Coils, Unit Ventilators, Heat Pumps, Water Source Heat Pumps, and Conventional DX and/or Gas heat equipment.
1. Shall be capable of providing 24VAC outputs which can be configured to provide control of the following: two stages of fan, three stages of cooling, two stages of heating, one stage of auxiliary heat (heat pumps), floating point zone dampers, two position zone dampers, floating point zone reheat valves, and two position zone reheat valves.
2. Shall include a removable wiring terminal module that allows for thermostat installation even in situations where there are only three wires between equipment and where the thermostat is to be installed.
3. Shall be available with the following internal sensors: temperature only, temperature and humidity, temperature, humidity, and CO², and temperature and CO². All sensors required by the specifications are to be internal to the thermostat and not require two devices on the wall.
4. Shall be able to accept expansion accessories that allow for more advanced control sequences, and additional temperature detection. Examples are economizer controllers, outside air ventilation control, supply air temperature detection, unit ventilator face/bypass control, and modulating control. All expansion accessories shall be Internet enabled and accessible through EMS.
5. Shall communicate with the wireless mesh network through an internal wireless antenna that runs on the 802.15.4 technical standards.
6. Shall be able to automatically repeat the wireless mesh network to additional devices part of the BAS.
7. Shall automatically push, in real-time, to the BAS all “state changes” so as to be viewable historically and in real-time from BAS. Examples are changes in equipment operation
(heat, cool, fan), number of stages active, the temperatures in the space, damper position, valve position, temperature set-points, etc.

8. Shall be able to lock-out heat pump compressor(s) based on outside air temperature.
9. Shall provide set-point (heat & cool) temperature limitations through BAS.
10. Shall provide full local keypad lock-out from BAS.
11. Shall meet the latest edition California Title 24 code standards.
12. Shall have a programmable three (3°F) degree heat/cool temperature range which auto-adjusts to a five (5°F) degree dead band.
13. Shall have both a heat setpoint, cool setpoint, and auto-changeover.
14. Shall have Optimum Start algorithms that will calculate start times based on at least seven (7) days of previous run-time temperature and rate-of-change historical data for its space. Optimum Start algorithm shall recalculate each optimized schedule time before each optimized schedule.
15. Shall be able to be manually overridden through BAS.
16. Shall be configured through BAS.

D. Wired Temperature Inputs are to be available to provide external temperature detection for specific BAS devices. Examples are to provide supply air temperature, water temperature, refrigeration temperature, outside air temperature, etc. to a thermostat or other device.
1. Shall accept 10K type II thermistors.
2. Shall push to the BAS real-time temperature changes so as to be viewable historically and in real-time from the BAS.
3. Shall accept a thermistor at a maximum of up to 100 feet from input terminal.
4. Shall be configured through the BAS.

E. Internet-Enabled Economizer Controller are controllers that modulate an outside air damper to provide ventilation and economization to a single zone.
1. Shall only require a dry-bulb outside air temperature sensor and dry-bulb supply air temperature sensor. No dry-bulb return air temperature sensor or dry-bulb mixing box temperature sensor shall be required to meet full economizer functionality to at a minimum California 2016 Title 24 standards.
2. Shall communicate with thermostat to determine space temperature and space temperature setpoint in order to decide when economization can be used.
3. Shall continue to economize as its only source of cooling as long as the outside air temperature is able to keep the space temperature within 1°F of the cool temperature setpoint.
4. Shall be able to enable mechanical cooling at the same time as economization.
5. Shall be able to prevent the supply air temperature from dropping below a minimum temperature.
6. Shall provide enthalpy by use of pulling humidity and barometric pressure information from the Internet based on the zipcode of installation location. Enthalpy shall not require any additional probes other than the dry-bulb probe and shall be free to enable.
7. If connected to a CO² thermostat, shall be able to provide demand ventilation control of outside air damper.
8. Shall have a minimum ventilation damper position and a maximum ventilation damper position.
9. Shall be able to be scheduled to not open the outside air damper for ventilation during unoccupied hours.
10. Shall be able to control a Variable Frequency Drive (VFD) with up to five (5) fan speed inputs. Example of fan speed changes are during ventilation, stage one cooling, stage two cooling, stage one heating, stage two heating.
11. Shall modulate an outside air damper by use of a 0-10VDC signal.
12. Shall accept a 0-10VDC signal feedback input from the outside air damper actuator to confirm outside air damper is working correctly.
13. Shall meet all California 2016 Title 24 codes, including Fault Detection and Diagnostic requirements.
14. Shall send Fault Detection and Diagnostic information to the BAS.
15. Shall accept a minimum of three (3) 10K type II thermistors.
16. Shall be able to modulate a 0-10VDC hot water, steam, or electric SCR for heating and outside air tempering.
17. Shall be able to modulate a 0-10VDC chilled water or modulating DX for cooling and outside air tempering.
18. Shall be able to control a face/bypass damper.
19. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from BAS. Examples are changes in equipment operation (heat, cool, fan, economization, ventilation), number of stages active, the supply air temperature, the return air temperature, hot water valve position, face/bypass damper position, variable speed fan setting, etc.
20. Shall be able to be manually overridden through the BAS.
21. Shall be configured through the BAS.

F. Internet-Enabled Power Relay Module are controllers which have dry-contact relays able to start/stop different electrical equipment. Examples are exhaust fans, lights, pumps, valves, boilers, chillers, etc.
1. Shall have relays with a max rating of 120 VAC @ 15 AMPs.
2. Shall have a low-voltage terminal for momentary contact override inputs. Override time shall be configurable for a specific amount of minutes through a configuration from the BAS.
3. Shall be able to provide Lead/Lag sequencing between relays.
4. Shall be able to accept an external dry-contact input used to verify flow if being used as a pump controller. If being used as a lead/lag pump controller, shall be able to alarm the BAS if flow is not detected when Pump A is enabled and start Pump B as a stand-by pump.
5. Shall communicate with the wireless mesh network through an external wireless antenna that runs on the 802.15.4 technical standards. Antenna shall be able to communicate with Power Relay Module over three (3) 18-gauge wires up to 500 feet between device terminal inputs.
6. Shall be able to automatically repeat the wireless mesh network to additional devices part of the BAS.
7. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from the BAS. Examples are changes in relay positions On or Off.
8. Shall be able to be manually overridden through the BAS.
9. Shall be configured through the BAS.

G. Zone Controllers are controllers which operate equipment which supply heating, cooling and ventilation, or a combination of these mechanical states to multiple zones.
1. Shall communicate with the wireless mesh network through a removable wireless antenna that runs on the 802.15.4 technical standards.
2. Remote mountable antenna shall be able to communicate to Zone Controller over three (3) 18-gauge wires up to 500 feet between devices terminal inputs.
3. Communication from the Zone Controller to all zone/space Thermostats shall be over the wireless mesh network.
4. Shall be capable of providing 24VAC outputs which can be configured to provide control of the following: multiple stages of fan, multiple stages of cooling, and multiple stages of heating.
5. Shall be capable of providing 0-10VDC outputs which can be configured to provide control of the following: variable speed fan (VFD), modulating outside air damper, modulating heating valve.
6. Shall have integrated outside air damper control logic and not require a third-party or additional controllers to provide economization and ventilation control.

7. Shall directly accept a supply duct static pressure probe. Shall have an integrated short-term and long-term learning PID loop algorithm for maintaining target supply static configurations. PID loop shall not require any type of cost for programming and is to be factory loaded into controller.

8. Shall only require dry-bulb outside, return, and supply air temperature sensors.

9. If communicating to CO² thermostat(s), shall be able to provide demand ventilation control of outside air damper.

10. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from the BAS. Examples are changes in equipment operation (heat, cool, fan, economization, ventilation), number of stages active, the supply air temperature, the return air temperature, the outside air temperature, hot water valve position, supply duct static reading, variable speed fan setting, etc.

11. Shall be able to be manually overridden through the BAS.

12. Shall be configured through the BAS.

H. Make-up Air Controllers which operate equipment supplying ventilation to the building.

1. Shall communicate with the wireless mesh network through a removable wireless antenna that runs on the 802.15.4 technical standards.

2. Remote mountable antenna shall be able to communicate to Controller over three (3) 18-gauge wires up to 500 feet between devices terminal inputs.

3. Communication from the Controller to zone/space Thermostat(s) shall be over the wireless mesh network.

4. Shall be capable of providing 24VAC outputs which can be configured to provide control of the following: multiple stages of fan, multiple stages of cooling, and multiple stages of heating.

5. Shall be capable of providing 0-10VDC outputs which can be configured to provide control of the following: modulating variable speed fan (VFD), modulating outside air damper, modulating heating, modulating cooling.

6. Shall be able to modulate a VFD to maintain a targeted building static pressure.

7. Shall be able to modulate a 0-10VDC hot water, steam, or electric SCR for heating and outside air tempering.

8. Shall be able to modulate a 0-10VDC chilled water or modulating DX for cooling and outside air tempering.

9. Shall have integrated outside air damper control logic.

10. Shall directly accept a building pressure probe. Shall have an integrated short-term and long-term learning PID loop algorithm for maintaining target building pressure. PID loop shall not require any type of cost for programming, is to be factory loaded into controller, and updatable virtually through EMS.

11. Shall only require dry-bulb outside and supply air temperature sensors.

12. If communicating to CO² thermostat(s), shall be able to provide demand ventilation control of outside air damper.

13. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from the BAS. Examples are changes in equipment operation (heat, cool, fan, economization, ventilation), number of stages active, the supply air temperature, the return air temperature, the outside air temperature, hot water valve position, supply duct static reading, variable speed fan setting, etc.

14. Shall be scheduled On or Off through the BAS.

15. Shall be able to be manually overridden through the BAS.

16. Shall be configured through the BAS.

I. Wireless Proximity Sensors are thermostat accessories which are able to detect when a door or window is opened or closed, or be able to accept a dry-contact input from an occupancy sensor.
1. Shall be able to communicate to a single Internet-Programmable Thermostat over wireless mesh network.
2. Shall communicate with the wireless mesh network through an internal wireless antenna that runs on the 802.15.4 technical standards.
3. Shall run on two AA batteries and not require any unique type of battery to operate.
4. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from the BAS. Examples are if the door is open, if the space is unoccupied, if a window is open.
5. Shall be configured through the BAS.

J. Remote Wireless Sensors are thermostat accessories which are used to either average temperatures between the sensors location and a master thermostat or to relocate the sensing location of the master thermostat without having to run new wire.
1. Shall be able to communicate to a single Internet-Programmable Thermostat over wireless mesh network.
2. Shall communicate with the wireless mesh network through an internal wireless antenna that runs on the 802.15.4 technical standards.
3. Shall run on two AA batteries and not require any unique type of battery to operate.
4. Shall push all “state changes” to the BAS as to be viewable historically and in real-time from the BAS. Examples are changes in equipment operation (heat, cool, fan), number of stages active, the temperatures in the space, temperature set-points, etc.
5. Shall be configured through the BAS.

K. Wireless Repeaters are devices which extend the 802.15.4 wireless mesh network across large expanses or where BAS devices are unable to repeat the wireless mesh network on their own. Examples are when bridging the wireless mesh network from one building to another.
1. Shall communicate with the wireless mesh network through an internal wireless antenna that runs on the 802.15.4 technical standards.
2. Shall be able to automatically repeat the wireless mesh network to additional devices part of the BAS.
3. Shall not require an Ethernet connection or any TCP/IP connection.
4. Shall only require a single 120V outlet for power.

L. Configuration of Devices and System
1. To meet the sequence of operation for each controller, the controller shall be configured through the BAS by the installing contractor. No custom programming or downloading by use of a service tool shall be required.
2. Stand-Alone Operation: Each piece of equipment specified shall provide stand-alone operation. BAS devices shall not require web connection or communication to the BAS to run under normal operations.

2.6 ENCLOSURES

A. General Enclosure Requirements:
1. House each controller and associated control accessories in a single enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
2. Do not house more than one controller in a single enclosure.
3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
4. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
5. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door. For enclosures with windows, include pocket on bottom of enclosure.

B. Internal Arrangement:

1. Internal layout of enclosure shall group and protect pneumatic, electric, and electronic components associated with a controller, but not an integral part of controller.
2. Arrange layout to group similar products together.
3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
4. Factory or shop install products, tubing, cabling and wiring complying with requirements and standards indicated.
5. Terminate field cable and wire using heavy-duty terminal blocks.
6. Include spare terminals, equal to not less than 20 percent of used terminals.
7. Include spade lugs for stranded cable and wire.
8. Install a maximum of two wires on each side of a terminal.
9. Include enclosure field power supply with a toggle-type switch located at entrance inside enclosure to disconnect power.
10. Include enclosure with a line-voltage nominal 20-A GFCI duplex receptacle for service and testing tools. Wire receptacle on hot side of enclosure disconnect switch and include with a 5-A circuit breaker.
11. Mount products within enclosure on removable internal panel(s).
12. Include products mounted in enclosures with engraved, laminated phenolic nameplates (black letters on a white background). The nameplates shall have at least 1/4-inch-high lettering.
13. Route tubing cable and wire located inside enclosure within a raceway with a continuous removable cover.
14. Label each end of cable, wire and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
15. Size enclosure internal panel to include at least 25 percent spare area on face of panel.

C. Environmental Requirements:

1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.
3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.
4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.
5. Include temperature-controlled cooling within the enclosure for applications where ventilation fans cannot maintain inside temperature of enclosure below maximum operating temperature of product with most stringent requirement.
6. Where required by application, include humidity-controlled electric dehumidifier or cooling to maintain inside of enclosure below maximum relative humidity of product with most stringent requirement and to prevent surface condensation within enclosure.

D. Wall-Mounted, NEMA 250, Type 1:

1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
2. Construct enclosure of steel, not less than:
 a. Enclosure size less than 24 in.: 0.067 in. thick.
 b. Enclosure size 24 in. and larger: 0.093 in. thick.

3. Finish enclosure inside and out with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be NSF/ANSI 61 gray.
 b. Interior color shall be NSF/ANSI 61 gray.

4. Hinged door full size of front face of enclosure and supported using:
 a. Enclosures sizes less than 36 in. tall: Multiple butt hinges.
 b. Enclosures sizes 36 in. tall and larger: Continuous piano hinges.

5. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size less than 24 in.: Solid or Perforated steel, 0.053 in. thick.
 b. Size 24 in. and larger: Solid steel, 0.093 in. thick.

6. Internal panel mounting hardware, grounding hardware and sealing washers.
7. Grounding stud on enclosure body.
8. Thermoplastic pocket on inside of door for record Drawings and Product Data.

E. Wall Mounted NEMA 250, Types 4 and 12:
1. Enclosure shall be NRTL listed according to UL 508A.
2. Seam and joints are continuously welded and ground smooth.
3. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
4. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
7. Construct enclosure of steel, not less than the following:
 a. Size Less Than 24 Inches: 0.067 inch thick.
 b. Size 24 Inches and Larger: 0.067 inch thick.

8. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be NSF/ANSI 61 gray.
 b. Interior color shall be NSF/ANSI 61 gray.

9. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.
10. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.

11. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 b. Size 24 Inches and Larger: Solid steel, 0.093 inch thick.

12. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.
14. Thermoplastic pocket on inside of door for record Drawings and Product Data.

F. Wall-Mounted, NEMA 250, Type 4X SS:
 1. Enclosure shall be NRTL listed according to UL 508A.
 2. Seam and joints are continuously welded and ground smooth.
 3. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
 4. Construct enclosure of Type 316L stainless steel, not less than the following:
 a. Size Less Than 24 Inches: 0.053 inch thick.
 b. Size 24 Inches and Larger: 0.067 inch thick.
 5. Outside body and door of enclosure with brushed No. 4 finish.
 6. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.
 7. Corner-formed door, full size of enclosure face, supported using continuous piano hinge full length of door.
 8. Doors fitted with three-point (top, middle, and bottom) latch system with single, heavy-duty, liquid-tight Type 316 stainless-steel handle with integral locking mechanism.
 9. Removable internal panel shall be 0.093-inch solid steel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
10. Internal panel mounting studs and hardware, grounding hardware, and sealing washers.
11. Install corrosion-resistant polyester vent drain in a stainless-steel sleeve at the bottom of enclosure.
12. Include enclosure with stainless-steel mounting brackets.

2.7 RELAYS

A. General-Purpose Relays:
 1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.
 2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.
3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
6. Relays shall have LED indication and a manual reset and push-to-test button.
7. Performance:

 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

B. Multifunction Time-Delay Relays:
1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a dust-tight cover.
6. Include knob and dial scale for setting delay time.
7. Performance:

 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 d. Repeatability: Within 2 percent.
 e. Recycle Time: 45 ms.
 f. Minimum Pulse Width Control: 50 ms.
 g. Power Consumption: 5 VA or less at 120-V ac.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

C. Latching Relays:
1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
3. Use a plug-in-style relay with a multibladed plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
6. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

D. Current Sensing Relay:
 1. Monitors ac current.
 2. Independent adjustable controls for pickup and dropout current.
 3. Energized when supply voltage is present and current is above pickup setting.
 4. De-energizes when monitored current is below dropout current.
 5. Dropout current is adjustable from 50 to 95 percent of pickup current.
 6. Include a current transformer, if required for application.
 7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.

E. Combination On-Off Status Sensor and On-Off Relay:
 1. Description:
 a. On-off control and status indication in a single device.
 b. LED status indication of activated relay and current trigger.
 c. Closed-Open-Auto override switch located on the load side of the relay.
 2. Performance:
 a. Ambient Temperature: Minus 30 to 140 deg F.
 3. Status Indication:
 a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 b. Current Sensor Range: As required by application.
 c. Current Set Point: Fixed or adjustable as required by application.
 d. Current Sensor Output:
 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 3) Analog, zero- to 5- or 10-V dc.
 4) Analog, 4 to 20 mA, loop powered.
5. Enclosure: NEMA 250, Type 1 enclosure.

2.8 ELECTRICAL POWER DEVICES

A. Transformers:
1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
2. Transformer shall be at least 40 VA.
3. Transformer shall have both primary and secondary fuses.

B. Power-Line Conditioner:
1. General Power-Line Conditioner Requirements:
 a. Design to ensure maximum reliability, serviceability and performance.
 b. Overall function of the power-line conditioner is to receive raw, polluted electrical power and purify it for use by electronic equipment. The power-line conditioner shall provide isolated, regulated, transient and noise-free sinusoidal power to loads served.
2. Standards: NRTL listed per UL 1012.
3. Performance:
 a. Single phase, continuous, 100 percent duty rated KVA/KW capacity. Design to supply power for linear or nonlinear, high crest factor, resistive and reactive loads.
 b. Automatically regulate output voltage to within 2 percent or better with input voltage fluctuations of plus 10 to minus 20 percent of nominal when system is loaded 100 percent. Use Variable Range Regulation to obtain improved line voltage regulation when operating under less than full load conditions.
 1) At 75 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 35 percent of nominal.
 2) At 50 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 40 percent of nominal.
 3) At 25 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 45 percent of nominal.
 c. With input voltage distortion of up to 40 percent, limit the output voltage sine wave to a maximum harmonic content of 5 percent.
 d. Automatically regulate output voltage to within 2.5 percent when load (resistive) changes from zero percent to 100 percent to zero percent.
 e. Output voltage returns to 95 percent of nominal level within two cycles and to 100 percent within three cycles when the output is taken from no load to full resistive load or vice-versa. Recovery from partial resistive load changes is corrected in a shorter period of time.
 f. K Factor: 30, designed to operate with nonlinear, non-sinusoidal, high crest factor loads without overheating.
g. Input power factor within 0.95 approaching unity with load power factor as poor as 0.6.
h. Attenuate load-generated odd current harmonics 23 dB at the input.
i. Electrically isolate the primary from the secondary. Meet isolation criteria as defined in NFPA 70, Article 250-5D.
j. Lighting and Surge Protection: Compares to UL 1449 rating of 330 V when subjected to Category B3 (6000 V/3000 A) combination waveform as established by IEEE C62.41.
k. Common-mode noise attenuation of 140 dB.
l. Transverse-mode noise attenuation of 120 dB.
m. With loss of input power for up to 16.6 ms, the output sine wave remains at usable ac voltage levels.
n. Reliability of 200,000 hours' MTBF.
o. At full load, when measured at 1-m distance, audible noise is not to exceed 54 dB.
p. Approximately 92 percent efficient at full load.

4. Transformer Construction:
 a. Ferroresonant, dry type, convection cooled, 600V class. Transformer windings of Class H (220 deg C) insulated copper.
 b. Use a Class H installation system throughout with operating temperatures not to exceed 150 deg C over a 40-deg C ambient temperature.
 c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.
 d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.
 e. Configure transformer secondary in a 240/120-V split with a 208-V tap or straight 120 V, depending on power output size.
 f. Electrically isolate the transformer secondary windings from the primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.
 g. Include interface terminals for output power hot, neutral and ground conductors.
 h. Label leads, wires and terminals to correspond with circuit wiring diagram.
 i. Vacuum impregnate transformer with epoxy resin.

5. Cabinet Construction:
 a. Design for panel or floor mounting.
 b. NEMA 250, Type 1, general-purpose, indoor enclosure.
 c. Manufacture the cabinet from heavy gauge steel complying with UL 50.
 d. Include a textured baked-on paint finish.

C. Transient Voltage Suppression and High-Frequency Noise Filter Unit:
 1. The maximum continuous operating voltage shall be at least 125 percent.
 2. The operating frequency range shall be 47 to 63 Hz.
 3. Protection modes according to NEMA LS-1.
 4. The rated single-pulse surge current capacity, for each mode of protection, shall be no less than the following:
 a. Line to Neutral: 45,000 A.
 b. Neutral to Ground: 45,000 A.
 c. Line to Ground: 45,000 A.
 d. Per Phase: 90,000 A.
5. Clamping voltages shall be in compliance with test and evaluation procedures defined in NEMA LS-1. Maximum clamping voltage shall be as follows:
 a. Line to Neutral: 360 V.
 b. Line to Ground: 360 V.
 c. Neutral to Ground: 360 V.

6. Electromagnetic interference and RF interference noise rejection or attenuation values shall comply with test and evaluation procedures defined in NEMA LS-1.
 a. Line to Neutral:
 1) 100 kHz: 42 dB.
 2) 1 MHz: 25 dB.
 3) 10 MHz: 21 dB.
 4) 100 MHz: 36 dB.
 b. Line to Ground:
 1) 100 kHz: 16 dB.
 2) 1 MHz: 55 dB.
 3) 10 MHz: 81 dB.
 4) 100 MHz: 80 dB.

7. Unit shall have LED status indicator that extinguishes to indicate a failure.

8. Unit shall be listed by an NRTL as a transient voltage surge suppressor per UL 1449, and as an electromagnetic interference filter per UL 1283.

9. Unit shall not generate any appreciable magnetic field.

10. Unit shall not generate an audible noise.

D. DC Power Supply:
 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
 2. Enclose circuitry in a housing.
 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.
 4. Performance:
 a. Output voltage nominally 25-V dc within 5 percent.
 b. Output current up to 100 mA.
 c. Input voltage nominally 120-V ac, 60 Hz.
 d. Load regulation within 0.5 percent from zero- to 100-mA load.
 e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.9 UNINTERRUPTABLE POWER SUPPLY (UPS) UNITS

A. 250 through 1000 VA:
 1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
 2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
a. Larger-capacity units shall be provided for systems with larger connected loads.
b. UPS shall provide 10 minutes of battery power.

3. Performance:
 a. Input Voltage: Single phase, 120- or 230-V ac, compatible with field power source.
 b. Load Power Factor Range (Crest Factor): 0.65 to 1.0.
 c. Output Voltage: 101- to 132-V ac, while input voltage varies between 89 and 152-V ac.
 d. On Battery Output Voltage: Sine wave.
 e. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 f. Recharge time shall be a maximum of six hours to 90 percent capacity after full discharge to cutoff.
 g. Transfer Time: 6 ms.
 h. Surge Voltage Withstand Capacity: IEEE C62.41, Categories A and B; 6 kV/200 and 500 A; 100-kHz ringwave.

4. UPS shall be automatic during fault or overload conditions.

5. Unit with integral line-interactive, power condition topology to eliminate all power contaminants.

6. Include front panel with power switch and visual indication of power, battery, fault and temperature.

7. Unit shall include an audible alarm of faults and front panel silence feature.

8. Unit with four NEMA WD 1, NEMA WD 6 Configuration 5-15R receptacles.

9. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure) and connect the points to the DDC system.

10. Batteries shall be sealed lead-acid type and be maintenance free. Battery replacement shall be front accessible by user without dropping load.

11. Include tower models installed in ventilated cabinets to the particular installation location.

B. 1000 through 3000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.

2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units, or multiple units, shall be provided for systems with larger connected loads.
 b. UPS shall provide 10 minutes of battery power.

3. Performance:
 a. Input Voltage: Single phase, 120-V ac, plus 20 to minus 30 percent.
 b. Power Factor: Minimum 0.97 at full load.
 c. Output Voltage: Single phase, 120-V ac, within 3 percent, steady state with rated output current of 10.0 A, 30.0-A peak.
 d. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 e. Recharge time shall be a maximum of eight hours to 90 percent capacity.

4. UPS bypass shall be automatic during fault or overload conditions.

5. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure).

6. Batteries shall be sealed lead-acid type and be maintenance free.
7. Include tower models installed in ventilated cabinets or rack models installed on matching racks, as applicable to the particular installation location and space availability/configuration.

2.10 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.
 1. Wire size shall be at least No. 16 AWG.
 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
 5. Furnish wire on spools.

B. Single Twisted Shielded Instrumentation Cable above 24 V:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 1. Cable shall be plenum rated.
 2. Cable shall comply with NFPA 70.
 3. Cable shall have a unique color that is different from other cables used on Project.
 4. Copper Cable for Ethernet Network:
 a. 1000BASE-T or 1000BASE-TX.
 b. TIA/EIA 586, Category 6.
c. Minimum No. 22 AWG solid.
d. Shielded Twisted Pair (STP).
e. Thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, Class CMP as plenum rated.

2.11 RACEWAYS FOR CONTROL WIRING, CABELING, AND TUBING

A. Metal Conduits, Tubing, and Fittings:
 1. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. GRC: Comply with NEMA ANSI C80.1 and UL 6.
 3. ARC: Comply with NEMA ANSI C80.5 and UL 6A.
 4. IMC: Comply with NEMA ANSI C80.6 and UL 1242.
 5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch, minimum.

 6. EMT: Comply with NEMA ANSI C80.3 and UL 797.
 7. FMC: Comply with UL 1; zinc-coated steel.
 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
 9. Fittings for Metal Conduit: Comply with NEMA ANSI FB 1 and UL 514B.
 a. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 b. Fittings for EMT:
 1) Material: Steel or die cast.
 2) Type: Setscrew or compression.
 c. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 d. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

 10. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

B. Metal Wireways and Auxiliary Gutters:
 1. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 a. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
3. Wireway Covers: Hinged type unless otherwise indicated.

C. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color as selected by Architect.

2.12 CONTROL POWER WIRING AND RACEWAYS

A. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" electrical power conductors and cables.

B. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

2.13 FIBER-OPTIC CABLE, CONNECTORS, AND RACEWAY

A. Cables:
 1. Performance Requirements:
 a. Fiber: Multimode graded index. Core/cladding size shall be either 62.5/125 or 100/140 micrometers.
 b. Numerical Aperture:
 1) 62.5/125 Micrometer Fiber: 0.275 plus or minus 0.015.
 2) 100/140 Micrometer Fiber: 0.29 plus or minus 0.015.
 c. Maximum Attenuation:
 1) 850 nm: 6.0 dB/km.
 2) 1300 nm: 5.0 dB/km.
 d. Minimum Bandwidth Dispersion: 300 MHz-km at 850 nm.
 e. Core/Cladding Index Difference: 0.3 percent plus or minus 0.05 percent, measured using refractive rear field measurement procedure.
 f. Color-code finished fibers for easy identification.
 g. Splice Loss: Fibers shall be spliced together to form a longer fiber using a commercially available fiber splicing machine recommended by cable manufacturer. Maximum loss per fiber splice shall be 0.20 dB.
 h. Connection: Fibers shall be connected using fiber-optic connectors. Nominal connector loss shall not be greater than 1 dB.
 i. Fiber-optic cable shall be suitable for use with 100Base-FX or 100Base-SX standard (as applicable) as defined in IEEE 802.3.

 2. Mechanical and Environmental Requirements:
 a. Tensile Strength: Fiber cable shall withstand a minimum tensile strength of 2700 N with maximum elongation of less than 0.5 percent.
 b. Bending Radius: Minimum static bending radius for cable shall be 10 times outside diameter for non-armored cables and 20 times outside diameter for armored cables. Non-armored cables shall withstand being flexed at minimum static bending radius plus or minus 90 degrees for at least 20 cycles at 20 to 40 cycles.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

per minute at 20 deg C. Armored cables shall withstand being flexed at minimum static bending radius plus or minus 90 degrees for at least 10 cycles at 20 to 40 cycles per minute at 20 deg C.

c. Vibration: Cable shall withstand a vibration test with vibration amplitude of 5 mm and frequency of 10 cycles per second for at least five hours.

d. Twist: Cable shall withstand twisting of 360 degrees over a length of 2 m for at least 10 cycles at 10 cycles per minute.

e. Temperature: Cable shall withstand the following temperatures:

1) Installation: Minus 30 to 70 deg C.
2) Operation: Minus 40 to 70 deg C.
3) Storage/Shipping: Minus 40 to 70 deg C.

f. Lifetime: Average lifetime of a 2-km, 12-fiber cable shall be at least 20 years when installed in a natural ambient environment. End of useful life shall be reached if failing to comply with requirements indicated or a spontaneous catastrophic fiber failure.

g. Crush Resistance: Cable shall withstand a compressive force of 705 N/cm for armored cables and 600 N/cm for non-armored cables. There shall be no attenuation increase after force is removed.

3. Cable Structure:

a. Number of Fibers: Supply the required number of fibers in each cable for DDC system indicated, plus not less than 50 percent spare. Cable structure shall have fibers grouped for easy handling.

b. Strength Members: Include cable with strength members to satisfy mechanical and environmental conditions indicated.

c. Cable Core: Core shall consist of stranded buffer tubes around a central member of appropriate geometric size and shall be filled and bound to maintain core integrity. A fibrous strength member may be stranded around core to provide necessary strength for cable.

d. Cable Jacket: Protect cable by an extruded-polyethylene jacket.

e. Cable Armor: For cables requiring extra mechanical protection, one or two layers of galvanized corrugated steel tape coated by an anticorrosive compound shall be either helically or longitudinally applied over standard outer jacket. Apply a second outer jacket of polyethylene over coated steel tape. Thickness of sheaths and jackets are not specified as long as mechanical and environmental conditions are satisfied.

f. Cable Installation: Cables shall be suitable for a semiprotected outdoor installation.

4. Packaging and Shipping:

a. Seal both ends of each length of cable.

b. Test individual fibers in each cable before shipping to verify compliance with Specifications.

B. Connectors:

1. Performance Requirements:

a. Type: Fiber-optic connectors shall be either Type ST or Type SMA. Use either connector type exclusively. No substitutions are allowed.

b. Insertion Loss: Connector shall have an insertion loss of not greater than 1 dB.
c. Coupling Tolerance: Connector shall withstand at least 500 couplings with insertion loss within 0.25-dB tolerance limit.
d. Mechanical Requirements:
 1) Connector shall enclose outermost coating of single fiber cable and be able to be mated or unmated without using a tool.
 2) Mount connector rigidly in a metal frame.
 3) Connector shall allow a semiskilled person to properly install connector to a single fiber easily in a field environment with simple tools.

C. Splice Organizer Cabinet:
 1. Minimum Capacity: Each splice organizer shall accommodate number of connectors required for DDC system indicated, plus 100 percent spare.
 2. Mounting: Wall mount the splice organizer cabinet.

D. Raceways:
 1. Mechanical and Performance Requirements:
 a. Construction: Nonmetallic, flexible raceway system manufactured specifically for routing fiber-optic cables.
 b. Suitable for use in return-air plenums, air-handling rooms, above ceilings and under access floors.
 c. Exhibit low smoke generation and flame-spread characteristics, and have high-temperature service tolerance.
 d. Size raceway according to NFPA 70 requirements for communications cables.
 e. Tensile Strength at Yield: 10,800 psi.
 f. Elongation at Break: 25 percent.

E. Cable Identification:
 1. Labeling product shall be self-laminating cable marker.
 2. Cable labeling shall include numeric designation, source, destination, and cable type.

2.14 ACCESSORIES

A. Pressure Electric Switches:
 1. Diaphragm-operated snap acting switch.
 2. Set point adjustable from 3 to 20 psig.
 3. Differential adjustable from 2 to 6 psig.
 4. Rated for resistance loads at 120-V ac.
 5. Body and switch housing shall be metal.

B. Damper Blade Limit Switches:
 1. Sense positive open and/or closed position of the damper blades.
 2. NEMA 250, Type 13, oil-tight construction.
 3. Arrange for the mounting application.
 4. Additional waterproof enclosure when required by its environment.
 5. Arrange to prevent "over-center" operation.
2.15 IDENTIFICATION

A. Instrument Air Pipe and Tubing:

1. Engraved tag shall bear the following information:
 a. Service (Example): "Instrument Air."
 b. Pressure Range (Example): 0 to 30 psig.

2. Letter size shall be a minimum of 0.25 inch high.
3. Tag shall consist of white lettering on blue background.
4. Tag shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded blue with contrasting white center exposed by engraving through outer layer.
5. Include tag with a brass grommet, chain and S-hook.

B. Control Equipment, Instruments, and Control Devices:

1. Engraved tag bearing unique identification.
 a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.

2. Letter size shall be as follows:
 a. DDC Controllers: Minimum of 0.5 inch > high.
 b. Gateways: Minimum of 0.5 inch high.
 c. Repeaters: Minimum of 0.5 inch high.
 d. Enclosures: Minimum of 0.5 inch high.
 e. Electrical Power Devices: Minimum of 0.25 inch high.
 f. UPS units: Minimum of 0.5 inch high.
 g. Accessories: Minimum of 0.25 inch high.
 h. Instruments: Minimum of 0.25 inch high.
 i. Control Damper and Valve Actuators: Minimum of 0.25 inch high.

3. Tag shall consist of white lettering on black background.
4. Tag shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer.
5. Tag shall be fastened with drive pins.
6. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.

C. Valve Tags:

1. Brass tags and brass chains attached to valve.
2. Tags shall be at least 1.5 inches in diameter.
3. Include tag with unique valve identification indicating control influence such as flow, level, pressure, or temperature; followed by location of valve, and followed by three-digit sequential number. For example: TV-1.001.
4. Valves with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.
D. Raceway and Boxes:

1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.

E. Equipment Warning Labels:

1. Acrylic label with pressure-sensitive adhesive back and peel-off protective jacket.
2. Lettering size shall be at least 14-point type with white lettering on red background.
3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch beyond white border.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify compatibility with and suitability of substrates.

B. Examine roughing-in for products to verify actual locations of connections before installation.

1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

F. The Contract Documents shall be thoroughly examined for coordination of control devices, their installation, wiring, and commissioning. Coordinate and review mechanical equipment specifications, locations, and identify any discrepancies, conflicts, or omissions that shall be reported to the Architect/Engineer for resolution before rough-in work is started.

G. The BAS manufacturer shall be available to provide assistance to BAS Contractor in order to verify that control equipment can be installed as required, and any discrepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.
3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:

1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.
2. Equipment to Be Connected:
 a. Fan-coil units specified in Section 238219 “VRV Split Air Conditioners.”
 b. Air coils specified in Section 238216.00.”.

3.3 CONTROL DEVICES FOR INSTALLATION BY INSTALLERS

A. Deliver selected control devices, specified in indicated HVAC instrumentation and control device Sections, to identified equipment and systems manufacturers for factory installation and to identified installers for field installation.

B. Deliver the following to duct fabricator and Installer for installation in ductwork. Include installation instructions to Installer and supervise installation for compliance with requirements.

1. DDC control dampers.
2. Airflow sensors and switches.
3. Pressure sensors.

3.4 GENERAL INSTALLATION REQUIREMENTS

A. Install products to satisfy more stringent of all requirements indicated.

B. Install products level, plumb, parallel, and perpendicular with building construction.

C. Support products, tubing, piping wiring and raceways. Brace products to prevent lateral movement and sway or a break in attachment when subjected to a seismic force.

D. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

E. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

F. Firestop penetrations made in fire-rated assemblies. Comply with requirements in Section 078413 “Penetration Firestopping.”

G. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 “Joint Sealants.”

H. Welding Requirements:

1. Restrict welding and burning to supports and bracing.
2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

I. Fastening Hardware:

1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

J. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

K. Corrosive Environments:

1. Avoid or limit use of materials in corrosive airstreams and environments, including, but not limited to, the following:
 a. Laboratory exhaust-air streams.
 b. Process exhaust-air streams.
2. When conduit is in contact with a corrosive airstream and environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment. Comply with requirements for installation of raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
3. Where instruments are located in a corrosive airstream and are not corrosive resistant from manufacturer, field install products in NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.5 GATEWAY INSTALLATION

A. Install gateways if required for DDC system communication interface requirements indicated.
 1. Install gateway(s) required to suit indicated requirements.

B. Test gateway to verify that communication interface functions properly.

3.6 ROUTER INSTALLATION

A. Install routers if required for DDC system communication interface requirements indicated.
 1. Install router(s) required to suit indicated requirements.

B. Test router to verify that communication interface functions properly.
3.7 CONTROLLER INSTALLATION

A. Install controllers in enclosures to comply with indicated requirements.

B. Connect controllers to field power supply and to UPS units where indicated.

C. Install controller with latest version of applicable software and configure to execute requirements indicated.

D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.

E. Installation of Programmable Application Controllers:
 1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. Install controllers in a protected location that is easily accessible by operators.
 3. Top of controller shall be within 72 inches of finished floor.

F. Application-Specific Controllers:
 1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.8 INSTALLATION OF WIRELESS ROUTERS FOR OPERATOR INTERFACE

A. Install wireless routers to achieve optimum performance and best possible coverage.

B. Mount wireless routers in a protected location that is within 60 inches of floor and easily accessible by operators.

C. Connect wireless routers to field power supply and to UPS units if network controllers are powered through UPS units.

D. Install wireless router with latest version of applicable software and configure wireless router with WPA2 security and password protection. Create access password with not less than 12 characters consisting of letters and numbers and at least one special character. Document password in operations and maintenance manuals for reference by operators.

E. Test and adjust wireless routers for proper operation with portable workstation and other wireless devices intended for use by operators.

3.9 ENCLOSURES INSTALLATION

A. Install the following items in enclosures, to comply with indicated requirements:
 1. Gateways.
 2. Routers.
 3. Controllers.
4. Electrical power devices.
5. UPS units.
6. Relays.
7. Accessories.
8. Instruments.
9. Actuators

B. Attach wall-mounted enclosures to wall using the following types of steel struts:

1. For NEMA 250, Type 1 Enclosures: Use galvanized-steel strut and hardware.
2. For NEMA 250, Type 4 Enclosures and Enclosures Located Outdoors: Use stainless-steel strut and hardware.
3. Install plastic caps on exposed cut edges of strut.

C. Align top or bottom of adjacent enclosures of like size.

D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.10 ELECTRIC POWER CONNECTIONS

A. Connect electrical power to DDC system products requiring electrical power connections.

B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

C. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.

D. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.11 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.

B. Install engraved phenolic nameplate with unique identification on face for each of the following:
 1. Gateway.
 2. Router.
 3. DDC controller.
 4. Enclosure.
 5. Electrical power device.
 6. UPS unit.
 7. Accessory.

C. Install engraved phenolic nameplate with unique instrument identification on face of each instrument connected to a DDC controller.
D. Install engraved phenolic nameplate with identification on face of each control damper actuator connected to a DDC controller.

E. Where product is installed above accessible tile ceiling, also install matching engraved phenolic nameplate with identification on face of ceiling grid located directly below.

F. Where product is installed above an inaccessible ceiling, also install engraved phenolic nameplate with identification on face of access door directly below.

G. Warning Labels:
 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 2. Shall be located in highly visible location near power service entry points.

3.12 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Comply with TIA 568-C.1.

C. Wiring Method: Install cables in raceways and cable trays except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for cable trays specified in Section 260536 "Cable Trays for Electrical Systems."
 3. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

E. Field Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

F. Conduit Installation:
 1. Install conduit expansion joints where conduit runs exceed 200 feet, and conduit crosses building expansion joints.
 2. Coordinate conduit routing with other trades to avoid conflicts with ducts, pipes and equipment and service clearance.
 3. Maintain at least 3-inch separation where conduits run axially above or below ducts and pipes.
 4. Limit above-grade conduit runs to 100 feet without pull or junction box.
 5. Do not install raceways or electrical items on any "explosion-relief" walls, or rotating equipment.
 6. Do not fasten conduits onto the bottom side of a metal deck roof.
 7. Flexible conduit is permitted only where flexibility and vibration control is required.
 8. Limit flexible conduit to 3 feet long.
9. Conduit shall be continuous from outlet to outlet, from outlet to enclosures, pull and junction boxes, and shall be secured to boxes in such manner that each system shall be electrically continuous throughout.

10. Direct bury conduits underground or install in concrete-encased duct bank where indicated.

 a. Use rigid, nonmetallic, Schedule 80 PVC.
 b. Provide a burial depth according to NFPA 70, but not less than 24 inches.

11. Secure threaded conduit entering an instrument enclosure, cabinet, box, and trough, with a locknut on outside and inside, such that conduit system is electrically continuous throughout. Provide a metal bushing on inside with insulated throats. Locknuts shall be the type designed to bite into the metal or, on inside of enclosure, shall have a grounding wedge lug under locknut.

12. Conduit box-type connectors for conduit entering enclosures shall have an insulated throat.

13. Connect conduit entering enclosures in wet locations with box-type connectors or with watertight sealing locknuts or other fittings.

14. Offset conduits where entering surface-mounted equipment.

15. Seal conduit runs used by sealing fittings to prevent the circulation of air for the following:

 a. Conduit extending from interior to exterior of building.
 b. Conduit extending into pressurized duct and equipment.
 c. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.

G. Wire and Cable Installation:

1. Cables serving a common system may be grouped in a common raceway. Install control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.

2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.

 a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.

3. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.

4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

5. UTP Cable Installation:

 a. Comply with TIA 568-C.2.
 b. Do not untwist UTP cables more than 1/2 inch from the point of termination, to maintain cable geometry.

6. Installation of Cable Routed Exposed under Raised Floors:

 a. Install plenum-rated cable only.
 b. Install cabling after the flooring system has been installed in raised floor areas.
c. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.

7. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.
8. Provide strain relief.
9. Terminate wiring in a junction box.
 a. Clamp cable over jacket in junction box.
 b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.
10. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
11. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
12. Keep runs short. Allow extra length for connecting to terminal boards. Do not bend flexible coaxial cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
13. Ground wire shall be copper and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.
14. Wire and cable shall be continuous from terminal to terminal without splices.
15. Use insulated spade lugs for wire and cable connection to screw terminals.
16. Use shielded cable to transmitters.
17. Use shielded cable to temperature sensors.
18. Perform continuity and meager testing on wire and cable after installation.
19. Do not install bruised, kinked, scored, deformed, or abraded wire and cable. Remove and discard wire and cable if damaged during installation, and replace it with new cable.
20. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
21. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
22. Protection from Electro-Magnetic Interference (EMI): Provide installation free of (EMI). As a minimum, comply with the following requirements:
 a. Comply with BICSI TDMM and TIA 569-C for separating unshielded cable from potential EMI sources, including electrical power lines and equipment.
 b. Separation between open cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 c. Separation between cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
d. Separation between cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:

1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

e. Separation between Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches.
f. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.13 FIBER-OPTIC CABLE SYSTEM INSTALLATION

A. Comply with TIA 568-C.3, except where requirements indicated are more stringent.

B. Raceway Installation:

1. Install continuous raceway for routing fiber-optic cables.
2. Install raceways continuously between pull boxes and junction boxes. Raceways shall enter and be secured to enclosures.
3. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
4. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Use long radius elbows for all fiber-optic cables.
5. Entire raceway shall be complete and raceway interior cleaned before installation of fiber-optic cables.
6. Securely fasten raceway to building structure using clamps and clips designed for purpose.
7. Install nylon or polyethylene pulling line in raceways. Clearly label as “pulling line,” indicating source and destination.

C. Fiber-Optic Cable Installation:

1. Route cables as efficiently as possible, minimizing amount of cable required.
2. Continuously lubricate cables during pulling-in process.
3. Do not exceed maximum pulling tensions provided by cable manufacturer. Monitor cable pulling tension with a mechanical tension meter.
4. Arrange cables passing through pull boxes to obtain maximum clearance among cables within box.
5. As cables emerge from intermediate point pull boxes, coil cable in a figure eight pattern with loops not less than 24 inches in diameter.
6. Terminate fiber-optic cables in a fiber-optic splice organizer cabinet, unless connected equipment can accept fiber-optic cables directly. Terminate cables with connectors.
7. Install and connect appropriate opto-electronic equipment and fiber jumper cables between opto-electronic equipment and fiber-optic cable system to DDC system fiber-optic cable system. Verify interface compatibility.

D. Cable and Raceway Identification:

1. Label cables at both ends. Labels shall be typed, not handwritten.
2. Mark raceways at each pull box indicating the type and number of cables within.

3.14 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Testing:

1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
5. Test Equipment: Use a fiber-optic time domain reflectometer for testing of length and optical connectivity.
6. Test Results: Record test results and submit copy of test results for Project record.

3.15 DDC SYSTEM I/O CHECKOUT PROCEDURES

A. Check installed products before continuity tests, leak tests and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.

D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material and support.

E. For pneumatic products, verify that air supply for each product is properly installed.
F. Control Damper Checkout:

1. For pneumatic dampers, verify that pressure gages are provided in each air line to damper actuator and positioner.
2. Verify that control dampers are installed correctly for flow direction.
3. Verify that proper blade alignment, either parallel or opposed, has been provided.
4. Verify that damper frame attachment is properly secured and sealed.
5. Verify that damper actuator and linkage attachment is secure.
6. Verify that actuator wiring is complete, enclosed and connected to correct power source.
7. Verify that damper blade travel is unobstructed.

G. Instrument Checkout:

1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
2. Verify that attachment is properly secured and sealed.
3. Verify that conduit connections are properly secured and sealed.
4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
5. Inspect instrument tag against approved submittal.
6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
8. For temperature instruments:
 a. Verify sensing element type and proper material.
 b. Verify length and insertion.

3.16 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

E. Provide diagnostic and test equipment for calibration and adjustment.

F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.

I. Comply with field testing requirements and procedures indicated by ASHRAE’s Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:
 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Control Valves:
 1. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed and 100 percent open at proper air pressures.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.

O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

P. Switches: Calibrate switches to make or break contact at set points indicated.

Q. Transmitters:
1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.17 **DDC SYSTEM CONTROLLER CHECKOUT**

A. Verify power supply.
 1. Verify voltage, phase and hertz.
 2. Verify that protection from power surges is installed and functioning.
 3. Verify that ground fault protection is installed.
 4. If applicable, verify if connected to UPS unit.
 5. If applicable, verify if connected to a backup power source.
 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.

B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.

C. Verify that spare I/O capacity is provided.

3.18 **DDC CONTROLLER I/O CONTROL LOOP TESTS**

A. Testing:
 1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
 2. Test every I/O point throughout its full operating range.
 3. Test every control loop to verify operation is stable and accurate.
 4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
 5. Test and adjust every control loop for proper operation according to sequence of operation.
 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
 7. Operate each analog point at the following:
 a. Upper quarter of range.
 b. Lower quarter of range.
 c. At midpoint of range.
 8. Exercise each binary point.
 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
 10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.
3.19 DDC SYSTEM VALIDATION TESTS

A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.

B. After approval of Test Plan, execute all tests and procedures indicated in plan.

C. After testing is complete, submit completed test checklist.

D. Pretest Checklist: Submit the following list with items checked off once verified:

1. Detailed explanation for any items that are not completed or verified.
2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
3. HVAC equipment motors operate below full-load amperage ratings.
4. Required DDC system components, wiring, and accessories are installed.
5. Installed DDC system architecture matches approved Drawings.
6. Control electric power circuits operate at proper voltage and are free from faults.
7. Required surge protection is installed.
8. DDC system network communications function properly, including uploading and downloading programming changes.
9. Each controller's programming is backed up.
10. Equipment, products, tubing, wiring cable and conduits are properly labeled.
11. All I/O points are programmed into controllers.
12. Testing, adjusting and balancing work affecting controls is complete.
13. Dampers and actuators zero and span adjustments are set properly.
14. Each control damper and actuator goes to failed position on loss of power.
15. Valves and actuators zero and span adjustments are set properly.
16. Each control valve and actuator goes to failed position on loss of power.
17. Meter, sensor and transmitter readings are accurate and calibrated.
18. Control loops are tuned for smooth and stable operation.
19. View trend data where applicable.
20. Each controller works properly in standalone mode.
21. Safety controls and devices function properly.
22. Interfaces with fire-alarm system function properly.
23. Electrical interlocks function properly.
24. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphic are created.
25. Record Drawings are completed.

E. Test Plan:

1. Prepare and submit a validation test plan including test procedures for performance validation tests.
2. Test plan shall address all specified functions of DDC system and sequences of operation.
3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
5. Include a test checklist to be used to check and initial that each test has been successfully completed.
6. Submit test plan documentation 10 business days before start of tests.
F. Validation Test:

1. Verify operating performance of each I/O point in DDC system.
 a. Verify analog I/O points at operating value.
 b. Make adjustments to out-of-tolerance I/O points.
 1) Identify I/O points for future reference.
 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.

2. Simulate conditions to demonstrate proper sequence of control.
3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
4. After 24 Hours following Initial Validation Test:
 a. Re-check I/O points that required corrections during initial test.
 b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.

5. After 24 Hours of Second Validation Test:
 a. Re-check I/O points that required corrections during second test.
 b. Continue validation testing until I/O point is normal on two consecutive tests.

6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.

7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

G. DDC System Response Time Test:

1. Simulate HLC.
 a. Heavy load shall be an occurrence of 50 percent of total connected binary COV, one-half of which represent an "alarm" condition, and 50 percent of total connected analog COV, one-half of which represent an "alarm" condition, that are initiated simultaneously on a one-time basis.

2. Initiate 10 successive occurrences of HLC and measure response time to typical alarms and status changes.
3. Measure with a timer having at least 0.1-second resolution and 0.01 percent accuracy.
4. Purpose of test is to demonstrate DDC system, as follows:
 a. Reaction to COV and alarm conditions during HLC.
 b. Ability to update DDC system database during HLC.

5. Passing test is contingent on the following:
a. Alarm reporting at printer beginning no more than **two** seconds after the initiation (time zero) of HLC.
b. All alarms, both binary and analog, are reported and printed; none are lost.
c. Compliance with response times specified.

6. Prepare and submit a report documenting HLC tested and results of test including time stamp and print out of all alarms.

H. DDC System Network Bandwidth Test:
 1. Test network bandwidth usage on all DDC system networks to demonstrate bandwidth usage under DDC system normal operating conditions and under simulated HLC.
 2. To pass, none of DDC system networks shall use more than 70 percent of available bandwidth under normal and HLC operation.

3.20 DDC SYSTEM WIRELESS NETWORK VERIFICATION

A. DDC system Installer shall design wireless DDC system networks to comply with performance requirements indicated.

B. Installer shall verify wireless network performance through field testing and shall document results in a field test report.

C. Testing and verification of all wireless devices shall include, but not be limited to, the following:
 1. Speed.
 2. Online status.
 3. Signal strength.

3.21 FINAL REVIEW

A. Submit written request to Architect and Construction Manager when DDC system is ready for final review. Written request shall state the following:
 1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
 2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
 4. DDC system is complete and ready for final review.

B. Review by Architect and Construction Manager shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.

C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.
D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.

E. Prepare and submit closeout submittals and begin procedures indicated in "Extended Operation Test" Article when no deficiencies are reported.

F. A part of DDC system final review shall include a demonstration to parties participating in final review.

 1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
 2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.
 3. Demonstration shall include, but not be limited to, the following:

 a. Accuracy and calibration of 10 > I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.
 b. HVAC equipment and system hardwired and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points shall be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.
 c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.
 d. Operation of randomly selected dampers and valves in normal-on, normal-off and failed positions.
 e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.
 f. Trends, summaries, logs and reports set-up for Project.
 g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.
 h. Software's ability to communicate with controllers, operator workstations, uploading and downloading of control programs.
 i. Software's ability to edit control programs off-line.
 j. Data entry to show Project-specific customizing capability including parameter changes.
 k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 l. Execution of digital and analog commands in graphic mode.
 m. Spreadsheet and curve plot software and its integration with database.
 n. Online user guide and help functions.
 o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.
 p. System speed of response compared to requirements indicated.
 q. For Each Programmable Application Controller:
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

1) Memory: Programmed data, parameters, trend and alarm history collected during normal operation is not lost during power failure.

2) Operator Interface: Ability to connect directly to each type of digital controller with a portable operator workstation and PDA. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.

3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.

4) Electric Power: Ability to disconnect any controller safely from its power source.

5) Wiring Labels: Match control drawings.

6) Network Communication: Ability to locate a controller's location on network and communication architecture matches Shop Drawings.

7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators and devices.

r. For Each Operator Workstation:

1) I/O points lists agree with naming conventions.

2) Graphics are complete.

3) UPS unit, if applicable, operates.

s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Requirements must be met even if only one manufacturer's equipment is installed.

1) Data Presentation: On each operator workstation, demonstrate graphic display capabilities.

2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.

3) Set Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated. Modifications are made with messages and write services initiated by an operator using workstation graphics, or by completing a field in a menu with instructional text.

4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.

5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.

6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.

7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privilege.

8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.

9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.

10) Device and Network Management:
a) Display of network device status.
b) Display of BACnet Object Information.
c) Silencing devices transmitting erroneous data.
d) Time synchronization.
e) Remote device re-initialization.
f) Backup and restore network device programming and master database(s).
g) Configuration management of routers.

3.22 EXTENDED OPERATION TEST

A. Extended operation test is intended to simulate normal operation of DDC system by Owner.

B. Operate DDC system for an operating period of 14 consecutive calendar days following Substantial Completion. Coordinate exact start date of testing with Owner.

C. Provide an operator familiar with DDC system installed to man an operator workstation while on-site during eight hours of each normal business day occurring during operating period.

D. During operating period, DDC system shall demonstrate correct operation and accuracy of monitored and controlled points as well as operation capabilities of sequences, logs, trends, reports, specialized control algorithms, diagnostics, and other software indicated.

1. Correct defects of hardware and software when it occurs.

E. Definition of Failures and Downtime during Operating Period:

1. Failed I/O point constituting downtime is an I/O point failing to perform its intended function consistently and a point physically failed due to hardware and software.
2. Downtime is when any I/O point in DDC system is unable to fulfill its' required function.
3. Downtime shall be calculated as elapsed time between a detected point failure as confirmed by an operator and time point is restored to service.
4. Maximum time interval allowed between DDC system detection of failure occurrence and operator confirmation shall be 0.5 hours.
5. Downtime shall be logged in hours to nearest 0.1 hour.
6. Power outages shall not count as downtime, but shall suspend test hours unless systems are provided with UPS and served through a backup power source.
7. Hardware or software failures caused by power outages shall count as downtime.

F. During operating period, log downtime and operational problems are encountered.

1. Identify source of problem.
2. Provide written description of corrective action taken.
3. Record duration of downtime.
4. Maintain log showing the following:

 a. Time of occurrence.
 b. Description of each occurrence and pertinent written comments for reviewer to understand scope and extent of occurrence.
 c. Downtime for each failed I/O point.
 d. Running total of downtime and total time of I/O point after each problem has been restored.
5. Log shall be available to Owner for review at any time.

G. For DDC system to pass extended operation test, total downtime shall not exceed 1 percent of total point-hours during operating period.

1. Failure to comply with minimum requirements of passing at end of operating period indicated shall require that operating period be extended one consecutive day at a time until DDC system passes requirement.

H. Evaluation of DDC system passing test shall be based on the following calculation:

1. Downtime shall be counted on a point-hour basis where total number of DDC system point-hours is equal to total number of I/O points in DDC system multiplied by total number of hours during operating period.
2. One point-hour of downtime is one I/O point down for one hour. Three points down for five hours is a total of 15 point-hours of downtime. Four points down for one-half hour is 2 point-hours of downtime.
3. Example Calculation: Maximum allowable downtime for 30-day test when DDC system has 1000 total I/O points (combined analog and binary) and has passing score of 1 percent downtime is computed by 30 days x 24 h/day x 1000 points x 1 percent equals 7200 point-hours of maximum allowable downtime.

I. Prepare test and inspection reports.

3.23 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.24 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months’ full maintenance by DDC system manufacturer’s authorized service representative. Include quarterly [annual] preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer’s authorized replacement parts and supplies.

3.25 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for one year.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within one year from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.
3.26 DEMONSTRATION

A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

B. Extent of Training:

1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
3. Minimum Training Requirements:
 a. Provide not less than five days of training total.
 b. Stagger training over multiple training classes to accommodate Owner's requirements. All training shall occur before end of warranty period.
 c. Total days of training shall be broken into not more than three separate training classes.
 d. Each training class shall be not less than two consecutive day(s).

C. Training Schedule:

1. Schedule training with Owner 20 business days before expected Substantial Completion.
2. Schedule training to provide Owner with at least [10] [15] [20] <Insert number> business days of notice in advance of training.
3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions. Each morning session and afternoon session shall be split in half with 15-minute break between sessions. Morning and afternoon sessions shall be separated by 60-minute lunch period. Training, including breaks and excluding lunch period, shall not exceed eight hours per day.
4. Provide staggered training schedule as requested by Owner.

D. Training Attendee List and Sign-in Sheet:

1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.

E. Training Attendee Headcount:
1. Plan in advance of training for three attendees.
2. Make allowance for Owner to add up to two attendee(s) at time of training.
3. Headcount may vary depending on training content covered in session. Attendee access may be restricted to some training content for purposes of maintaining system security.

F. Attendee Training Manuals:
 1. Provide each attendee with a color hard copy of all training materials and visual presentations.
 2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
 3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

G. Instructor Requirements:
 1. One or multiple qualified instructors, as required, to provide training.
 2. Instructors shall have not less than five years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.

H. Organization of Training Sessions:
 1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:
 a. Daily operators.
 b. Advanced operators.
 c. System managers and administrators.
 2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions that cover restricted content for purposes of maintaining DDC system security.

I. Training Outline:
 1. Submit training outline for Owner review at least 10 business day before scheduling training.
 2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.

J. On-Site Training:
 1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
 2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
 3. Provide as much of training located on-site as deemed feasible and practical by Owner.
4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.

K. Training Content for Daily Operators:

1. Basic operation of system.
2. Understanding DDC system architecture and configuration.
3. Understanding each unique product type installed including performance and service requirements for each.
4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
5. Operating operator workstations, printers and other peripherals.
6. Logging on and off system.
7. Accessing graphics, reports and alarms.
8. Adjusting and changing set points and time schedules.
9. Recognizing DDC system malfunctions.
10. Understanding content of operation and maintenance manuals including control drawings.
11. Understanding physical location and placement of DDC controllers and I/O hardware.
12. Accessing data from DDC controllers.
14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
15. Running each specified report and log.
16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
18. Executing digital and analog commands in graphic mode.
19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
20. Demonstrating DDC system performance through trend logs and command tracing.
22. Demonstrating spreadsheet and curve plot software, and its integration with database.
23. Demonstrating on-line user guide, and help function and mail facility.
24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:

 a. Operation of HVAC equipment in normal-off, -on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
 b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
 c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.
L. Training Content for System Managers and Administrators:

1. DDC system software maintenance and backups.
2. Uploading, downloading and off-line archiving of all DDC system software and databases.
3. Interface with Project-specific, third-party operator software.
4. Understanding password and security procedures.
5. Adding new operators and making modifications to existing operators.
6. Operator password assignments and modification.
7. Operator authority assignment and modification.
8. Workstation data segregation and modification.

M. Video of Training Sessions:

1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
2. Stamp each recording file with training session number, session name and date.
3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION
SECTION 23 23 00
REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of valve, refrigerant piping, and piping specialty.
 1. Include pressure drop, based on manufacturer's test data, for the following:
 a. Thermostatic expansion valves.
 b. Solenoid valves.
 c. Hot-gas bypass valves.
 d. Filter dryers.
 e. Strainers.
 f. Pressure-regulating valves.
B. Shop Drawings:
 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 2. Show interface and spatial relationships between piping and equipment.
 3. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING
A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Line Test Pressure for Refrigerant R-410A:

2.2 COPPER TUBE AND FITTINGS
A. Copper Tube: ASTM B 88, Type K or L.
B. Wrought-Copper Fittings: ASME B16.22.
C. Wrought-Copper Unions: ASME B16.22.
D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
E. Brazing Filler Metals: AWS A5.8/A5.8M.
F. Flexible Connectors:
 2. End Connections: Socket ends.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.

2.3 VALVES AND SPECIALTIES

A. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

2.4 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications:
1. NPS 3/4 to NPS 1 and Smaller: Copper, Type K, annealed- or drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
B. Install refrigerant piping according to ASHRAE 15.
C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 “Access Doors and Frames” if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:

1. Shot blast the interior of piping.
2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.
R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

F. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and to restore full ID. Join pipe fittings and valves as follows:

 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod, 1/4 inch (6.4 mm).
 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod, 1/4 inch (6.4 mm).
 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod, 1/4 inch (6.4 mm).
 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod, 3/8 inch (9.5 mm).
 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod, 3/8 inch (9.5 mm).
 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod, 3/8 inch (9.5 mm).
 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod, 3/8 inch (9.5 mm).
 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod, 3/8 inch (9.5 mm).
 9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod, 1/2 inch (13 mm).

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements” Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.
 7. Seismic-restraint devices.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

07.17.19 23 31 13 - 3 Metal Ducts

c. Speakers.
d. Sprinklers.
e. Access panels.
f. Perimeter moldings.

B. Welding certificates.
C. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to the following:

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 GREASE DUCT

B. The duct wall shall be constructed of .036 and .047 thick stainless steel and be available in diameters 8" through 36".

C. Furnish single-wall, factory built, grease duct for use with Type I kitchen hoods, which conforms to the requirements of NFPA-96. Products shall be ETL listed to UL-1978 and CAN/ULC-S662 for venting air and grease vapors from commercial cooking operations as described in NFPA-96.

D. All supports, hood connections, fittings and expansion joints required to install grease duct shall be included.

E. Roof penetrations shall comply with listed clearance to combustibles, see "Clearance to Combustibles" guide for details. The grease duct will terminate at the fan transition plate, will be fully welded to the fan transition plate and the fan transition plate will be fastened to the curb using a suitably sized fastener provided by others.

F. Grease duct joints shall be held together by means of formed vee clamps and sealed with 3M Fire Barrier 2000+ or approved equal. Screws used to secure the vee clamps shall be of the hex-head type with flanged stops and tapered "lead in" threads for easy starting. Nuts shall be retained by means of a free-floating cage to allow easy alignment.

G. Single-Wall Grease Duct shall be installed in accordance with the manufacturer's "Installation, Operation and Maintenance Manual", ETL listing and state and local codes.

H. Support vertically installed grease duct from the building structure using rigid structural supports. Anchor supports to the structure by welding or bolting steel expansion anchors or concrete inserts. Support horizontally installed grease duct from the building structure using above method. 1/2" Threaded rod and saddles may also be used for the support of horizontal grease duct.

2.5 DUCT LINER

A. Supply and Return Air Duct Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

1. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

2. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

 a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Insulation Pins and Washers:
1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.

3. Butt transverse joints without gaps, and coat joint with adhesive.

4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.

6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).

7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.

8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:

 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.

9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Supply and Return Air duct two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.

2. Tape Width: 4 inches (102 mm).

5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. EPDM O-ring to seal in concave bead in coupling or fitting spigot. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.

2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Strap and Rod Sizes: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

D. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

E. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

G. Trapeze and Riser Supports:

2.8 SEISMIC-RESTRAINT DEVICES

A. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

B. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

C. Restraint Cables: or ASTM A 492, stainless-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Single-Wall Grease Duct shall be installed in accordance with the manufacturer's "Installation, Operation and Maintenance Manual", ETL listing and state and local codes.

D. Support vertically installed grease duct from the building structure using rigid structural supports. Anchor supports to the structure by welding or bolting steel expansion anchors or concrete inserts. Support horizontally installed grease duct from the building structure using above method. 1/2" Threaded rod and saddles may also be used for the support of horizontal grease duct.

E. Fans shall be supported independently from the grease duct sections. Protect grease duct from twisting or movement caused by fan torque or vibration.

F. Install round ducts in maximum practical lengths.

G. Install ducts with fewest possible joints.

H. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

I. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

J. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

K. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.

L. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

M. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).

N. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet (3.7 m) in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches (38 mm) from bottom of duct. Access panels shall be insulated.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."
B. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).

E. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

1. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
2. Brace a change of direction longer than 12 feet (3.7 m).

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Set anchors to manufacturer's recommended torque, using a torque wrench.
5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.7 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099000 "Painting and Coating." Grease duct shall not be painted.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg (750 Pa): Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 4. Test for leaks before applying external insulation.
 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 6. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.10 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.11 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

END OF SECTION
SECTION 23 33 00
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Fire dampers.
 4. Turning vanes.
 5. Duct-mounted access doors.
 6. Flexible connectors.
 7. Flexible ducts.
 8. Duct accessory hardware.
B. Related Requirements:
 1. Section 233723 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted equipment’s.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60 (Z180)
 2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

C. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Description: Gravity balanced.

B. Maximum Air Velocity: 1000 fpm (5.1 m/s).

C. Maximum System Pressure: 1-inch wg (0.25 kPa).

D. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Chain pulls.
 5. Screen Mounting: Rear mounted.
 7. Screen Type: Insect.
 8. 90-degree stops.
2.4 MANUAL VOLUME DAMPERS

A. Low-Leakage, 22 ga galvanized Steel, Manual Volume Dampers:

1. Comply with AMCA 500-D testing for damper rating.
2. Low-leakage rating with linkage outside airstream, and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.
3. Suitable for horizontal or vertical applications.
4. Accessories:
 a. Include locking device to hold single-blade dampers in a fixed position without vibration.

B. Jackshaft:

1. Size: 0.5-inch (13-mm) diameter.
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:

1. Frame 22 ga galvanized steel, blade, 20 ga galvanized steel.
2. Include center hole to suit damper operating-rod size.

2.5 FLANGE CONNECTORS

A. Description: roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

B. Material: Galvanized steel.

C. Gage and Shape: Match connecting ductwork.

2.6 FLEXIBLE CONNECTORS

A. Materials: Flame-retardant or noncombustible fabrics.

B. Coatings and Adhesives: Comply with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches (146 mm) wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).
2. Tensile Strength: 530 lbf/inch (93 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).

E. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch (6-mm) movement at start and stop.

2.7 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and stainless-steel accessories in stainless-steel ducts..

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
1. Install steel volume dampers in steel ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.
 1. On both sides of duct coils.
 2. Upstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire dampers, to reset or reinstall fusible links. Access doors for access to fire dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot (15-m) spacing.
 8. Upstream from turning vanes.

G. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

H. Install flexible connectors to connect ducts to equipment.

I. For fans developing static pressures of 5-inch wg (1250 Pa) and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

J. Connect diffusers to ducts directly or with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.

K. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

L. Install duct test holes where required for testing and balancing purposes.

M. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch (6-mm) movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire dampers to verify full range of movement and verify that proper heat-response device is installed.
 4. Inspect turning vanes for proper and secure installation.
 5. Operate remote damper operators to verify full range of movement of operator and damper.
END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Duct silencers.
 2. Roof-top unit acoustics.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Provide pressure drop and insertion loss data per octave band (dB) in accordance with the industry standards.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail acoustic control fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For acoustic controls to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 Manufacturer: BRD Noise and Vibration Control (basis of design) or approved equal.

A. Approved Equal:
 1. Qualifications:
 a. All Noise Control Materials Manufacturer's shall deliver a complete submittal including a copy of an acoustical report in compliance with the acoustical performance as per section 2.3-B of this specification.
 b. Company specializing in the manufacture of acoustical systems and related accessories with not less than 35 years documented successful experience with work comparable to work of this project.

2.3 ROOF-TOP UNIT ACOUSTICS

A. Materials:
 1. The Noise Reduction Systems shall address the intake and exhaust of the unit condensing sections. The system shall consist of Acoustical Intakes and Exhaust Stack with galvanized steel construction of acoustical baffles attached to the condensing sections of the RTU. The overall finished height shall not exceed four feet higher than the top of the RTU and the width, thirty inches from the condenser coils. Provide internal scroll compressor removable blanket insulation, consisting of a composite of barriers and absorbers to cover compressors. All components shall be pre-fabricated, sectional, modular and designed for assembly and disassembly. The complete Noise Reduction System (Acoustical Intakes + Exhaust Stack + internal compressor blanket insulations) total static pressure to the RTU shall not exceed 0.15 inches w.g.
 2. The complete system shall meet RTU manufacturers published data pertaining to heat loss of compressors, condenser fan airflow, and shall minimize any impact to unit performance.
 3. The complete system shall meet all environmental conditions such as temperature, wind, shrinkage, UV-rays, and moisture.

B. Acoustical Performance
 1. The complete Noise Reduction System attenuation performance shall be as listed below.

<table>
<thead>
<tr>
<th>Center Octave Band Frequency, Hz</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>4k</th>
<th>8k</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

 2. Removable Blanket Insulation - (Insertion Loss) in accordance with ASTM E-1222
2.4 Duct Silencers

A. General Requirements:
 1. Factory fabricated.
 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Shape:
 1. Round straight with center bodies or pods.

 1. Sheet Metal Thickness for Units up to 24 Inches (600 mm) in Diameter: 0.034 inch (0.85 mm) thick.

D. Inner Casing and Baffles: ASTM A 653/A 653M, G90 (Z275) galvanized sheet metal, 0.034 inch (0.85 mm) thick, and with 1/8-inch- (3-mm-) diameter perforations.

E. Acoustical Performance: Refer to drawing Sound Attenuator Schedule and meet the attenuation performance specified.

F. Connection Sizes: Match connecting ductwork unless otherwise indicated.

G. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 1. Joints: Lock formed and sealed, continuously welded or flanged connections.
 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
 3. Reinforcement: Cross or trapeze angles for rigid suspension.

H. Source Quality Control: Test according to ASTM E 477.
 1. Testing to be witnessed by Owner.
 2. Record acoustic ratings, including dynamic insertion loss and generated-noise power levels with an airflow of at least 2000-fpm (10-m/s) face velocity.
 3. Leak Test: Test units for airtightness at 200 percent of associated fan static pressure or 6-inch wg (1500-Pa) static pressure, whichever is greater.

<table>
<thead>
<tr>
<th>Hz</th>
<th>Insertion Loss</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>1600</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>3150</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3150</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install acoustic controls according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

B. Install acoustic controls of materials suited to duct materials or equipment; use galvanized-steel accessories in galvanized-steel and stainless-steel accessories in stainless-steel ducts.

C. Install all noise treatments in accordance with the manufacturer’s recommendations.

D. For sound attenuators with ductwork transitions, provide 15 duct transitions downstream of the sound attenuator and 30 deg. duct transitions upstream.

E. Ensure that air flow velocities, fpm at the inlet and outlet of the installed sound attenuators do not exceed the max. 1000 fpm of the basis of design limits.

F. After installation, measure and report the total system pressure before and after each attenuator. If pressure loss exceeds maximum static pressure location on the sound attenuator schedule, replace and/or modify entrance and/or discharge conditions. The costs for this effort shall be borne by the Contractor.

END OF SECTION
SECTION 23 34 23
HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Centrifugal roof ventilators.
 2. Ceiling mounted centrifugal fans.

1.3 COMMISSIONING
A. See Specification Section 019000 for General Commissioning Requirements.
B. See Specification Section 230800 for Commissioning of Mechanical Systems.

1.4 PERFORMANCE REQUIREMENTS
A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
B. Operating Limits: Classify according to AMCA 99.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.9 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
1.10 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 DOWNBLAST CENTRIFUGAL ROOF VENTILATORS

A. Housing: Motor cover, shroud, curb cap, and lower wind band shall be constructed of heavy gauge aluminum.

1. Down blast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.

B. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

C. Drives shall be machined cast iron type, keyed and securely attached to the wheel and motor shafts. Drive frame assemblies shall be constructed of heavy gauge steel and mounted on vibration isolators.

D. Accessories:

1. Disconnect Switch: NEMA rated: NEMA 1: indoor application no water. Factory standard No fusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
 A-Positive electrical shut-off
 B-Wired from fan motor to junction box installed within motor compartment

E. Roof Curbs: Curb cap shall have pre-punched mounting holes to ensure correct attachment Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base. Coordinate curb height with roof deck construction and insulation thickness; other heights are available. 16-inch (400-mm) height in first subparagraph below is for sound curb.

1. Overall Height: 9-1/2 inches (240 mm).
2. Type: GPF - Welded, straight side curb with 5 inch flashing flange, no wood nailer.
5. Insulation thickness: 1 inch.
2.2 CEILING MOUNTED CENTRIFUGAL FANS

A. Housing: Constructed of heavy gauge galvanized steel, motor enclosures shall be Totally Enclosed (TE) and Profile as low as 7 inches.

B. Fan Wheels: Aluminum, backward inclined to aluminum hub.
 1-Forward curved centrifugal wheel
 2-Constructed of polypropylene

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven loads will not require motor to operate in service factor range above 1.0.
 2. Motor enclosures shall be Totally Enclosed (TE)
 3. Motors shall be permanently lubricated sleeve bearing type to match with the fan load and furnished at the specific voltage and phase.
 4. Overload Protection

2.4 SOURCE QUALITY CONTROL

A. Certify Performance ratings: Conform to AMCA standard 211 and 311. Fans must be tested in accordance with ANSI/AMCA Standard 210-99 and AMCA Standard 300-96 in an AMCA accredited laboratory. Fans shall be certified to bear the AMCA label for air and sound performance seal.

A. Each fan shall be given a balancing analysis which is applied to wheels at the outside radius. The maximum allowable static and dynamic imbalance is 0.05 ounces (Balance grade of G6.3). Comply with the National Electrical Manufacturers Association (NEMA), standards for motors and electrical accessories. Classification for Spark Resistant Construction, levels A, B, and C conform to AMCA 99.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Equipment Mounting:
1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

C. Install units with clearances for service and maintenance.

D. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260500 "Basic Materials and Methods."

D. Connect wiring according to Section 260500 "Basic Materials and Methods."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and those connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

D. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
E. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 “Testing, Adjusting, and Balancing for HVAC” for testing, adjusting, and balancing procedures.

C. Replace fan and motor pulleys as required to achieve design airflow.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes Heavy Duty Commercial Ceiling Fans, with a fan diameter greater than 4.666 feet.

1.3 DEFINITIONS

A. Heavy Duty Commercial Ceiling Fans.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, furnished specialties, and accessories for each fan.
 2. Certified fan performance data.
 3. Fan sound pressure ratings.
 4. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 5. Material thickness and finishes, including color charts.
 6. Fan speed controllers.

B. Sustainable Design Submittals:
 1. Product Data for EA Prerequisite 2, "Minimum Energy Performance": Indicating how product is incorporated into the building design to meet minimum energy performance requirements.
 2. Product Data for EA Prerequisite "Minimum Energy Performance": Indicating how product is incorporated into the building design to meet minimum energy performance requirements.
 3. Product Data for EA Credit 1, "Optimize Energy Performance": Indicating how product is incorporated into the building design to meet minimum energy performance requirements.

C. Shop Drawings:
 1. Include plans, elevations, sections, and mounting details. Show required clearances to adjacent fans, structural members, and fire sprinkler systems.
2. Include details of equipment assemblies. Show dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include diagrams for power, signal, and control wiring.

D. Field quality-control reports.

1. Include design calculations and details for selecting product mounting components and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic forces required to select mounting components and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and details, drawn to scale and coordinated with each other, using input from installers of the items involved.

1. Structural members to which equipment, cables, and conduit will be attached.

2. Wall-mounted controllers located in finished space showing relationship to light switches, fire-alarm devices, and other installed devices.

3. Ceiling-mounted items including the following:
 a. Diffusers, registers, and grilles.
 b. Fire sprinklers.
 c. Luminaires.

B. Qualification Data:

1. For Installer: Documentation from Leading Edge fan manufacturer certifying that Installer has successfully completed prerequisite training administered by manufacturer for proper installation of systems, including but not limited to, equipment, controls, and accessories indicated and furnished for installation.

C. Seismic-Restraint Details:

1. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.

2. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacing’s. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

D. Field quality-control reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVLS fans to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: Provide certification that manufacturer complies with the requirements of the most recent edition of ISO 9001 <Insert requirement>.

B. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by Heavy Duty Commercial Ceiling fan manufacturer.

1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, controls, and accessories indicated and furnished for installation.
2. Installer documentation shall be valid and current for duration of Project.
3. Retain copies of Installer documentation on-site and make available on request.
4. Each person assigned to Project shall have demonstrated past experience.
5. Installers shall have staffing resources of competent, trained, and experienced full-time employees that are assigned to execute work according to schedule.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store products in a clean and dry place.

B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.

C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.

D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.

1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.
2. Cover units before installation to prevent dirt and dust accumulation. If required to remove coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.

E. Replace installed products damaged during construction.

1.9 WARRANTY

A. Warranty: Manufacturer agrees to repair or replace components of fans that fail in materials or workmanship within specified warranty period.

1. Warranty Type: Non-prorated or service life (prorated).
2. Warranty Period:
a. For Hub and Airfoils: Lifetime warranty for parts.
b. Motor, Drive, Controller, and Other Components: 5 years from date of Substantial Completion.
c. For Labor: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Certified to UL 507.

C. CSA Compliance: Certified to CSA C22.2, No. 113.

D. Comply with NFPA 13 and NFPA 72 requirements for fans.

E. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," for seismic restraints, and delegated-design Drawings.

2.2 CAPACITIES AND CHARACTERISTICS

A. Fan:
 1. Type: Heavy Duty Commercial Ceiling Fans.
 2. Number of Fan Blades: 3
 3. Fan Diameter: <4.666> feet
 5. Fan Sound Pressure at Maximum Speed, dBA: Method of measurement included with action submittals and product data.

B. Motor:
 1. Size: 0.14.
 2. Volts: 120V.
 4. Full-Load Amperes: 1 A.

2.3 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Big Ass Fans;

2.4 Heavy Duty Commercial Ceiling Fans

1. Ceiling Fans to be furnished as specified, Leading Edge. Fans to be U.L. listed Standard 507 with matching U.L. listed solid state controls. All motors to be direct-drive permanent split capacitor type, with permanently sealed Blades: Airfoil type.
 2. All fans to have factory installed Secondary Support
3. Cable Assembly connected to motor shaft, with minimum
4. 6 feet galvanized cable 1/8” 7x7 with rated breaking strength
5. of 1700 lbs. and must comply with CSA std. C22.2 Sept.
6. Fan blades to be straight with rolled edge design for maximum
7. Efficiency. Note: Fans installed with blade height less
8. Than 10’ from floor must have rolled edge blades minimum
9. 3/8” thick in compliance with U.L. 507.
10. Fans to be labeled in accordance with U.L. 507 “Mounted
1. Blade height to floor of 7 feet acceptable”.

Controls:
2. Select control options in following subparagraphs.
3. Essence and Isis do not have variable-frequency motor controllers.
4. Fans used with motor speed controls must be labeled in
5. Accordance with U.L. 507 “Suitable for use with solid state

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with requirements for installation tolerances and other
conditions affecting HVLS fan performance, maintenance, and operations.
1. Fan locations indicated on Drawings are approximate. Determine exact locations before
roughing-in for mounting, control, and electrical connections.

B. Examine roughing-in for mounting location, anchor-bolt sizes, and locations, to verify actual
locations for mounting connections before installation of fan.

C. Examine areas for suitable conditions where fan will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

E. 56001LC• 56” Commercial / School Classroom Fan

F. Install fan according to manufacturer’s published instructions.

G. Comply with NECA 1 and NFPA 70.
1. Consult a licensed professional structural engineer for mounting methods and approval
for mounting to the structure. Structure must be able to withstand the torque and forces
generated by the fan.
2. Comply with requirements for hangers and supports specified in Section 230529
"Hangers and Supports for HVAC Piping and Equipment."
3. Comply with requirements for vibration isolation and seismic-control devices specified in
Section 230548 "Vibration and Seismic Controls for HVAC."

H. Install Ceiling fans with airfoils at least 10 feet (3 m) above the floor.

I. Install unit to permit access for maintenance.

J. Install parts and accessories shipped loose.
K. Install ceiling fan based on manufacturer company clearance and code requirement’s

3.2 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."

E. Install power wiring to field-mounted electrical devices, furnished by fan manufacturer, but not factory mounted.

3.3 CONTROL CONNECTIONS

A. Connect control wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

C. Connect control interlock wiring between ceiling fan and other equipment to provide a complete and functioning system.

D. Connect control wiring between fan unit control interface and control system to provide remote control and monitoring.

E. Install control devices furnished by manufacturer, but not factory mounted.

F. Install control wiring to field-mounted control devices, furnished by fan manufacturer, but not factory mounted.

G. Protect installed units from damage caused by other work.

3.4 FIELD QUALITY CONTROL

A. Testing Agency, Owner Engaged: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency, Contractor Engaged: Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

 1. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Fan or components will be considered defective if fan or components do not pass tests and inspections.

E. Prepare and submit test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Verify that fan is secure on mountings and supporting devices and those connections to electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers and switches.
 3. Verify proper motor rotation direction and free fan rotation.

3.6 CLEANING

A. Clean equipment externally; remove coatings applied for protection during shipping and storage, foreign material, and oily residue according to manufacturer's written instructions. Following manufacturer's cleaning procedures, and clean with manufacturer-recommended cleaning products.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Aeroblade double deflection Supply air grille.
2. Aeroblade Return air grille.

B. Related Sections:
1. Section 089100 "Louvers" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples for Initial Selection: For diffusers and grilles with factory-applied color finishes.

C. Samples for Verification: For diffusers and grilles, in manufacturer's standard sizes to verify color selected.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers,

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 Supply Grille

A. Aeroblade Supply Grille:
2. Finish: #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes.
3. All supply grilles shall be constructed with a 1¼-inch wide heavy aluminum border having a minimum thickness of 0.040-0.050 inch.

B. Fixed Face Return Grille:
1. Material: Steel 20 gage steel.
2. Finish: #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. Selection approved by architect for sidewall registers. Coordinate with architect prior to start of work.
3. Face Blade Arrangement: Horizontal, 14 gage steel.
4. Frame: Roll-formed Steel
5. Mounting: Countersunk Screw Holes.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate supply and return grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install supply and return grilles level and plumb.
B. Duct-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install supply and return grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 23 82 16.00 40

AIR COILS

Part 1 - General

1.01 SYSTEM DESCRIPTION

A. Plate fin coils designed for air cooling applications, using refrigerant applications. Coils shall be handled in accordance with the coil manufacturer’s instructions.

1.02 QUALITY ASSURANCE

A. Coils shall be hydrostatically tested at 450 psig air pressure for burst protection and at 250 psig for leakage failure.

1.03 DELIVERY, STORAGE, AND HANDLING

A. Coils shall be crated at the factory and shipped.
B. Booster coils shall be individually packaged and palletized.
C. Each coil shall be identified with individual “marked for” label.
D. Each coil shall be shipped with an airflow label.
E. Coils shall be stored and handled in accordance with the coil manufacturer’s instructions.

Part 2 - Products

A. General:
1. All coils shall have mill galvanized steel casings or optional stainless steel casings.
2. 1/2-in. plate fins shall be wavy with an offset fin design for maximum heat transfer performance, as well as maximum moisture collection capability to prevent blowoff.
3. All 5/8-in. plate fins shall be 11/2-in. equilateral corrugated design.
4. All 1-in. plate fins shall be embossed.
5. All 1/2-in. fin spacing shall be 8, 11, or 14 fins per inch.
6. All 5/8-in. fin spacing shall be 8, 12, or 14 fins per inch.
7. 1-in. fin spacing shall be 6, 9, or 12 fins per inch.
8. Coils shall have the capability to be used in right-hand or left-hand applications.
9. Coils shall be piped counterflow to the airflow (inlet at bottom and outlet at top) to ensure maximum heat transfer.

B. Header Assembly:
1. Headers and connection nozzles shall be either steel or non-ferrous material. Cast iron headers are not acceptable when supplied with female pipe threads. Female pipe thread connections are prone to breakage when piping connections are terminated.
2. Header nozzles shall be either ASTM B88 copper or steel.
3. Drain and vent connections shall be located on the water connection nozzles. Vents and drains that are installed in coil return or supply bends promote tube fatigue and shall not be allowed.

4. Connection nozzles (inlet and outlet) shall be on the same end of the coil.
 5. Nozzle-to-header connections shall be welded for steel and brazed for non-ferrous materials.
 6. Male pipe thread connections shall be provided as standard. Victaulic connection shall be an approved equal.
 7. Coils shall be shipped with protective caps on the nozzle ends.
 8. Coils shall be drainable with non-trapping circuits.
 9. No turbulence-promoting devices shall be permitted inside the tubes.

C. Tube Sheets:
 1. Tube sheets shall be manufactured using 14-gage; ASTM A525-G60 galvanized steel or 14-gage 304L stainless steel.
 2. Coil shall provide a mounting flange mechanically attached to the tube sheet, with 5/16-in. diameter mounting holes center to center for sturdy, accurate installation of the coil.
 3. Drive clips shall be available for booster coils.

D. Hairpin and Copper Tubes:
 1. Hairpins on tubes shall be UNS C12200 copper 1/2-in. OD. Tolerances shall conform to ASTM B-251.
 2. Coil shall be manufactured using 180-degree continuous hairpin bends to reduce leak possibilities.

E. Side Casings:
 1. Side casings shall be 16-gage ASTM A525 G60 galvanized steel riveted to the tube sheet. Approved option shall be 16-gage 304L stainless steel casings. Stainless steel shall be standard when copper fins are specified.
 2. Casings designed without center and end supports shall not be allowed.
 3. Cooling and heating coils shall have box flanges for strength and to facilitate stacking.

F. Fin Pack:
 1. The fin pack shall provide 8, 11, 12, or 14, or 6, 9, or 12 fins per inch.
 2. Fins shall be either 1100-0 aluminum alloy or ASTM B-152 copper.
 3. All 1/2-in. fin shall be wavy using offset petal spacing collars with additional material downstream.
 4. All 5/8-in. fin shall be 11/2-in. equilateral corrugated design.
 5. All 1-in. fin shall be embossed.
 6. Copper fin packs shall be provided with stainless steel casings.

G. Direct-Expansion Coils:
 1. Direct-expansion coils shall be aluminum plate fins with belled collars and bonded to 1/2-in. OD copper tubes by mechanical expansion. Coils shall be provided with pressure type brass distributors with solder-type connections and shall have a minimum of 2 distributors. Coils for full face active or face split operation shall have intertwined circuits for equal loading on each circuit. Suction and discharge connections shall be on the same end. After testing, coils shall be dehydrated and charged with dry air. Coils shall be designed and tested in accordance with American National Standards Safety Code for Mechanical Refrigeration (ANSI/ASHRAE 15).
END OF SECTION
This Page Intentionally Left Blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fan Coil Units.
 2. Air-Cooled Condensing Units.
 3. Refrigerant Piping.

1.3 COMMISSIONING
A. See Specification Section 019000 for General Commissioning Requirements.
B. See Specification Section 230800 for Commissioning of Mechanical Systems.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Air-cooled refrigerant condensers and fan coil units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
B. Shop Drawings:
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.
3. For air-cooled refrigerant condensers and fan coils. Include plans, elevations, sections, details, and attachments to other work.

4. Retain subparagraph below if equipment includes wiring.

C. Delegated-Design Submittal: For air-cooled refrigerant condensers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which air cooled condensing units and fan coil units will be attached.
3. Method of attaching hangers to building structure.
4. Liquid and vapor pipe sizes.
5. Refrigerant specialties.
7. Piping including connections, oil traps, and double risers.
8. Size and location of initial access modules for acoustical tile.
9. Items penetrating finished ceiling, including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.

B. Seismic Qualification Certificates: For air cooled condensing units, fan coil units, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

D. Welding certificates

E. Sample Warranty: For special warranty.
1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air cooled condensing units and fan coil units to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Coil Unit Filters: Furnish spare filters for each filter installed.
 2. Fan Belts: Furnish one spare fan belts for each unit installed.

1.9 QUALITY ASSURANCE

A. Comply with NFPA 70.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

D. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

F. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Standard for Refrigeration Systems."

1.10 COORDINATION

A. Coordinate layout and installation of fan coil units and suspension system components with other construction that penetrates or is supported by ceilings, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

B. Coordinate size and location of wall sleeves for outdoor-air intake.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

D. Coordinate location of refrigerant piping and electrical rough-ins.
1.11 **INSTALLATION REQUIREMENTS**

A. The system must be installed by a factory trained contractor/dealer. The bidders shall be required to submit training certification proof with bid documents. The contractor bids with complete knowledge of the VRF split system requirements.

1.12 **WARRANTY**

A. Special Warranty: Manufacturer agrees to repair or replace components of condensing units that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Compressor failure.

 b. Condenser coil leak.

2. Warranty Period: Five years from date of Substantial Completion.

3. Warranty Period (Compressor Only): Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **SYSTEM DESCRIPTION**

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Factory-packaged and -tested units rated according to AHRI 440, ASHRAE 33, and UL 1995.

2.2 **REFRIGERANT PIPING**

A. Copper Tube: ASTM B 88, Type K or L.

B. Wrought Copper Fittings: ASME B16.22

C. Wrought Copper Unions: ASME B16.22

D. Brazing Filler Metals: AWS A5.8.

E. Refrigerants: ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane

F. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.

2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.
H. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

I. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

2.3 VRF SPLIT SYSTEM OUTDOOR UNIT - CONDENSING UNIT

A. General:
1. The heat pump variable refrigerant flow system is a two-pipe system consisting of a single or multiple outdoor units, multiple indoor units of various types and capacities, individual or central indoor unit controls with on/off temperature settings, all connected by fully insulated refrigerant lines utilizing factory supplied, fully insulated, branching kits. Indoor units are connected to condensate piping that shall be terminated to the nearest drain point.
2. Factory-assembled, single piece, air-cooled outdoor unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and the multiple inverter-driven twin rotary compressors.
3. The maximum sound pressure rating for a single module shall not exceed 62 dBA sound pressure in cooling and 63 dBA in heating and for twinned systems the sound pressure numbers should not exceed 65 dBA and 66 dBA. Sound pressure ratings are measured at a distance of 3 ft out and 4 ½ ft up from the side of the outdoor unit.
4. The outdoor unit shall include an oversized accumulator and a liquid tank for proper heating performance while allowing the indoor unit PMV (pulse modulating valve) metering device to shut off completely when a zone is satisfied.
5. The outdoor unit shall be protected by a high-pressure switch, high-pressure sensor, low-pressure sensor, fusible plug, PC board, and inverter overload protector.
6. The outdoor unit shall be capable of operating in cooling mode down to 23 F ambient air temperatures and down to -4 F wet bulb ambient air temperature in heating.
7. The outdoor unit shall include a total oil management system that balances oil between compressors within a module, replenishes compressor oil to the compressors in a module from the oil separator if required, and allows oil and refrigerant to move between twinned units if required, even if one of the units is not running.

8. The system shall be fully capable of providing heating or cooling as requested by the individual indoor zones that can consist of single or multiple indoor units. The heating priority shall be the default factory setting and can be changed to cooling, majority or a single zone priority.
9. The maximum number of connected indoor units shall not exceed 38.
10. The total connected indoor unit capacity shall range between 80 and 125% of the outdoor unit capacity
11. Units shall be listed by ETL (Engineering Testing Laboratory) and be evaluated in accordance with UL standard 1995, 4th. Edition.
12. Units shall be listed in the AHRI directory.
13. All units shall meet the Federal minimum efficiency standards and be tested per AHRI 1230 Standard.
14. The following safety devices shall be included on the condensing unit; high pressure sensor and switch, low pressure sensor, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
15. The circuit shall be provided with a sub-cooling feature.

B. Unit Cabinet:
1. The condensing unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.

2. Unit cabinet shall be constructed of pre-coated steel, finished on both inside and outside.

3. Unit access panels shall be removable with minimal screws and shall provide full access to the compressors, fan, and control components.

4. Compressors shall be isolated in a compartment and have an acoustic wrap to assure quiet operation.

5. The outdoor unit control panel shall include a sliding window to access adjustable controls and an LED display for setup and diagnostics.

6. Unit cabinet shall be capable of withstanding 500-hour salt spray test per Federal Test Standard No. 141 (method 6061).

C. Fan:
 1. Outdoor fan shall discharge air vertically and be driven by a DC inverter variable speed motor with 64 steps that is capable of running down to 60 rpm.
 2. Outdoor fan motor shall be totally-enclosed with permanently-lubricated bearings.
 3. Motor shall be protected by internal thermal overload protection.
 4. Fan blade shall be non-metallic and shall be statically and dynamically balanced.
 5. Outdoor fan shall be protected by a raised nonmetallic protective grille.

D. Condenser Coil:
 1. Coil shall be constructed of aluminum fins mechanically bonded to seamless copper tubes, which are cleaned, dehydrated, and sealed.
 2. The coil configuration shall be 4-sided and fully separated from the machine compartment for more effective heat transfer and sound isolation.
 3. The coil fins shall have a factory-applied corrosion resistant blue-fin finish.

E. Compressor:
 1. Each outdoor unit module shall be equipped with two or three inverter-driven twin rotary compressors with full range control to an accuracy of ±0.1 Hz.
 2. Compressor shall be totally enclosed in the machine compartment.
 3. Compressors shall be equipped with factory mounted crankcase heaters.
 4. Internal overloads shall protect the compressor from over-temperature operation.
 5. Motor shall be suitable for operation in an R-410A refrigerant atmosphere.
 6. Compressor assembly shall be installed on rubber vibration isolators.
 7. To maximize compressor reliability, multiple compressors within a module shall be started and operated in variable patterns to ensure equal run time on all compressors.
 8. To ensure maximum efficiency throughout the system operation range, no compressor is required to run at maximum speed under any condition.

F. Safeties:

The following safety devices shall be part of the condensing unit:
 a. High-pressure switch
 b. Fuses
 c. Crankcase heater
d. Fusible plug

e. Overcurrent relay for the compressor

f. Thermal protectors for compressor and fan motor
g. Compressor time delay
h. Oil recovery system
i. Oil level sensor
j. Overcurrent sensor
k. Compressor suction and discharge temperature sensor
l. Compressor suction and discharge pressure sensor

G. Electrical Requirements:
1. All sizes shall utilize 208/230-3-60 or 460-3-60 (V-Ph-Hz) field power supply.
2. Twinned systems shall have separate field power supply to each module.
3. Two-core, standard, shielded low voltage cable shall be required for communication between outdoor and indoor unit.
4. All power and control wiring must be installed per NEC and all local electrical codes.

H. Refrigerant Piping and Line Lengths:
1. Piping connections shall be from the front or the bottom of the unit. The unit shall be capable of operating with maximum connected refrigerant line lengths of 985 ft (actual).
2. The outdoor unit shall have the ability to operate with a maximum height of 230 ft between the outdoor and the lowest indoor unit.
3. The maximum distance between the outdoor unit and the furthest fan coil shall not exceed 590 ft actual or 720 ft equivalent. No line size changes or oil traps shall be required.
4. The system shall be capable of operating when the height difference between the upper and the lower fan coil is 130 ft.

I. Auxiliary Refrigerant Components:
1. All field-supplied copper tubing connecting the outdoor unit to the indoor unit shall use factory-supplied branching kits consisting of either Y joints or headers to ensure even refrigerant flow.
2. To ensure piping flexibility, the system shall allow having Y joints or headers downstream of another header.
3. When twinning two modules, and in order to maximize efficiency and comfort, a 3/8-in. oil balance line shall be used to allow the flow oil and refrigerant between the two units, even when one of the units is not running.

2.4 VRF SPLIT SYSTEM INDOOR UNIT - ROOFTOP

A. Rooftop, direct-expansion indoor units are matched with a heat pump or a heat recovery VRF (variable refrigerant flow) outdoor unit.

B. Unit shall be UL listed and certified to UL 1995 4th edition standard.

C. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).

D. Units shall be stored and handled per unit manufacturer's recommendations.

E. Performance: Each unit’s performance is based on nominal operating conditions:

F. Indoor Unit:
 1. Indoor, direct-expansion, rooftop fan coils. Unit shall be complete with a coil, fan driven by ECM (electronically-commutated motor), PMV (pulse modulating valve), piping
connectors, electrical controls, microprocessor control system, integral temperature sensing, and roof curb designed to conform to NRCA standards.

G. Unit Cabinet:
 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a pre-painted baked enamel finish on all externally exposed surfaces.

H. Fan:
 1. The fan shall be direct-drive fan type with statically and dynamically balanced impeller with three fan speeds available.
 2. The fan motor shall be equipped as standard with adjustable external static pressure (ESP) settings to allow operation with the filter options.
 3. The fan motor shall be thermally protected.

I. Coil:
 1. The fan shall be of the multi-blade type with performance designed to match the coil performance. The fan shall be statically and dynamically balanced to ensure low noise and vibration and capable of up to 1.65 in. wg external static pressure.

J. Motors:
 1. Shall be open type, multi-speed ECM.
 2. Shall use permanently lubricated bearings.
 3. Shall be electronically protected.

K. Filters:
 1. Filters shall be held in place by a pivoting filter tray, facilitating easy removal and installation.
 2. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filter.
 3. Filters shall be standard, commercially available sizes.
 4. Only one size filter per unit is allowed.

L. Controls:
 The system shall be microprocessor controlled to maintain precise room temperature and minimum power consumption. The controls system shall employ a genetic algorithm for temperature control.
 Any of the following user interface accessories shall be compatible with the unit.
 1. Wired Remote Controller (Lite Vision Plus)
 Wired remote controller shall communicate over two-core shielded wire up to 1640 ft. It shall be capable of controlling groups of up to 8 indoor units. It shall be able to operate as a primary or secondary controller when two remote controllers are connected to a single indoor unit or group. The system shall be able to be configured so that the return air (TA) can be sensed at the unit, at the remote controller or through a remote sensor. The local controller shall minimally be able to control On-OFF, set point, mode, and be able to display system generated error codes.
 2. Central Controller (Smart Manager)
 Central controller shall communicate over two-core shielded wire up to 6500 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller
shall be capable of controlling up to 128 indoor units individually with capability to program maximum of 10 setups for each day. It shall be able to create 2 indoor unit line-ups with 64 units on each line. It shall provide master, weekly, four special day and monthly scheduling feature. During schedule operation, user can set the power status (ON/OFF), operation mode, temperature setup, and remote control operation, restricted / allowed, return back and ventilation operation. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

3. Central Controller (Touch Screen)
Central controller shall communicate over two-core shielded wire up to 1600 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller shall be capable of controlling up to 512 indoor units individually with capability to program maximum of 20 setups for each day. It shall provide master, weekly, five special day and monthly scheduling feature. In addition, an optional digital I/O interface shall provide alarm, fire and locking signals. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

4. Building Management Systems
The system shall be able to be controlled by BACnet* or LonWorks† protocols either directly or through an external gateway.
BACnet and LonWorks shall be able to control:
 a. ON / OFF
 b. operation mode
 c. fan speed
 d. louver
 e. set temperature
 f. permit / prohibit local operation
BACnet and LonWorks shall be able to monitor:
 a. ON / OFF
 b. operation mode
 c. fan speed
 d. louver
 e. set temperature
 f. permit / prohibit local operation
 g. room temperature
 h. error status
 i. error code

5. The unit shall have the following functions as a minimum:
 a. Selectable automatic restart. After power failure the system will restart at the same operating conditions as before the failure.
 b. Temperature-sensing controls shall sense return air temperature at the unit or at the remote control
 c. Indoor coil freeze protection in both cooling and heating (reversing valve failure) modes.
 d. Dehumidification mode shall provide increased latent removal through total system modulation.
 e. Fan-only operation to provide room air circulation when no cooling is required.
 f. Fan speed control shall be user set to one of three speeds by local or central controller.
 g. Indoor coil high temperature protection shall be provided to detect excessive indoor discharge temperature in heating.
 h. Cold blow prevention in heating.
2.5 VRF SPLIT SYSTEM INDOOR UNITS - CEILING CASSETTE UNIT (2’x2’)

A. General Indoor, in-ceiling mounted, direct-expansion 4-way cassette indoor units are matched with a heat pump or a heat recovery VRF (variable refrigerant flow) outdoor unit.

B. Unit shall be ETL (Engineering Testing Laboratory) listed and certified to UL 1995 4th edition standard.

C. Indoor Unit:

D. Indoor, direct-expansion, low profile (10.1 in.) in-ceiling fan coil. Unit shall be complete with a coil, fan driven by DC inverter-motor, PMV (pulse modulating valve), piping connectors, electrical controls, microprocessor control system, integral temperature sensing, condensate pump with a lift capability of 26 in., and hanging brackets.

E. Unit Cabinet:

 1. Cabinet shall be constructed of zinc-coated steel. Fully insulated discharge and inlet grilles shall be attractively styled, high-impact non-metallic material. The inlet grille shall have hinges and can be opened to obtain access to the cleanable filters, indoor fan motor and control box. Fresh air can be introduced in two ways:

F. Fan:

 1. The Fan shall be centrifugal direct-drive blower type with air intake in the center of the unit and discharge at the perimeter. Automatic, motor-driven vertical air sweep shall be provided standard. Automatic motor-driven louvers shall be provided standard and shall be adjustable for 2, 3 or 4-way discharge.

 2. Air sweep operation shall provide three user selectable modes.

G. Filter:

 1. The return air shall be filtered by means of a washable long-life filter with mildew proof resin.

H. Coil:

I. Coil shall be copper tube with aluminum fins and galvanized steel tube sheets. Fins shall be bonded to the tubes by mechanical expansion and specially coated for enhanced wettability. A drip pan under the coil shall have a factory-installed condensate pump and drain connection for hose attachment to remove condensate. A replaceable element in the condensate disposal system provides antibacterial protection.

J. Motors:

 Motors shall be totally enclosed, permanently lubricated ball bearing with inherent overload protection. Fan motors shall be inverter controlled variable speed.

K. Controls:

 The system shall be microprocessor-controlled to maintain precise room temperature and minimum power consumption. The controls system shall employ a genetic algorithm for temperature control.
Any of the following user interface accessories shall be compatible with the unit.

1. **Wireless Remote Controller**
 Wireless remote controller kit shall include a hand held device and a receiver not integral to the unit. The receiver shall be field installed on the panel / grille or on the wall depending upon the type of kit selected.

2. **Wired Remote Controller (Lite Vision Plus)**
 Wired remote controller shall communicate over two-core shielded wire up to 1640 ft. It shall be capable of controlling groups of up to 8 indoor units. It shall be able to operate as a primary or secondary controller when two remote controllers are connected to a single indoor unit or group. The system shall be able to be configured so that the return air (TA) can be sensed at the unit, at the remote controller or through a remote sensor. The local controller shall minimally be able to control On-OFF, set point, mode, and be able to display system generated error codes.

3. **Central Controller (Smart Manager)**
 Central controller shall communicate over two-core shielded wire up to 6500 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller shall be capable of controlling up to 128 indoor units individually with capability to program maximum of 10 setups for each day. It shall be able to create 2 indoor unit line-ups with 64 units on each line. It shall provide master, weekly, four special day and monthly scheduling feature. During schedule operation, user can set the power status (ON/OFF), operation mode, temperature setup, and remote control operation, restricted / allowed, return back and ventilation operation. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

4. **Central Controller (Touch Screen)**
 Central controller shall communicate over two-core shielded wire up to 1600 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller shall be capable of controlling up to 512 indoor units individually with capability to program maximum of 20 setups for each day. It shall provide master, weekly, five special day and monthly scheduling feature. In addition, an optional digital I/O interface shall provide alarm, fire and locking signals. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

5. **Building Management Systems**
 The system shall be able to be controlled by BACnet* or LonWorks† protocols either directly or through an external gateway.
 BACnet and LonWorks shall be able to control:
 - g. ON / OFF
 - h. operation mode
 - i. fan speed
 - j. louver
 - k. set temperature
 - l. permit / prohibit local operation
 BACnet and LonWorks shall be able to monitor:
 - j. ON / OFF
 - k. operation mode
 - l. fan speed
 - m. louver
 - n. set temperature
 - o. permit / prohibit local operation
 - p. room temperature
6. The unit shall have the following functions as a minimum:
 a. Selectable automatic restart. After power failure the system will restart at the same operating conditions as before the failure.
 b. Temperature-sensing controls shall sense return air temperature at the unit or at the remote control
 c. Indoor coil freeze protection in both cooling and heating (reversing valve failure) modes.
 d. Automatic air sweep control to provide multiple operating modes of the air sweep louvers.
 e. Dehumidification mode shall provide increased latent removal through total system modulation.
 f. Fan-only operation to provide room air circulation when no cooling is required.
 g. Fan speed control shall be user-selectable: high, medium, low, or microprocessor determined (Auto) based on the differential between the room temperature and the set point during all modes of operations.
 h. Indoor coil high temperature protection shall be provided to detect excessive indoor discharge temperature in heating.
 i. Cold blow prevention in heating.

2.6 VRF SPLIT SYSTEM INDOOR UNITS – HIGH WALL INDOOR UNIT

A. General: Indoor, high wall mounted, direct-expansion indoor units are matched with heat pump or heat recovery VRF (variable refrigerant flow) outdoor unit.

B. Unit shall be ETL (Engineering Testing Laboratory) listed and certified to UL 1995 4th edition. Units shall be stored and handled per unit manufacturer's recommendations.

C. Indoor Unit:
 1. Indoor, direct-expansion, wall-mounted fan coil. Unit shall be complete with coil, fan driven by DC inverter motor, PMV (pulse modulating valve), piping connectors, electrical controls, microprocessor control system, and integral temperature sensing. Unit shall be furnished with integral wall mounting bracket and mounting hardware.

D. Unit Cabinet:
 1. Cabinet discharge and inlet grilles shall be attractively styled, high-impact nonmetallic material.

E. Fan:
 1. Fan shall be tangential direct-drive blower type with air intake at the top of the unit and discharge at the bottom front. Automatic, motor-driven vertical air sweep shall be standard.
 2. Vertical air sweep operation shall be user selectable using the remote control and the horizontal air direction may be set manually.

F. Coil:
 1. Coils Coil shall be copper tube with aluminum fins and galvanized steel tube sheets. Fins shall be bonded to the tubes by mechanical expansion and specially coated for enhanced wettability. A drip pan under the coil shall have a factory-installed drain connection (on both ends) for hose attachment to remove condensate.

G. Motors: Stainless steel. Fabricate pans and drain connections to comply with ASHRAE 62.1.
H. Controls:

The system shall be microprocessor-controlled to maintain precise room temperature and minimum power consumption. The controls system shall employ a genetic algorithm for temperature control.

Any of the following user interface accessories shall be compatible with the unit.

1. Wireless Remote Controller
 Wireless remote controller kit shall include a hand held device and a receiver integral to the unit.

2. Wired Remote Controller (Lite Vision Plus)
 Wired remote controller shall communicate over two-core shielded wire up to 1640 ft. It shall be capable of controlling groups of up to 8 indoor units. It shall be able to operate as a primary or secondary controller when two remote controllers are connected to a single indoor unit or group. The system shall be able to be configured so that the return air (TA) can be sensed at the unit, at the remote controller or through a remote sensor. The local controller shall minimally be able to control On-OFF, set point, mode, and be able to display system generated error codes.

3. Central Controller (Smart Manager)
 Central controller shall communicate over two-core shielded wire up to 6500 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller shall be capable of controlling up to 128 indoor units individually with capability to program maximum of 10 setups for each day. It shall be able to create 2 indoor unit line-ups with 64 units on each line. It shall provide master, weekly, four special day and monthly scheduling feature. During schedule operation, user can set the power status (ON/OFF), operation mode, temperature setup, and remote control operation, restricted / allowed, return back and ventilation operation. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

4. Central Controller (Touch Screen)
 Central controller shall communicate over two-core shielded wire up to 1600 ft and use existing indoor – outdoor communication protocol to communicate. A single central controller shall be capable of controlling up to 512 indoor units individually with capability to program maximum of 20 setups for each day. In addition, an optional digital I/O interface shall provide alarm, fire and locking signals. It shall provide a web interface for remote monitoring, control, and scheduling. It shall be capable of monitoring energy consumption for each tenant and generate monthly billing reports.

5. Management Systems
 The system shall be able to be controlled by BACnet* or LonWorks† protocols either directly or through an external gateway.

BACnet and LonWorks shall be able to control:

- m. ON / OFF
- n. operation mode
- o. fan speed
- p. louver
- q. set temperature
- r. permit / prohibit local operation

BACnet and LonWorks shall be able to monitor:

- s. ON / OFF
- t. operation mode
- u. fan speed
6. The unit shall have the following functions as a minimum:
 a. Selectable automatic restart. After power failure the system will restart at the same operating conditions as before the failure.
 b. Temperature-sensing controls shall sense return air temperature at the unit or at the remote control
 c. Indoor coil freeze protection in both cooling and heating (reversing valve failure) modes.
 d. Automatic air sweep control to provide multiple operating modes of the air sweep louvers.
 e. Dehumidification mode shall provide increased latent removal through total system modulation.
 f. Fan-only operation to provide room air circulation when no cooling is required.
 g. Fan speed control shall be user-selectable: high, medium, low, or microprocessor determined (Auto) based on the differential between the room temperature and the set point during all modes of operations.
 h. Indoor coil high temperature protection shall be provided to detect excessive indoor discharge temperature in heating.
 i. Cold blow prevention in heating.

2.7 VRF CONTROL BUILDING MANAGEMENT SYSTEM

A. Physical characteristics
 1. Each multi-zone controller shall have a LCD (Liquid Crystal Display) that shows On/Off, setpoint, room temperature, mode of operation (Cool/Heat/Dry/Fan/Auto), louver position, and fan speed.

B. Electrical characteristics
 1. The multi-zone controller will require 24 VAC to power the controller. The multi-zone controller shall supply 16 volts DC to the communication bus on the F1F2 (out-out) terminal of the outdoor unit.

C. VRF controls network
 1. The VRF Controls Network is made up of local remote controllers, multi-zone controllers and open protocol network devices that transmit information via the communication bus. The VRF Controls Network shall also have the ability to be accessed via a networked PC. The VRF Controls Network supports operation monitoring, scheduling, error e-mail distribution and general user software.

D. Multi-zone Controllers
 1. The VRF multi-zone controllers are compatible with all VRF indoor units with the use of an adapter. The multi-zone controller wiring consist of a non-polar two-wire connection to the outdoor unit. The multi-zone controllers may be wall-mounted and can be adjusted to maintain the operation of up to 64 connected indoor unit groups and 128 indoor units. Set temperatures can be adjusted in increments of 1°F. In the cases where a system or
unit error may occur, the VRF controllers will display a two-digit error code and the unit address.

E. DCM601A71: intelligent Touch Manager (iTM/Multi-zone controller)

1. The intelligent Touch Manager (version 1.02) shall be capable of controlling a maximum or 64 indoor unit groups and 128 indoor units connected to a maximum of 10 outdoor units. The intelligent Touch Manager shall support operations superseding that of the local remote controller, system configuration, daily/weekly scheduling, monitoring of operation status, and malfunction monitoring.

2. The intelligent Touch Manager is wall mounted and can be adjusted to maintain the operation of the connected indoor unit(s).

3. The intelligent Touch Manager can be used in conjunction with the remote controllers to control the same indoor unit groups. The remote controller shall require daisy chain wiring for grouping multiple indoor units (up to 16) together. Manual addressing is required of each remote controller group associated with the intelligent Touch Manager. DIII-NET address can be set for one (1) indoor unit or each indoor unit in the remote controller group. No more than 2 remote controllers can be placed in the same group.

4. The intelligent Touch Manager shall be equipped with two RJ-45 Ethernet ports to support interconnection with a network PC via the Internet, Local Area Network (LAN), or connection with a non-networked PC after completed installation.

5. Web access functions shall be available so that facility staff can securely log into each Intelligent Touch Manager via the PC’s web browser to support monitoring, scheduling, error email, and general user functions.
 a. Mounting:
 1) The intelligent Touch Manager shall be mounted on the wall or into the mounting fixtures included with the intelligent Touch Manager.

b. Display Features:
 1) The intelligent Touch Manager shall be approximately 11.42" x 9.57" x 1.97' in size with a backlit 10.4" LCD display.
 2) Display information shall be selectable from English, French, Italian, Korean, Dutch, Portuguese, Chinese, Japanese, German, or Spanish.
 3) Featured backlit LCD with auto off after 30 minutes (default) is adjustable between 1 to 60 minutes, or the choice of 3 different screen savers.
 4) Area and Group configuration
 a) Area contains one (1) or more Area(s) or Group(s)
 b) A Group may be an indoor unit, Di, Dio point that has a DIII-NET address
 5) An Area is a tiered group where management points (indoor unit, digital input/output, and analog input groups) can be monitored and controlled by global settings. Up to 650 Areas can be created. Area hierarchy can have up to 10 tiered levels (ex. top level: 1st floor West, 2nd level: offices, hallways, 3rd level: Office 101, 102, and 103, etc.). Area configuration shall classify levels of monitoring and control for each management point
 a) Areas and Groups may be assigned names (ex. Office 101, Lobby, North Hallway, etc.)
 6) The Controller shall display On/Off, Operation Mode, Setpoint, Space Temperature, Louver Position, Fan Speed for each Area or Group.
7) The Controller shall display Date (mm/dd/yyyy, yyyy/mm/dd, or dd/mm/yyyy format selectable) and day of the week along with the time of day (12hr or 24hr display selectable).
8) The Controller shall adjust for daylight savings time (DST) automatically.
9) Display information shall be updated every 3 seconds to show the latest status of the indoor unit groups.
10) System status icons shall display On/Off (color coded), Malfunction/Error (color coded), Forced Stop, Setback, Filter, Maintenance, and Screen Lock.
11) The controller shall display the temperature setpoint in one degree increments with a range of 60°F – 90°F, 1°F basis (16°C – 32°C, 0.1°C basis).
 a) Display of temperature setpoint information shall be configurable for Fahrenheit or Celsius
12) Display shall reflect room temperature -58°F – 248°F, 1°F basis (-50°C – 120°C, 0.1°C basis) range in one degree increment.
 a) Display of room temperature information shall be configurable for Fahrenheit or Celsius
13) The Menu List shall be used to configure options and display information for each Area or Group.
14) Error status shall be displayed in the event of system abnormality/error with one of three color coded icons placed over the indoor unit icon or lower task bar.
 a) System errors are generated when the intelligent Touch Manager system with other VRF controls systems combined or power proportional distribution calculation errors occur. The intelligent Touch Manager shall display the error with a red triangle placed on the lower task bar
 b) Unit errors occurring within the VRF system shall be displayed with a yellow triangle placed over the indoor unit icon
 c) Limit errors are based upon preconfigured analog input upper and lower limit settings and are generated when the limits have been met. When limit error is generated a yellow triangle will be placed over the unit icon.
 d) Communication errors between the intelligent Touch Manager and the indoor units shall be displayed with a blue triangle placed over the indoor unit icon
 e) Error history shall be available for viewing for up to 500,000 errors/abnormality events
15) Floor plan layout
 a) Capable of displaying site floor plan as the background for visual navigation. Indoor unit, DIII-NET Di and Dio, and External Di, DO, and Ai icons with operational status can be placed on the floor layout
 • Up to 4 status points can be assigned to the indoor unit icon (room name, room temperature, setpoint, and mode)
 • Digital input and output icons will display On/Off status
 • Analog input icons will display analog value
 b) Up to 60 floor layout sections can be created

c. Basic Operation:
 1) Capable of controlling by Area(s) or Group(s)
 2) Controller shall control the following group operations:
 a) On/Off
 b) Operation Mode (Cool, Heat, Fan, Dry, and Auto)
 c) Setpoint for current mode in the occupied period
d) Controller shall be able to limit the user adjustable setpoint ranges individually for cooling and heating based upon the Area or Group configurations

e) Relative Setup (Cooling) and Setback (Heating) setpoints in the unoccupied mode adjustable to 2 - 120F (1 - 70C)
 • The high and low relative setback setpoints
 • Setup and Setback setpoints can be set inside or outside of the occupied setpoint range
 • The recovery differential shall be 40F (default) and adjustable between 2 – 100F
 • Settings shall be applied based upon the Area or Group configurations

f) Fan Speed
 • Up to 3 speeds (dependent upon indoor unit type)

g) Louver direction (dependent upon indoor unit type)
 • 5 fixed positions or swing position

h) Remote controller permit/prohibit of On/Off, Mode, and Setpoint

i) Lock out setting for Intelligent Touch Manager display

j) Indoor unit Group/Area assignment

3) Capable of providing battery backup power for the clock at least 1 year when no AC power is applied.
 a) The battery can last at least 13 years when AC power is applied
 b) Settings stored in non-volatile memory

d. Programmability:

1) Controller shall support weekly schedule settings.
 a) 7 day weekly pattern
 b) The schedule shall have the capabilities of being enabled or disabled
 c) 100 independent schedules configurable with up to 20 events settable for each days schedule
 • Each scheduled event shall specify time and target Area or Group
 • Each scheduled event shall include On/Off, Operation Mode, Occupied Setpoint, Pre-Cool, Pre-Heat, Setback High, Setback Low, Remote Controller On/Off Prohibit, Remote Controller Mode Prohibit, Remote Controller Setpoint Prohibit, Timer Extension Setting, Fan Speed, and Setpoint Range Limit
 • Setpoint when unit is On (occupied)
 • Configurable Setup (Cooling) and Setback (Heating) setpoints when unit is Off (unoccupied)
 • Time setting in 1-minute increments
 • Timer Extension shall be used for a timed override (settable from 30 – 180 minutes) to allow indoor unit operation during the unoccupied period
 d) A maximum of 40 exception days can be schedule on the yearly schedule (repeats yearly)
 • Exception days shall be used to override specified days on the weekly schedule based upon irregular occupied/unoccupied conditions
 • Exception days can be configured on a set date (Jan 1) or floating date (1st Monday in September)

2) Controller shall support auto-changeover.
 a) Auto-change shall provide Fixed, Operating, and Averaging changeover methods for Heat Recovery systems based upon the changeover group configuration. This will allow for the optimal room
temperature to be maintained by automatically switching the indoor unit’s mode between Cool and Heat in accordance with the room temperature and setpoint

- When selecting the Auto-changeover method the Differential should also be set (default value 4°F, adjustable between 0 – 13°F). The (Thermal) Differential is the tolerance for the indoor unit’s setpoint. When the difference between the representative room temperature and the representative indoor unit setpoint exceed the thermal differential, the operation mode is changed
- When the mode is changed from Cool to Heat the setpoint will be decreased by the thermal differential set in the Auto Changeover configuration (ex. If the mode is Cool with a 74°F setpoint and a changeover differential of 4°F, when switched from Cool to Heat the new setpoint for heating will be 70°F)
- When the mode is changed from Heat to Cool the setpoint will be increased by the thermal differential set in the Auto Changeover configuration (ex. If the mode is Heat with a 72°F setpoint and a changeover differential of 4°F, when switched from Heat to Cool the new setpoint for cooling will be 76°F)

b) Fixed method
- Changeover evaluated by room temperature and setpoint of the representative indoor unit (first registered indoor unit in group) in the changeover group even when it is not operating (must be in Cool, Heat, or Auto mode)

c) Operating method
- Changeover evaluated by searching for an indoor unit group that is operating in Cool, Heat, or Auto mode and uses the indoor unit room temperature and setpoint as the representative room temperature and setpoint
- The order of the search is based upon the order each indoor unit group is assigned to the intelligent Touch Manager within the changeover group
- If none of the indoor units in the group meet the above requirements the Fixed method of changeover will be applied
d) Average method
- Changeover evaluated by the average of all indoor unit group’s room temperatures and setpoints operating in Cool, Heat, or Auto mode in the changeover group list
- If none of the indoor units in the group meet the above requirements the Fixed method of changeover will be applied
- If the average room temperature ≤ average setpoint, the indoor units will be placed in Heat mode
- If the average room temperature ≥ average setpoint, the indoor units will be placed in Cool mode
e) Changeover shall change the operation mode of the indoor unit that is set as the Changeover Master. The Changeover Master indoor unit shall then change the operation mode of all indoor unit groups daisy chained to the same outdoor unit in the Heat Pump system or branch selector box in the Heat Recovery system.
f) Changeover from heat to cool mode shall occur when the room temperature is great than or equal to the heating setpoint, plus the setting of the thermal difference (0 – 13°F) with a safety allowance if necessary is established
 specifications No. 19-11320-C

- Changeover from cool to heating mode shall occur when room temperature is less than or equal to the cooling setpoint, minus the setting of the thermal difference (0 – 13°F) with a safety allowance if necessary is established.

- 30 minute guard timer
 - Upon changeover, guard timer will prevent another changeover during this period.
 - Guard timer is ignored by a change of setpoint manually from either intelligent Touch Manger or Remote Controller or by schedule.

3) Controller shall support Interlock
 a) Interlock feature for use with 3rd party equipment (DOAS, dampers, occupancy sensing, etc…) to automatically control Groups or Areas corresponding to the change of the operation states or the On/Off states of any Group.
 b) Wiring adapter for fan coil interlock with booster fan.
 c) Digital Input/Output unit or Digital Input unit
 - On/Off based monitoring and control of equipment
 - Manual or scheduled operation of equipment
 - Operation based upon interlock with VRF indoor unit group(s)
 - Monitor equipment error/alarm status
 d) Controller shall support force shutdown of associated indoor unit groups.

4) Web/Email Function
 a) Each intelligent Touch Manager shall be capable of monitoring, operating, and scheduling a maximum of 64 indoor unit groups (up to 512 indoor unit groups with the addition of the iTM Plus Adapter) from a networked PC’s web browser. It shall also be capable of creating general user access and sending detailed error emails to a customized distribution list (up to 10 email addresses).
 b) All PCs shall be field supplied.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, to receive air cooled condensing units and fan coil units for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping and electrical connections to verify actual locations before equipment installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.

B. Install fan coil units to comply with NFPA 90A.
C. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

D. Verify locations of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install new filters in each fan coil unit within two weeks after Substantial Completion.

E. Maintain manufacturer's recommended clearances for service and maintenance.

F. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:

1. Install piping adjacent to machine to allow service and maintenance.
2. Connect piping to fan coil unit factory hydronic piping package. Install piping package if shipped loose.
3. Connect condensate drain to indirect waste.
 a. Install condensate trap of adequate depth to seal against fan pressure. Install cleanouts in piping at changes of direction.

B. Connect supply-air and return-air ducts to fan coil units with flexible duct connectors specified in Section 233300 "Air Duct Accessories." Comply with safety requirements in UL 1995 for duct connections.

C. Refrigerant Piping: Connect piping to unit per manufacturer's guidelines.

D. Ground equipment according to Section 260500 "Basic Materials and Methods."

E. Connect wiring according to Section 260500 "Basic Materials and Methods."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
4. Perform electrical test and visual and mechanical inspection.
5. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
6. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Complete manufacturer's starting checklist.
7. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
8. Verify proper airflow over coils.

D. Remove and replace malfunctioning units and retest as specified above.
E. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
F. Prepare test and inspection reports.
G. Refrigerant
H. Perform the following tests and inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials and retest until satisfactory results are achieved.
I. Prepare test and inspection reports.

3.5 SYSTEM CHARGING
A. Charge system using the following procedures:
 1. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 2. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 3. Charge system with a new filter-dryer core in charging line.

3.6 ADJUSTING
A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer’s written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

3.7 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions and perform the following:

 a. Inspect for physical damage to unit casing.
 b. Verify that access doors move freely and are weathertight.
 c. Clean units and inspect for construction debris.
 d. Verify that all bolts and screws are tight.
 e. Adjust vibration isolation and flexible connections.
 f. Verify that controls are connected and operational.

2. Lubricate bearings on fan motors.
3. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
4. Adjust fan belts to proper alignment and tension.
5. Start unit according to manufacturer’s written instructions and complete manufacturer’s startup checklist.
6. Measure and record airflow and air temperature rise over coils.
7. Verify proper operation of capacity control device.
8. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
9. After startup and performance test, lubricate bearings.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance and administration personnel to adjust, operate, and maintain air cooled condensing units and fan coil units.

B. Give the City of Berkeley’s Representative 10 business days’ advance notice prior to demonstration and/or trainings.

C. The City of Berkeley shall be allowed to videotape all trainings and demonstrations.

END OF SECTION
SECTION 26 05 19
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Copper building wire rated 600 V or less.
 2. Metal-clad cable, Type MC, rated 600 V or less.
 3. Connectors, splices, and terminations rated 600 V and less.
B. Related Requirements:
 1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.
 2. Section 271313 "Communications Copper Backbone Cabling" for twisted pair cabling used for data circuits.
 3. Section 271513 "Communications Copper Horizontal Cabling" for twisted pair cabling used for data circuits.

1.3 DEFINITIONS
A. RoHS: Restriction of Hazardous Substances.
B. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For manufacturer's authorized service representative.
B. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.

 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. Alpha Wire Company.
 2. American Bare Conductor.
 3. Belden Inc.
 4. Cerro Wire LLC.
 5. General Cable Technologies Corporation.
 6. Okonite Company (The).
 7. Service Wire Co.
 8. Southwire Company.

C. Standards:

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. RoHS compliant.
 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

E. Conductor Insulation:

 1. Type NM: Comply with UL 83 and UL 719.
 2. Type RHH and Type RHW-2: Comply with UL 44.
 3. Type THHN and Type THWN-2: Comply with UL 83.
 4. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
 5. Type XHHW-2: Comply with UL 44.
2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AFC Cable Systems; a part of Atkore International.
2. Alpha Wire Company.
3. American Bare Conductor.
4. Belden Inc.
5. General Cable Technologies Corporation.
6. Okonite Company (The).
7. Service Wire Co.
8. Southwire Company.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. Comply with UL 1569.
3. RoHS compliant.
4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Circuits:

1. Single circuit

E. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

F. Ground Conductor: Bare

G. Conductor Insulation:

1. Type TFN/THHN/THWN-2: Comply with UL 83.
2. Type XHHW-2: Comply with UL 44.

H. Armor: Steelinterlocked.

I. Jacket: PVC applied over armor.
2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M Electrical Products.
2. AFC Cable Systems; a part of Atkore International.
5. O-Z/Gedney; a brand of Emerson Industrial Automation.

C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.

 1. Material: Copper.
 2. Type: Onehole with standard barrels.
 3. Termination: Compression

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

G. PV Circuits: [Copper] [Aluminum]. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type XHHW-2, single conductors in raceway
Feeder Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway

D. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway

E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway

F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway

G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.
3.4 CONNECTIONS
 A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
 B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm).

3.5 IDENTIFICATION
 A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
 B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING
 A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
 B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 D. Perform tests and inspections.
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 2. Perform each of the following visual and electrical tests:
a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
c. Inspect compression-applied connectors for correct cable match and indentation.
d. Inspect for correct identification.
e. Inspect cable jacket and condition.
f. Insulation-resistance test on each conductor for ground and adjacent conductors.
 Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
g. Continuity test on each conductor and cable.
h. Uniform resistance of parallel conductors.

E. Cables will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION
SECTION 26 05 26
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
 1. Underground distribution grounding.
 2. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Burndy; Part of Hubbell Electrical Systems.
2. ERICO; a brand of nVent.
3. Galvan Industries, Inc.; Electrical Products Division, LLC.
4. Harger Lightning & Grounding.
5. ILSCO.
6. O-Z/Gedney; a brand of Emerson Industrial Automation.

2.3 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
C. **Grounding Bus:** Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. **Welded Connectors:** Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. **Bus-Bar Connectors:** Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. **Bus-Bar Connectors:** Compression type, copper or copper alloy, with two wire terminals.

E. **Beam Clamps:** Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. **Cable-to-Cable Connectors:** Compression type, copper or copper alloy.

G. **Cable Tray Ground Clamp:** Mechanical type, zinc-plated malleable iron.

H. **Conduit Hubs:** Mechanical type, terminal with threaded hub.

I. **Ground Rod Clamps:** Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. **Ground Rod Clamps:** Mechanical type, copper or copper alloy, terminal with hex head bolt.

K. **Lay-in Lug Connector:** Mechanical type, copper rated for direct burial terminal with set screw.

L. **Service Post Connectors:** Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

M. **Signal Reference Grid Clamp:** Mechanical type, stamped-steel terminal with hex head screw.

N. **Straps:** Solid copper, copper lugs. Rated for 600 A.

O. **Tower Ground Clamps:** Mechanical type, copper or copper alloy, terminal one-piece clamp.

P. **U-Bolt Clamps:** Mechanical type, copper or copper alloy, terminal listed for direct burial.

Q. **Water Pipe Clamps:**

 1. Mechanical type, two pieces with zinc-plated bolts.

 b. Listed for direct burial.
2. U-bolt type with malleable-iron clamp and copper ground connector.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet (19 mm by 3 m).
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches (1200 mm) long.
 2. Backfill Material: Electrode manufacturer's recommended material.

 B. Ground Plates: 1/4 inch (6 mm) thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches (600 mm) below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.
3.2 **GROUNDING AT THE SERVICE**

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 **GROUNDING SEPARATELY DERIVED SYSTEMS**

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 **GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS**

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.5 **EQUIPMENT GROUNDING**

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. **Busway Supply Circuits:** Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

9. **X-Ray Equipment Circuits:** Install insulated equipment grounding conductor in circuits supplying x-ray equipment.

C. **Air-Duct Equipment Circuits:** Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. **Water Heater, Heat-Tracing, and Antifrost Heating Cables:** Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. **Isolated Grounding Receptacle Circuits:** Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. **Isolated Equipment Enclosure Circuits:** For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.6 INSTALLATION

A. **Grounding Conductors:** Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. **Ground Bonding Common with Lightning Protection System:** Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. **Ground Rods:** Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
2. Use exothermic welds for all below-grade connections.
3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches (300 mm) deep, with cover.

1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building’s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.

I. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

F. Grounding system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

I. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Aluminum slotted support systems.
3. Nonmetallic slotted support systems.
4. Conduit and cable support devices.
5. Support for conductors in vertical conduit.
6. Structural steel for fabricated supports and restraints.
7. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
8. Fabricated metal equipment support assemblies.

B. Related Requirements:

1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

a. Slotted support systems, hardware, and accessories.
b. Clamps.
c. Hangers.
d. Sockets.
e. Eye nuts.
f. Fasteners.
g. Anchors.
h. Saddles.
i. Brackets.
2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 2. Slotted support systems.
 3. Equipment supports.
 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of hangers.
 2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALs

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Ductwork, piping, fittings, and supports.
 3. Structural members to which hangers and supports will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Sprinklers.
 d. Access panels.
 e. Projectors.
 f. .

B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.
1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.5.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. B-line, an Eaton business.
 b. Flex-Strut Inc.
 c. Unistrut; Part of Atkore International.

 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Hilti, Inc.
 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) B-line, an Eaton business.
 2) Hilti, Inc.
 3) ITW Ramset/Red Head; Illinois Tool Works, Inc.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.

6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.

7. To Light Steel: Sheet metal screws.

8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

2. Install anchor bolts to elevations required for proper attachment to supported equipment.

3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
SECTION 26 05 33
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Surface raceways.
 5. Boxes, enclosures, and cabinets.
 6. Handholes and boxes for exterior underground cabling.

B. Related Requirements:
 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
 2. Section 270528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

C. Samples: For wireways and surface raceways and for each color and texture specified, 12 inches (300 mm) long.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. O-Z/Gedney; a brand of Emerson Industrial Automation.
 c. Thomas & Betts Corporation; A Member of the ABB Group.
 d. Western Tube and Conduit Corporation.

2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. GRC: Comply with ANSI C80.1 and UL 6.
4. IMC: Comply with ANSI C80.6 and UL 1242.
5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch (1 mm), minimum.
6. EMT: Comply with ANSI C80.3 and UL 797.
7. FMC: Comply with UL 1; zinc-coated steel.
8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. O-Z/Gedney; a brand of Emerson Industrial Automation.
 c. Thomas & Betts Corporation; A Member of the ABB Group.
 d. Western Tube and Conduit Corporation.
2. Comply with NEMA FB 1 and UL 514B.
3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
4. Fittings, General: Listed and labeled for type of conduit, location, and use.
5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
6. Fittings for EMT:

 a. Material: Steel.
 b. Type: Setscrew or compression.
7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. AFC Cable Systems; a part of Atkore International.
 b. Arnco Corporation.
 c. RACO; Hubbell.
d. Thomas & Betts Corporation; A Member of the ABB Group.

2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. ENT: Comply with NEMA TC 13 and UL 1653.

4. RNC: \[\text{Type EPC-40-PVC} \] \(<\text{Insert type}>\), complying with NEMA TC 2 and UL 651 unless otherwise indicated.

5. LFNC: Comply with UL 1660.

6. Rigid HDPE: Comply with UL 651A.

7. Continuous HDPE: Comply with UL 651A.

8. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

B. Nonmetallic Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. Arnco Corporation.
 c. RACO; Hubbell.
 d. Thomas & Betts Corporation; A Member of the ABB Group.

2. Fittings, General: Listed and labeled for type of conduit, location, and use.

3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
 a. Fittings for LFNC: Comply with UL 514B.

4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
2. Hoffman; a brand of nVent.
3. MonoSystems, Inc.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. MonoSystems, Inc.
 c. Panduit Corp.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 2. EGS/Appleton Electric.
 4. Hoffman; a brand of nVent.
 5. Hubbell Incorporated.
 6. Oldcastle Enclosure Solutions.
 7. O-Z/Gedney; a brand of Emerson Industrial Automation.
 8. RACO; Hubbell.
 9. Thomas & Betts Corporation; A Member of the ABB Group.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

F. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).

K. Gangable boxes are allowed.

L. Cabinets:
 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Armorcast Products Company.
 b. NewBasis.
 c. Oldcastle Precast, Inc.
 2. Standard: Comply with SCTE 77.
 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
6. Cover Legend: Molded lettering, "ELECTRIC.".
7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
8. Handholes 12 Inches Wide by 24 Inches Long (300 mm Wide by 600 mm Long) and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.7 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC.
 2. Concealed Conduit, Aboveground: GRC.
 3. Underground Conduit: RNC, Type EPC-40-PVC, Type EPC-80-PVC, direct buried.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Mechanical rooms.
 b. Gymnasiums.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: GRC.
7. **Boxes and Enclosures:** NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. **Minimum Raceway Size:** 3/4-inch (21-mm) trade size.

D. **Raceway Fittings:** Compatible with raceways and suitable for use and location.

 1. **Rigid and Intermediate Steel Conduit:** Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. **PVC Externally Coated, Rigid Steel Conduits:** Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 3. **EMT:** Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 4. **Flexible Conduit:** Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface raceways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 **INSTALLATION**

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches (300 mm) of enclosures to which attached.

I. Raceways Embedded in Slabs:
1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m) intervals.

2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

3. Arrange raceways to keep a minimum of 1 inch (25 mm) of concrete cover in all directions.

4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

5. Change from ENT to GRC or IMC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:

1. Use EMT, IMC, or RMC for raceways.

2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

S. Surface Raceways:

1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend points.

2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway.
section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

W. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.
 e.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

BB. Locate boxes so that cover or plate will not span different building finishes.

CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

EE. Set metal floor boxes level and flush with finished floor surface.

FF. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
2. Install backfill as specified in Section 312000 "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete for a minimum of 12 inches (300 mm) on each side of the coupling.

b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits but a minimum of 6 inches (150 mm) below grade. Align planks along centerline of conduit.

7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.

D. Install handholes with bottom below frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 2. Rigid nonmetallic duct.
 3. Flexible nonmetallic duct.
 4. Duct accessories.
 5. Precast concrete handholes.
 6. Polymer concrete handholes and boxes with polymer concrete cover.
 7. Utility structure accessories.

1.3 DEFINITIONS
A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.

B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.

C. Duct Bank:
 1. Two or more ducts installed in parallel, with or without additional casing materials.
 2. Multiple duct banks.

D. GRC: Galvanized rigid (steel) conduit.

E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include duct-bank materials, including spacers and miscellaneous components.
2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Include accessories for manholes, handholes, boxes.
4. Include underground-line warning tape.
5. Include warning planks.

B. Shop Drawings:
 1. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.

C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C 858.

D. Source quality-control reports.

E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to 5 percent of quantity of each item installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.
1.8 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Architect's written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

C. Ground Water: Assume ground-water level is 36 inches (900 mm) below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. Coated Steel Conduit: PVC-coated GRC.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch (1 mm), minimum.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

C. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches (300 by 600 by 75 mm) in size, manufactured from 6000-psi (41-MPa) concrete.
 2. Mark each plank with "ELECTRIC" in 2-inch- (50-mm-) high, 3/8-inch- (10-mm-) deep letters.

2.4 PRECAST CONCRETE HANDHOLES AND BOXES

A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Christy Concrete Products.
 2. Oldcastle Precast, Inc.
 3. Utility Concrete Products, LLC.

C. Comply with ASTM C 858 for design and manufacturing processes.

D. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

E. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

F. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 2. Cover Handle: Recessed.

G. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 2. Cover Handle: Recessed.

H. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

I. Cover Legend: Molded lettering, "ELECTRIC."

J. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

K. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
1. Extension shall provide increased depth of 12 inches (300 mm).
2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

L. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

M. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches (300 mm) vertically and horizontally to accommodate alignment variations.
 1. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 2. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
 3. Knockout panels shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 4. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.

N. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as
required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 311000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 311000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

B. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

C. Underground Ducts Crossing Paved Paths Walks and Driveways: Type EPC-40 PVC RNC, encased in reinforced concrete.

D. Stub-ups: Concrete-encased PVC-coated GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 4. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.

C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.

B. Install duct according to NEMA TCB 2.

C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.

D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm) [25 feet (7.5 m)], both horizontally and vertically, at other locations unless otherwise indicated.

1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell, without reducing duct slope and without forming a trap in the line.

2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch (19 mm).

3. Grout end bells into structure walls from both sides to provide watertight entrances.

H. Terminator Entrances Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator, without reducing duct line slope and without forming a trap in the line.
2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch (19 mm).

I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 “Sleeves and Sleeve Seals for Electrical Raceways and Cabling.”

J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

L. Direct-Buried Duct and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 “Earth Moving” for preparation of trench bottoms for pipes less than 6 inches (150 mm) in nominal diameter.
2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
3. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
4. Depth: Install top of duct at least 36 inches (900 mm) below finished grade unless otherwise indicated.
5. Set elevation of bottom of duct bank below frost line.
6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
8. Install duct with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and communications duct.
10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.

a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.

b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.

1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and minimum 3 inches (75 mm) from conduit side to edge of slab.
c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.

1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and no less than 3 inches (75 mm) from conduit side to edge of slab.

11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.

a. Place minimum 3 inches (75 mm) of sand as a bed for duct. Place sand to a minimum of 6 inches (150 mm) above top level of duct.

b. Place minimum 6 inches (150 mm) of engineered fill above concrete encasement of duct.

M. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried duct, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.

N. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Cast-in-Place Manhole Installation:

1. Finish interior surfaces with a smooth-troweled finish.
2. Knockouts for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches (38 to 50 mm) thick, arranged as indicated.
3. Comply with requirements in Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete, formwork, and reinforcement.

B. Precast Concrete Handhole and Manhole Installation:

1. Comply with ASTM C 891 unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. Elevations:

1. Manhole Roof: Install with rooftop at least 15 inches (375 mm) below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
3. Install handholes with bottom below frost line, below grade.
4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
5. Where indicated, cast handhole cover frame integrally with handhole structure.

D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

3.7 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
3. Test and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump.

1. Sweep floor, removing dirt and debris.
2. Remove foreign material.

END OF SECTION
This Page Intentionally Left Blank
SECTION 26 05 53
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 1. Color shall be factory applied.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 240-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 4. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 7. Colors for Isolated Grounds: Green with white stripe.

C. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:

1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

F. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.

C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, polyester flexible label with acrylic pressure-sensitive adhesive.

1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
2. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameters sized to suit diameters and that stay in place by gripping action.

2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.

C. Tape and Stencil: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background and is 12 inches (300 mm) wide. Stop stripes at legends.

D. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

E. Underground-Line Warning Tape:
 1. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 2. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
 3. Tag: Type ID:
 a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, compounded for direct-burial service.
 b. Width: 3 inches (75 mm).
 c. Overall Thickness: 5 mils (0.125 mm).
 d. Foil Core Thickness: 0.35 mil (0.00889 mm).
 e. Weight: 28 lb/1000 sq. ft. (13.7 kg/100 sq. m).
 f. Tensile according to ASTM D 882: 70 lbf (311.3 N) and 4600 psi (31.7 MPa).
 F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).
2.6 TAGS

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch (0.38 mm) thick, color-coded for phase and voltage level, with factory-screened permanent designations; punched for use with self-locking cable tie fastener.

2.7 SIGNS

A. Metal-Backed Butyrate Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch (1-mm) galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 3. Nominal Size: 10 by 14 inches (250 by 360 mm).

B. Laminated Acrylic or Melamine Plastic Signs:
 1. Engraved legend.
 2. Thickness:
 a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 c. Engraved legend with white letters on a dark gray background <Insert colors>.
 d. Punched or drilled for mechanical fasteners with 1/4-inch (6.4-mm) grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 1. Minimum Width: 3/16 inch (5 mm).
 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D 638: 12,000 psi (82.7 MPa).
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

M. Vinyl Wraparound Labels:

1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:

1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

W. Underground Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use
multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches (400 mm) overall.
2. Limit use of underground-line warning tape to direct-buried cables.
3. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Metal Tags:
1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

Y. Nonmetallic Preprinted Tags:
1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

Z. Metal-Backed Butyrate Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.

AA. Laminated Acrylic or Melamine Plastic Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.

BB. Cable Ties: General purpose, for attaching tags, except as listed below:
1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

E. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

F. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

G. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

J. Operating Instruction Signs: Self-adhesive labels.

K. Emergency Operating Instruction Signs: Self-adhesive labels with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

L. Equipment Identification Labels:

1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of an engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
 e. Emergency system boxes and enclosures.
 f. Enclosed switches.
 g. Enclosed circuit breakers.
 h. Enclosed controllers.
i. Variable-speed controllers.
j. Power-transfer equipment.
k. Contactors.
l. Remote-controlled switches, dimmer modules, and control devices.
m. Battery-inverter units.
n. Battery racks.
o. Power-generating units.
p. Monitoring and control equipment.
q. UPS equipment.
SECTION 26 09 23
LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Standalone daylight-harvesting switching and dimming controls.
 4. Indoor occupancy and vacancy sensors.
 5. Switchbox-mounted occupancy sensors.
 6. High-bay occupancy sensors.
 7. Outdoor motion sensors.
 B. Related Requirements:
 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch
 occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings:
 1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the
 following items are shown and coordinated with each other, using input from installers of the
 items involved:
1. Suspended ceiling components.
2. Structural members to which equipment will be attached.
3. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Control modules.

B. Field quality-control reports.

C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control software.
 b. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. Intermatic, Inc.
 2. Invensys Controls.
 3. Leviton Manufacturing Co., Inc.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.

1. Listed and labeled as defined in NFPA 70 and marked for intended location and application.
2. Contact Configuration: SPST.
3. Contact Rating: 20-A ballast load, 120-/240-V ac.
4. Programs: Eight on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
5. Programs: Two on-off set points on a 24-hour schedule, allowing different set points for each day of the week and an annual holiday schedule that overrides the weekly operation on holidays.
6. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program.
7. Astronomic Time: All channels.
8. Automatic daylight savings time changeover.
9. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

C. Electromechanical-Dial Time Switches: Comply with UL 917.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Contact Configuration: SPST.
 4. Circuitry: Allows connection of a photoelectric relay as a substitute for the on-off function of a program.
 5. Astronomic time dial.
 7. Skip-a-day mode.
 8. Wound-spring reserve carryover mechanism to keep time during power failures, minimum of 16 hours.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Intermatic, Inc.
 2. Leviton Manufacturing Co., Inc.
 3. NSi Industries LLC.

B. Description: Solid state, with SPST dry contacts rated for 1000 W incandescent, to operate connected load, complying with UL 773, and compatible with CFL and LED lamps.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range.
 3. Time Delay: Thirty-second minimum, to prevent false operation.
 5. Mounting: Twist lock complying with NEMA C136.10, with base.
 6. Failure Mode: Luminaire stays ON.

2.3 DAYLIGHT-HARVESTING DIMMING CONTROLS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Cooper Industries, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lithonia Lighting; Acuity Brands Lighting, Inc.
4. Wattstopper

B. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.

1. Lighting control set point is based on two lighting conditions:
 a. When no daylight is present (target level).
 b. When significant daylight is present.

2. System programming is done with two hand-held, remote-control tools.
 a. Initial setup tool.
 b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.

C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with integrated power pack, to detect changes in indoor lighting levels that are perceived by the eye.

D. Electrical Components, Devices, and Accessories:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.
3. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc (120 to 640 lux).

2.4 INDOOR OCCUPANCYAND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lithonia Lighting; Acuity Brands Lighting, Inc.
4. Lutron Electronics Co., Inc.
5. Philips Lighting Controls.
6. Sensor Switch, Inc.
7. Wattstopper

B. General Requirements for Sensors:

1. Wall or Ceiling-mounted, solid-state indoor occupancy sensors.
2. Dual technology.
3. Integrated power pack.
4. Hardwired connection to switch.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:
a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
9. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.
13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.

C. Dual-Technology Type: Wall or Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet (110 square meters) when mounted 48 inches (1200 mm) above finished floor.

2.5 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lithonia Lighting; Acuity Brands Lighting, Inc.
4. Lutron Electronics Co., Inc.
5. Sensor Switch, Inc.
6. Wattstopper

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application, and shall comply with California Title 24.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
4. Switch Rating: Not less than 1200-VA LED load at 120 V

2.6 HIGH-BAY OCCUPANCY SENSORS

A. General Description: Solid-state unit. The unit is designed to operate with the lamp and ballasts indicated.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operation: Turn lights on when coverage area is occupied, and to half-power when unoccupied; with a time delay for turning lights to half-power that is adjustable over a minimum range of 1 to 16 minutes.
3. Continuous Lamp Monitoring: When lamps are dimmed continuously for 24 hours, automatically turn lamps on to full power for 15 minutes for every 24 hours of continuous dimming.
5. Operating Ambient Conditions: 32 to 149 deg F (0 to 65 deg C).
7. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
8. Detector Technology: PIR.
9. Power and dimming control from the luminaire ballast that has been modified to include the dimming capacitor.

B. Detector Coverage: User selectable by interchangeable PIR lenses, suitable for mounting heights from 12 to 50 feet (3.7 to 15.2 m).

C. Accessories: Obtain manufacturer’s installation and maintenance kit with laser alignment tool for sensor positioning and power port connectors.

2.7 OUTDOOR MOTION SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lithonia Lighting; Acuity Brands Lighting, Inc.
4. Sensor Switch, Inc.
5. Wattstopper

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application, and shall comply with California Title 24.

2. PIR type, weatherproof. Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm). Comply with UL 773A.

3. Switch Rating:
 a. Luminaire-Mounted Sensor: 1000-W incandescent, 500-VA fluorescent/LED.
 b. Separately Mounted Sensor: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.

5. Detector Coverage:
 a. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft. (84 sq. m).
 b. Long Range: 180-degree field of view and 110-foot (34-m) detection range.
 c. .

6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.

7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.

8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.

10. Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F (minus 40 to plus 54 deg C), rated as "raintight" according to UL 773A.

2.8 CONDUCTORS AND CABLES

A. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 16 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

A. Comply with NECA 1.

B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION

A. Comply with NECA 1.

B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Lighting control devices will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

3.9 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls."

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION
SECTION 26 24 13

SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Service and distribution switchboards rated 600 V and less.
 2. Disconnecting and overcurrent protective devices.
 3. Instrumentation.
 4. Control power.
 5. Accessory components and features.
 6. Identification.
 7. Mimic bus.

1.3 RELATED SECTIONS

A. Section 260574 "Overcurrent Protective Device Arc-Flash Study" for arc-flash study and arc-flash label requirements.

1.4 ACTION SUBMITTALS

A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
 1. Include dimensions and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
6. Detail utility company's metering provisions with indication of approval by utility company.
7. Include evidence of NRTL listing for series rating of installed devices.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
10. Include diagram and details of proposed mimic bus.
11. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.

D. Delegated Design Submittal:
 1. For arc-flash hazard study.
 2. For arc-flash labels.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for switchboards and all installed components.
 b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation.

C. Handle and prepare switchboards for installation according to NECA 400.

1.10 FIELD CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:
1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F (40 deg C).

C. Unusual Service Conditions: NEMA PB 2, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).

D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Architect's written permission.
 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.12 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Three years from date of Substantial Completion.

B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 SWITCHBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 2.
F. Comply with NFPA 70.
G. Comply with UL 891.
H. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Panel mounted.
3. Sections front and rear aligned.

I. Nominal System Voltage: 208Y/120 V.

J. Main-Bus Continuous: 800 A.
K. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

L. Indoor Enclosures: Steel, NEMA 250, Type 1.

M. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

N. Barriers: Between adjacent switchboard sections.

O. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.

P. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.

Q. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

R. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

S. Buses and Connections: Three phase, four wire unless otherwise indicated.

1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
3. Copper feeder circuit-breaker line connections.
5. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
6. Disconnect Links:

 a. Isolate neutral bus from incoming neutral conductors.
 b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
7. Neutral Buses: 50 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

T. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

U. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

V. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long and short time adjustments.
 d. Ground-fault pickup level, time delay, and I squared t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.

6. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

8. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

e. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

f. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

B. Insulated-Case Circuit Breaker (ICCB): 80 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.

1. Fixed circuit-breaker mounting.
2. Two-step, stored-energy closing.
3. Standard-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Time adjustments for long- and short-time pickup.
 c. Ground-fault pickup level, time delay, and I squared t response.
4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

2.4 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, and the following:

1. Potential Transformers: NEMA EI 21.1; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.
2. Current Transformers: NEMA EI 21.1; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.
3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 d. Megawatts: Plus or minus 1 percent.
 e. Megavars: Plus or minus 1 percent.
 f. Power Factor: Plus or minus 1 percent.
 g. Frequency: Plus or minus 0.1 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.

j. Contact devices to operate remote impulse-totalizing demand meter.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

C. Analog Meters:

1. Meters: 4-inch (100-mm) diameter or 6 inches (150 mm) square, flush or semiflush, with anti-parallax 250-degree scales and external zero adjustment.

D. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent.

E. Instrument Switches: Rotary type with off position.

1. Voltmeter Switches: Permit reading of all phase-to-phase voltages and, where a neutral is indicated, phase-to-neutral voltages.

2. Ammeter Switches: Permit reading of current in each phase and maintain current-transformer secondaries in a closed-circuit condition at all times.

F. Ammeters: 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only.

G. Watt-Hour Meters and Wattmeters:

2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.

3. Suitable for connection to three- and four-wire circuits.

4. Potential indicating lamps.

5. Adjustments for light and full load, phase balance, and power factor.

6. Four-dial clock register.

7. Integral demand indicator.

8. Contact devices to operate remote impulse-totalizing demand meter.

9. Ratchets to prevent reverse rotation.

10. Removable meter with drawout test plug.

11. Semiflush mounted case with matching cover.

H. Impulse-Totalizing Demand Meter:

2. Suitable for use with switchboard watt-hour meter, including two-circuit totalizing relay.

3. Cyclometer.

4. Four-dial, totalizing kilowatt-hour register.

5. Positive chart drive mechanism.

6. Capillary pen holding a minimum of one month’s ink supply.

7. Roll chart with minimum 31-day capacity; appropriate multiplier tag.

8. Capable of indicating and recording five-minute integrated demand of totalized system.
2.5 **CONTROL POWER**

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.

2.6 **ACCESSORY COMPONENTS AND FEATURES**

A. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

B. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 260548.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.

2.7 **IDENTIFICATION**

A. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on a photoengraved nameplate.

 1. Nameplate: At least 0.032-inch- (0.813-mm-) thick anodized aluminum, located at eye level on front cover of the switchboard incoming service section.

B. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on an engraved laminated-plastic (Gravoply) nameplate.

 1. Nameplate: At least 0.0625-inch- (1.588 mm-) thick laminated plastic (Gravoply), located at eye level on front cover of the switchboard incoming service section.

C. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram.

D. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections.

E. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations.

F. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Receive, inspect, handle, and store switchboards according to NECA 400.
1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
3. Protect from moisture, dust, dirt, and debris during storage and installation.
4. Install temporary heating during storage per manufacturer's instructions.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NECA 400.

B. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches (50-mm) above concrete base after switchboard is anchored in place.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to switchboards.
 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, surge protection devices, and instrumentation.
1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install spare-fuse cabinet.

I. Comply with NECA 1.

3.3 CONNECTIONS

A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.

B. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.

C. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.

D. Support and secure conductors within the switchboard according to NFPA 70.

E. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

 1. Acceptance Testing:
a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
b. Test continuity of each circuit.

2. Test ground-fault protection of equipment for service equipment per NFPA 70.
4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
5. Perform the following infrared scan tests and inspections, and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

6. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Switchboard will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated.

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.
END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS
A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 3.

1.8 QUALITY ASSURANCE
A. Manufacturer Qualifications: ISO 9001 or 9002 certified.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet (2000 m).

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Architect's written permission.
3. Comply with NFPA 70E.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Kitchen Areas: NEMA 250, [Type 4X] <Insert type>, [stainless steel] <Insert material>.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 2. Height: 84 inches (2.13 m) maximum.
 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 7. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
 8.

G. Incoming Mains:
 1. Location: Convertible between top and bottom.
 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:
 1. Material: [Hard-drawn copper, 98 percent conductivity].
a. Plating shall run entire length of bus.
b. Bus shall be fully rated the entire length.

2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.

3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.

5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.

6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

7. Split Bus: Vertical buses divided into individual vertical sections.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.

3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.

4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.

5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.

6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: 20 percent.

L. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.
1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

1. Eaton.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

G. Branch Overcurrent Protective Devices: Fused switches.
2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 4. Square D; by Schneider Electric.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer’s name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
G. Mount top of trim [90 inches (2286 mm)] above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch (25 mm) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (25 mm) empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

P. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Do not perform optional tests. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated
C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following central battery and power conversion equipment rated 600 V and less for emergency lighting:

1. Interruptible (slow-transfer) central battery equipment.
2. Interruptible (fast-transfer) central battery equipment.
3. Uninterruptible (UPS-type) central battery equipment.

B. Related Requirements:

1. Section 263353 “Static Uninterruptible Power Supply” for power conversion equipment (UPS), with central batteries, not used for emergency lighting.

1.3 DEFINITIONS

A. DDC: Direct digital control.

C. Interruptible: As used in the Section Text, an off-line, passive-standby or line-interactive, inverter-only unit, with an intentional interruption of power to the load until an internal transfer switch picks up and transfers the load to the unit's inverter and internal battery source on loss of the "normal" source, and then retransfers to the "normal" source when it is restored. Transfer time can be “slow” (up to approximately 1 second) or “fast” (2-4 ms or 40-50 ms, depending on manufacturer).

D. LED: Light-emitting diode.

E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

F. NiCd: Nickel cadmium.

G. OCPD: Overcurrent protective device.
H. PC: Personal computer.
I. PWM: Pulse-width modulated.
J. TDD: Total demand (harmonic current) distortion (also listed as "THD" in catalog data by manufacturers).
K. THD(V): Total harmonic voltage demand.
L. Uninterruptible: As used in the Section Text, an on-line, double-conversion (rectifier/inverter) unit, with no interruption of power to the load on interruption and restoration of the "normal" source.
M. UPS: Uninterruptible power supply.
N. VRLA: Valve-regulated lead acid.

1.4 ACTION SUBMITTALS

A. Product Data: For each type and rating of central battery equipment unit.
 1. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, shipping splits, and furnished options, specialties, and accessories.

B. Shop Drawings: For each type and rating of central battery equipment unit.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, ventilation requirements, method of field assembly, components, and location and size of each field connection.
 3. Include system one-line diagram, internal and interconnecting wiring; and diagrams for power, signal, and control wiring.
 4. Include elevation, details, and legends of control and indication displays.
 5. Include -circuit current (withstand) rating of unit.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around central battery equipment. Show central battery equipment layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

B. Qualification Data: For Installer and testing agency.

C. Seismic Qualification Data: For central battery equipment, accessories, and components, from manufacturer.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of central battery equipment.
E. Source quality-control reports.
F. Field quality-control reports.
G. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For central battery equipment to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing central battery equipment.
 b. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 c. Manufacturer's written instructions for selecting and setting field-adjustable controls and status and alarm points.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Deliver extra materials to Owner.
1. Output Circuit Breakers: One for every 10 of each type and rating, but no fewer than of each type.
2. Output Circuit Breaker Open/Tripped Alarm Contacts: One for every 10 supplied, but no fewer than Insert quantity of each type.
3. Cabinet Ventilation Filters: One complete set.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver equipment in fully enclosed vehicles.

B. Store equipment in spaces having environments controlled within manufacturers’ written instructions for ambient temperature and humidity conditions for non-operating equipment.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Less than 0 deg F (minus 18 deg C) or exceeding 104 deg F (40 deg C), with an average value exceeding 95 deg F (35 deg C) over a 24-hour period.

2. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).

3. Humidity: More than 95 percent (condensing).

4. Altitude: Exceeding 3300 feet (1000 m).

B. Interruption of Existing Electrical Distribution Systems: Do not interrupt electrical distribution systems within facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Architect no fewer than seven days in advance of proposed interruption of electrical systems.

2. Indicate method of providing temporary electrical service.

3. Do not proceed with interruption of electrical systems without Architect’s written permission.

4. Comply with NFPA 70E.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for central battery equipment, including clearances between central battery equipment and adjacent surfaces and other items.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases.

1.12 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace central battery equipment that fails in materials or workmanship within specified warranty period. Special warranty, applying to batteries only, applies to materials only, on a prorated basis, for period specified.

1. Warranty Period: Include the following warranty periods, from date of Substantial Completion:

 a. Central Battery Equipment (excluding Batteries): One year(s).
b. NiCd, Wet-Cell Batteries:
 1) Full Warranty: Five years.
 2) Pro Rata: 15 years.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Central battery equipment shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated central battery equipment shall be tested and certified by an NRTL as meeting ICC-ES AC 156 test procedure requirements.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 INTERRUPTIBLE (FAST-TRANSFER) CENTRAL BATTERY EQUIPMENT

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. Controlled Power Company; an Emerson company.
 2. Cooper Industries, Inc.
 3. Dual-Lite.
 4. Emergi-Lite; a Thomas & Betts brand.
 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 6. Myers Power Products, Inc.

B. General Requirements for Interruptible (Fast-Transfer) Central Battery Equipment:

 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. NRTL Compliance: Fabricate and label central battery equipment to comply with UL 924.
 3. Comply with the IBC, NFPA 70, and NFPA 101.

C. Performance Requirements:

 1. Automatic Operation:
 a. Normal Conditions: Supply the load with ac power flowing from normal ac power input terminals, bypassing inverter, with battery connected in parallel via rectifier/charger output.
 b. Abnormal Supply Conditions: If normal ac supply deviates from specified voltage, transfer switch operates and battery supplies constant, regulated ac power through the inverter to the load, with a momentary loss of power to the load.
c. If normal power fails, transfer switch operates and battery supplies constant, regulated ac power through the inverter to the load, with a momentary loss of power to the load.

d. If a fault occurs in system when being supplied by inverter and current flows in excess of the overload rating of inverter, inverter automatically protects itself against damage from overloads and short circuits by shutting down.

e. When normal ac power is restored at input supply terminals of unit, controls automatically retransfer the load back to the normal ac supply, with a momentary loss of power to the load. Rectifier/charger then recharges battery.

f. If normal power failure is prolonged (more than 90 minutes), integral low-voltage battery protective circuit disconnects battery and prevents battery from damage due to deep discharge.

g. If battery becomes discharged, and when normal ac supply is again available, rectifier/charger recharges battery. When battery is fully charged, rectifier/charger automatically shifts to float-charge mode.

h. If battery is disconnected, and normal ac power is available, central battery equipment continues to supply power to the load with no degradation of its regulation of voltage and frequency of output bus.

D. Unit Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of central battery equipment input voltage rating.
2. Input Frequency Tolerance: Plus or minus 3 percent of central battery equipment frequency rating.
3. Synchronizing Slew Rate: 1 Hz per second, maximum.
4. Minimum Off-Line Efficiency: 95 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or operating condition.
6. Ambient Temperature Rating (Other Than Batteries): Not less than 68 deg F (20 deg C) and not exceeding 86 deg F (30 deg C).
7. Ambient Storage Temperature Rating (Other Than Batteries): Not less than minus 4 deg F (minus 20 deg C) and not exceeding 158 deg F (70 deg C).
8. Ambient Temperature Rating (Batteries): Not less than 32 deg F (0 deg C) and not exceeding 104 deg F (40 deg C).
9. Ambient Storage Temperature Rating (Batteries): Not less than 0 deg F (minus 18 deg C) and not exceeding 104 deg F (40 deg C).
11. Altitude Rating: Not exceeding 3300 feet (1005 m).
12. Off-Line Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.

E. Inverter and Controls Logic: Microprocessor based, isolated from all power circuits; provides complete self-diagnostics, periodic automatic testing and reporting; with alarms.

F. Controls and Indication:

1. Status Indication: Door-mounted, labeled LED indicators or digital screen displaying the following conditions:
 a. Normal power available.
 b. Status of system.
 c. Battery charging status.
d. On battery power.
e. System fault.
f. External fault.

2. Panel-Mounted Operator Station: Manufacturer’s standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

a. Keypad: In addition to required programming and control keys, include the following:
 1) Keys for METER, CONTROL, PROGRAM, and CLEAR modes.
 2) Security Access: Provide electronic security access to controls through identification and password with at least two levels of access: View only; and view, operate, and service.
 3) Control Authority: Supports at least three conditions: Off, local manual control at unit and local automatic control at unit.

b. Digital Display: Plain-English language messages on a digital display; provide the following historical logging information and displays:
 1) Real-time clock with current time and date.
 2) Tests and Events Logs: Record and store up to 25 tests and events.
 a) Dates.
 b) Times.
 c) Durations.
 d) Output voltage and currents.
 3) Alarm Logs: Record and store up to 25 alarms.
 a) Dates.
 b) Times.
 c) Alarm type.
 4) Metering Functions: Display central battery equipment metering parameters including, but not limited to, the following:
 a) Input and output voltage (V ac) and output current (A ac).
 b) Battery voltage (V dc) and current (A ac).
 c) Fault or alarming status (code).
 d) Power output (VA).
 e) Inverter load (W).
 f) Ambient temperature (deg F).
 g) System run time (cumulative days).
 h) Inverter run time (cumulative minutes).

5) Alarm Functions: Digital display mounted flush in unit door and connected to display central battery equipment parameters including, but not limited to, the following:
 a) High/low battery charge voltage.
3. Remote Signal Interfaces:
 a. Remote Indication Interface: A minimum of one programmable (Form C) dry-circuit relay output(s) (120-V ac, 2 A) for remote indication of the following:
 1) Fault or status indication.
 2) On bypass.
 3) Low battery.
 b. Communications Interface: Factory-installed hardware and software to enable a remote PC to program central battery equipment and monitor and display status and alarms.
 1) Communications Ports: RS-232.
 2) Network Communications Ports: Ethernet and RS-232.
 3) Compliance with ASHRAE 135: Controllers shall support serial MS/TP and Ethernet IP communications, and shall be able to communicate directly via DDC system for HVAC RS-485 serial networks and Ethernet 10Base-T networks as a native device.

G. Self-Protection and Reliability Features:
 1. Input transient protection by means of surge suppressors to provide protection against damage from supply voltage surges as defined in IEEE C62.45, Category B and C.
 2. Integral, programmable, self-diagnostic and self-test circuitry; with alarms and logging.
 3. Battery deep-discharge and self-discharge protection; with alarms.
 4. Battery self-test circuitry; with alarms and logging.

H. Integral Input Disconnecting Means and OCPD

I. Inverter:
 1. Description: Solid-state, high-frequency, PWM type, with the following operational features:
 a. Automatically regulate output voltage to within plus or minus 3 percent, for all load ranges and for maximum 25 percent step-load changes; regulation may increase to 8 percent for 100 percent step-load changes.
 b. Automatically regulate output frequency to within plus or minus 1 Hz, from no load to full load, at unity power factor, over the operating range of battery voltage.
 c. Output Voltage Waveform: Sine wave with maximum 3 percent TDD throughout battery operating-voltage range, for 100 percent linear load.
 d. Inverter Overload Capability: 115 percent for 10 minutes; 150 percent surge for 10 seconds.
e. Load Power Factor: 0.5 lead to 0.5 lag.
f. Brownout Protection: Produces rated power without draining batteries when input voltage is down to 75 percent of normal.

J. Rectifier/Battery Charger:
1. Description: Solid state, variable rate, temperature compensated; automatically maintains batteries in fully charged condition when normal power is available.
2. Maximum Battery Recharge Time from Fully Discharged State: 24 hours.
3. Low-voltage disconnect circuit reduces battery discharge during extended power outages, monitors battery voltage, and disconnects inverter when battery voltage drops to no less than 85.7 percent of nominal voltage.

K. Batteries:
1. Description: Standard VRLA batteries.
 a. Capable of sustaining full-capacity output of inverter unit for minimum of 90 minutes.
2. Battery Disconnect and OCPD: Manufacturer's standard.

L. Maintenance Bypass Systems:
1. Maintenance Bypass Mode: Internal; manual operation only; bypasses central battery equipment power circuits (inverter and static transfer switch); requires local operator selection at central battery equipment. Transfer and retransfer shall be make-before-break, without disrupting power to the load or causing system instabilities.
2. Bypass Overload Capability: 1.5 times the base load current.

M. Integral Output Disconnecting Means and OCPD:
1. Single-Output OCPD: As scheduled on Drawings; manufacturer's standard ratings based on unit output ratings.

2.3 ENCLOSURES

A. Central Battery Equipment Enclosures: NEMA 250, to comply with environmental conditions at installed location.
1. Dry and Clean Indoor Locations: Type 1 steel cabinets with access to components through hinged doors with flush tumbler lock and latch.

2.4 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate central battery equipment fabricator's quality-control and testing methods.
B. Testing: Test and inspect central battery equipment according to UL 924.

C. Factory Tests: Test and inspect assembled central battery equipment, by a qualified testing agency, according to UL 924. Affix standards organization's label. Include the following:

1. Functional test and demonstration of all functions, controls, indicators, sensors, and protective devices.
2. Full-load test.
4. Overload test.
5. Power failure test.

D. Central battery equipment will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store central battery equipment according to NECA 411.

B. Examine areas, surfaces, and substrates to receive central battery equipment, with Installer present, for compliance with requirements for installation tolerances, structural support, ventilation, temperature, humidity, and other conditions affecting performance of the Work.

1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment will be installed, before installation begins.

C. Examine equipment before installation. Reject equipment that is wet, moisture damaged, or mold damaged.

D. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of central battery equipment with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install central battery equipment and accessories according to NECA 411.

C. Seismic Bracing: Comply with requirements specified in Section 260548.16 “Seismic Controls for Electrical Systems.”
D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Comply with NECA 1.

F. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for cable trays specified in Section 260536 "Cable Trays for Electrical Systems."
 3. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

G. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

H. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

3.3 CONNECTIONS
A. Connections: Interconnect system components. Make connections to supply and load circuits according to manufacturer's wiring diagrams unless otherwise indicated.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 1. Separately Derived Systems: Make grounding connections to grounding electrodes and bonding connections to metallic piping systems as indicated; comply with NFPA 70.

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 IDENTIFICATION
A. Identify central battery equipment, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label central battery equipment with engraved nameplates.
 3. Label each separate cabinet, for multicabinet units.
 4. Label each enclosure-mounted control and pilot device.

B. Operating Instructions: Frame printed operating instructions for central battery equipment, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of central battery equipment units.
3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Acceptance Testing Preparation:
 1. Inspect and Test Each Component:
 a. Inspect wiring, components, connections, and equipment installations. Test and adjust components and equipment.
 b. Test insulation resistance for all external branch circuit, feeder, control, and alarm wiring connected to central battery equipment element and component.
 c. Test continuity of each circuit.

E. Tests and Inspections:
 1. Inspect central battery equipment, wiring, components, connections, and equipment installation.
 2. Test insulation resistance for all external branch circuit, feeder, control, and alarm wiring connected to central battery equipment element and component.
 3. Test continuity of each circuit.
 4. Verify that input voltages and frequencies at central battery equipment locations are within voltage and frequency limits specified in Part 2. If outside this range, notify architect before closing input OCPDs.
 5. Perform each visual and mechanical inspection and electrical test stated in manufacturer's written instructions and in NETA Acceptance Testing Specification, including specifically those for batteries, battery chargers, and UPS, regardless of the type of central battery equipment provided. Certify compliance with test parameters.
 6. Perform a load-duration test at rated voltage and rated output current to verify the correct functional operation of the unit under full-load stable operating conditions for the minimum time limits required by UL 924. Monitor and record ambient temperature and temperatures within the unit.
 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of central battery equipment. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of central battery equipment 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Central battery equipment will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies central battery equipment and describes all test results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

2. .

3.7 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, and other adjustable parts.

C. Adjust the trip settings of thermal-magnetic circuit breakers with adjustable, instantaneous-trip elements; install fuses if not factory installed.

D. Set the automatic system test parameters.

E. Set field-adjustable, circuit-breaker trip ranges

3.8 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace central battery equipment whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain central battery equipment, and to use and reprogram microprocessor-based control, monitoring, and display functions.

END OF SECTION
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

This Page Intentionally Left Blank
SECTION 26 51 19
LED INTERIOR LIGHTING

PART 1 - PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. For LED luminaire types and requirements, see lighting schedule on drawings. Section includes the following for LED luminaires:
 1. Materials.
 2. Finishes.
 3. Luminaire support.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. LED: Light-emitting diode.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
3. Include physical description and dimensions of luminaires.
4. Include emergency lighting units, including batteries and chargers.
5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.

D. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 1. Include Samples of luminaires and accessories involving color and finish selection.

E. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.

F. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches (300 mm) of the plane of the luminaires.
 4. Structural members to which equipment and or luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

f. Ceiling-mounted projectors.

7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers’ codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as
defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.
 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE 7.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Standards:
 1. ENERGY STAR certified.
 2. California Title 24 compliant.
 3. UL Listing: Listed for damp location.
 4. Recessed luminaires shall comply with NEMA LE 4.

C. CRI of minimum 80. CCT of 3500 K.

D. Rated lamp life of 50,000 hours to L70.

E. Lamps dimmable from 100 percent to 0 percent of maximum light output.

F. Internal driver.

G. Nominal Operating Voltage: 120 V ac.
 1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

H. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized finish.

2.3 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized finish.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.4 METAL FINISHES
 A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT
 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
 B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
 C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
 D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
 E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING
 A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION
 A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls or attached to a minimum 20 gauge backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
 2. Ceiling mount with four-point pendant mount with 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Comply with requirements for startup specified in Section 260943.16 "Addressable-Luminaire Lighting Controls."

B. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION
SECTION 26 56 19
EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color rendering index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.

5. Photometric data and adjustment factors based on laboratory tests, complying with IES LM-79, IES LM-80.
 a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by the manufacturer.

6. Wiring diagrams for power, control, and signal wiring.
7. Photoelectric relays.
8. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Sustainable Design Submittals:
 1. Product Data: BUG ratings.

D. Samples: For each luminaire and for each color and texture indicated with factory-applied finish.

E. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

F. Delegated-Design Submittal: For luminaire supports.
 1. Include design calculations for luminaire supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Structural members to which luminaires will be attached.
 3. Underground utilities and structures.
 4. Existing underground utilities and structures.
 5. Above-grade utilities and structures.
 6. Existing above-grade utilities and structures.
 7. Building features.
 8. Vertical and horizontal information.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.
C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of the following:
 1. Luminaire.
 2. Photoelectric relay.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Source quality-control reports.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers’ codes.
 2. Provide a list of all photoelectric relay types used on Project; use manufacturers’ codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers’ laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as
C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

F. Mockups: For exterior luminaires, complete with power and control connections.
 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS

A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.11 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 2. Warranty Period: 2 year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. UL Compliance: Comply with UL 1598 and listed for wet location.

E. Lamp base complying with ANSI C81.61 or IEC 60061-1.

F. Bulb shape complying with ANSI C79.1.

G. CRI of minimum 70. CCT of 3000 K.

H. L70 lamp life of 50,000 hours.

I. Lamps dimmable from 100 percent to 0 percent of maximum light output.

J. Internal driver.

K. Nominal Operating Voltage: 120 V ac.

L. In-line Fusing: On the primary for each luminaire.

M. Lamp Rating: Lamp marked for outdoor use.

N. Source Limitations: Obtain luminaires from single source from a single manufacturer.

O. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.
2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Lighting, an Eaton business.
2. Eaton.
3. GE Lighting Solutions.
4. Intermatic, Inc.
5. Lithonia Lighting; Acuity Brands Lighting, Inc.

B. Comply with UL 773 or UL 773A.

C. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc (16 to 32 lx) and off at 4.5 to 10 fc (48 to 108 lx) with 15-second minimum time delay.

1. Relay with locking-type receptacle shall comply with ANSI C136.10.
2. Adjustable window slide for adjusting on-off set points.

2.4 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:

1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
2. Glass: Annealed crystal glass unless otherwise indicated.
3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.

G. Housings:
1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
2. Provide filter/breather for enclosed luminaires.

H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.5 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
4. Class I, Color-Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker), complying with AAMA 611.
 a. Color: Coordinate with architect.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
LIVE OAK COMMUNITY CENTER UPGRADE
CITY OF BERKELEY
BERKELEY, CALIFORNIA
Specifications No. 19-11320-C

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

C. Examine walls, roofs, for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Install lamps in each luminaire.

D. Fasten luminaire to structural support.

E. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Support luminaires without causing deflection of finished surface.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.

H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.

I. Coordinate layout and installation of luminaires with other construction.

J. Adjust luminaires that require field adjustment or aiming. Include adjustment of phototlectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Verify operation of phototlectric controls.

C. Illumination Tests:
 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
 a. IES LM-5.
 b. IES LM-50.
 c. IES LM-52.
 d. IES LM-64.
2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

3.8 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION
SECTION 27 15 13

COMMUNICATIONS COPPER HORIZONTAL CABBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Category 6a twisted pair cable.
 2. Cabling identification products.

B. Related Requirements:
 1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for data cabling associated with system panels and devices.

1.3 DEFINITIONS

A. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

B. EMI: Electromagnetic interference.

C. FTP: Shielded twisted pair.

D. F/FTP: Overall foil screened cable with foil screened twisted pair.

E. F/UTP: Overall foil screened cable with unscreened twisted pair.

F. IDC: Insulation displacement connector.

G. LAN: Local area network.

H. Jack: Also commonly called an "outlet," it is the fixed, female connector.

I. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.

J. RCDD: Registered Communications Distribution Designer.

K. Screen: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
L. Shield: A metallic layer, either a foil or braid, placed around a pair or group of conductors.

M. S/FTP: Overall braid screened cable with foil screened twisted pair.

N. S/UTP: Overall braid screened cable with unscreened twisted pairs.

O. UTP: Unscreened (unshielded) twisted pair.

1.4 COPPER HORIZONTAL CABELING DESCRIPTION

A. Horizontal cable cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C, and the equipment outlet, otherwise known as "Cabling Subsystem 1," in the telecommunications cabling system structure. Cabling system consists of horizontal cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.

1. TIA-568-C.1 requires that a minimum of two equipment outlets be installed for each work area.

2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications equipment outlet.

3. Bridged taps and splices shall not be installed in the horizontal cabling.

B. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the equipment outlets to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment or in the horizontal cross-connect.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Reviewed and stamped by RCDD.

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.

2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.

3. Cabling administration Drawings and printouts.

4. Wiring diagrams and installation details of telecommunications equipment, to show location and layout of telecommunications equipment, including the following:

 a. Telecommunications rooms plans and elevations.
 b. Telecommunications pathways.
 c. Telecommunications system access points.
 d. Telecommunications grounding system.
 e. Telecommunications conductor drop locations.
 f. Typical telecommunications details.
 g. Mechanical, electrical, and plumbing systems.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.

B. Product Certificates: For each type of product.

C. Source quality-control reports.

D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Connecting Blocks: One of each type.
 2. Faceplates: One of each type.
 3. Jacks: Ten of each type.
 4. Plugs: Ten of each type.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

 1. Layout Responsibility: Preparation of Shop Drawings by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: Certified by BICSI.

 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

 1. Test each pair of twisted pair cable for open and short circuits.
1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.

B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.

C. Grounding: Comply with TIA-607-B.

2.2 GENERAL CABLE CHARACTERISTICS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
 1. Communications, Plenum Rated: Type CMP complying with UL 1685.
 2. Communications, Non-plenum: Type CMR complying with UL 1666.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. RoHS compliant.

2.3 CATEGORY 6a TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500MHz.

B. Standard: Comply with TIA-568-C.2 for Category 6a cables.

C. Conductors: 100-ohm, 23 AWG solid copper.
D. Shielding/Screening: Unshielded twisted pairs (UTP).

E. Cable Rating: Riser.

2.4 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.5 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Comply with TIA-607-B.

2.6 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test cables on reels according to TIA-568-C.1.

C. Factory test twisted pair cables according to TIA-568-C.2.

D. Cable will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

A. Wiring Method: Install cables in raceways, except within consoles, cabinets, desks, and counters

1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools. Install conductors parallel with or at right angles to sides and back of enclosure.
3.2 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

3.3 GROUNDING

A. Install grounding according to the "Grounding, Bonding, and Electrical Protection" chapter in BICSI's "Telecommunications Distribution Methods Manual."

B. Comply with TIA-607-B and NECA/BICSI-607.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall, allowing at least a 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar to suitable electrical building ground, using a minimum No. 4 AWG grounding electrode conductor.

D. Bond metallic equipment to the grounding bus bar, using not smaller than a No. 6 AWG equipment grounding conductor.

3.4 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Administration Class: Class 1.
2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

B. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

C. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

D. Cable and Wire Identification:

1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at the device if wire color is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).

4. Label each terminal strip, and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group, extended from a panel or cabinet to a building-mounted device, with the name and number of a particular device.
 b. Label each unit and field within distribution racks and frames.

5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

E. Labels shall be preprinted or computer-printed type, with a printing area and font color that contrast with cable jacket color but still comply with TIA-606-B requirements for the following:
 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:
 1. Visually inspect twisted pair cabling jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

F. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

G. End-to-end cabling will be considered defective if it does not pass tests and inspections.

H. Prepare test and inspection reports.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 4. Air-sampling smoke detectors.
 5. Nonsystem smoke detectors.
 6. Heat detectors.
 8. Device guards.
 9. Firefighters' two-way telephone communication service.
 10. Firefighters' smoke-control station.
 15. Digital alarm communicator transmitter.
 17. Network communications.

B. Related Requirements:

 1. Section 280513 “Conductors and Cables for Electronic Safety and Security” for cables and conductors for fire-alarm systems.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.

B. FACP: Fire Alarm Control Panel.

C. HLI: High Level Interface.

E. PC: Personal computer.
F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.

B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 9. Include performance parameters and installation details for each detector.
 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Locate detectors according to manufacturer's written recommendations.
 d. Show air-sampling detector pipe routing.
 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 14. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
b. NICET-certified, fire-alarm technician; Level III minimum.
c. Licensed or certified by authorities having jurisdiction.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:

 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
d. Riser diagram.
e. Device addresses.
f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
g. Record copy of site-specific software.
h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:

1) Equipment tested.
2) Frequency of testing of installed components.
3) Frequency of inspection of installed components.
4) Requirements and recommendations related to results of maintenance.
5) Manufacturer's user training manuals.

i. Manufacturer's required maintenance related to system warranty requirements.
j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
5. Keys and Tools: One extra set for access to locked or tamperproofed components.
6. Audible and Visual Notification Appliances: One of each type installed.
7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.
PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and voice strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Automatic sprinkler system water flow.
6. Fire standpipe system.
7. Dry system pressure flow switch.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Activate voice/alarm communication system.
5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.

C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
2. Warranty Period: Five years from date of Substantial Completion.
6. Activate smoke-control system (smoke management) at firefighters’ smoke-control system panel.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Record events in the system memory.
9. Record events by the system printer.
10. Indicate device in alarm on the graphic annunciator.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory switch.
2. Independent fire-detection and suppression systems.
3. User disabling of zones or individual devices.
4. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.
11. Hose cabinet door open.

E. System Supervisory Signal Actions:

1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
3. Record the event on system printer.
4. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.
5. Transmit system status to building management system.
6. Display system status on graphic annunciator.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
2.4 **FIRE-ALARM CONTROL UNIT**

A. **Manufacturers:** Subject to compliance with requirements, [provide products by the following][provide products by one of the following][available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

2. Fire-Lite Alarms, Inc.; a Honeywell International company.
5. Silent Knight.

B. **General Requirements for Fire-Alarm Control Unit:**

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 - Include a real-time clock for time annotation of events on the event recorder and printer.
 - Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 - The FACP shall be listed for connection to a central-station signaling system service.
 - Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

C. **Alphanumeric Display and System Controls:** Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

D. **Alphanumeric Display and System Controls:** Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, two line(s) of [40] characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

E. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 1. Pathway Class Designations: NFPA 72, Class A.
 2. Pathway Survivability: Level 0.
 3. Install no more than 50 addressable devices on each signaling-line circuit.
 4. Serial Interfaces:
 a. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 b. One USB port for PC configuration.
 c. One RS 232 port for voice evacuation interface.

F. Smoke-Alarm Verification:
 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
 3. Record events by the system printer.
 4. Sound general alarm if the alarm is verified.
 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

G. Notification-Appliance Circuit:
 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

I. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided.
 1. Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711.
 a. Allow the application of, and evacuation signal to, indicated number of zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 b. Programmable tone and message sequence selection.
 c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification-appliance circuits of fire-alarm control unit.
2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.

3. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

J. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

K. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

L. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

M. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.5 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.
3. Indoor Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
4. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.6 SYSTEM SMOKE DETECTORS

A.

B. General Requirements for System Smoke Detectors:
1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be two-wire type.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type, indicating detector has operated.
6. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition.
 a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
 b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
 c. Multiple levels of detection sensitivity for each sensor.
 d. Sensitivity levels based on time of day.

C. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 4. Each sensor shall have multiple levels of detection sensitivity.
 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
2.7 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise indicated.
 1. Mounting: Adapter plate for outlet box mounting.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Continuous Linear Heat-Detector System:
 1. Detector Cable: Rated detection temperature 155 deg F (68 deg C). Listed for “regular” service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short circuit wires at the location of elevated temperature.
 2. Control Unit: Two-zone or multizone unit as indicated. Provide same system power supply, supervision, and alarm features as specified for fire-alarm control unit.
 3. Signals to Fire-Alarm Control Unit: Any type of local system trouble shall be reported to fire-alarm control unit as a composite “trouble” signal. Alarms on each detection zone shall be individually reported to central fire-alarm control unit as separately identified zones.
 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.8 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.

D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.

2. Mounting: Wall mounted unless otherwise indicated.

3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.

4. Flashing shall be in a temporal pattern, synchronized with other units.

5. Strobe Leads: Factory connected to screw terminals.

E. Voice/Tone Notification Appliances:

1. Comply with UL 1480.

2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.

3. High-Range Units: Rated 2 to 15 W.

4. Mounting: semirecessed or surface mounted and bidirectional.

5. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.9 GRAPHIC ANNUNCIATOR

A. Graphic Annunciator Panel: Mounted in an aluminum frame with nonglare, minimum 3/16-inch-(4.76-mm-) thick, clear acrylic cover over graphic representation of the facility. Detector locations shall be represented by red LED lamps. Normal system operation shall be indicated by a lighted, green LED. Trouble and supervisory alarms shall be represented by an amber LED.

1. Comply with UL 864.

2. Operating voltage shall be 24-V dc provided by a local 24-V power supply provided with the annunciator.

3. Include built-in voltage regulation, reverse polarity protection, RS 232/422 serial communications, and a lamp test switch.

4. Surface mounted in a NEMA 250, Type 1 cabinet, with key lock and no exposed screws or hinges.

5. Graphic representation of the facility shall be a CAD drawing and each detector shall be represented by an LED in its actual location. CAD drawing shall be at 1/8-inch per foot (10-mm per meter) scale or larger.

6. The LED representing a detector shall flash two times per second while detector is an alarm.

B. Graphic Annunciator Workstation: PC-based, with fire-alarm annunciator software with historical logging, report generation, and a graphic interface showing all alarm points in the system. PC with operating system software.

2.10 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
1. Mounting: Surface cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

A. General:

1. Include address-setting means on the module.
2. Store an internal identifying code for control panel use to identify the module type.
3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Control Module:

1. Operate notification devices.
2. Operate solenoids for use in sprinkler service.

2.12 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:

1. Verification that both telephone lines are available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:

1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply.
5. Loss of power.
6. Low battery.
7. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.13 NETWORK COMMUNICATIONS

A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.

B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.

C. Provide integration gateway using BACnet for connection to building automation system.

2.14 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.

1. Factory fabricated and furnished by device manufacturer.
2. Finish: Paint of color to match the protected device.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.

1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
1. Devices placed in service before all other trades have completed cleanup shall be replaced.
2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer’s written storage instructions.

B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches (1980 mm) above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Section 260548.16 “Seismic Controls for Electrical Systems.”

C. Manual Fire-Alarm Boxes:
 1. Install manual fire-alarm box in the normal path of egress within 60 inches (1520 mm) of the exit doorway.
 3. The operable part of manual fire-alarm box shall be between 42 inches (1060 mm) and 48 inches (1220 mm) above floor level. All devices shall be mounted at the same height unless otherwise indicated.

D. Smoke- or Heat-Detector Spacing:
 1. Comply with the “Smoke-Sensing Fire Detectors” section in the “Initiating Devices” chapter in NFPA 72, for smoke-detector spacing.
 2. Comply with the “Heat-Sensing Fire Detectors” section in the “Initiating Devices” chapter in NFPA 72, for heat-detector spacing.
 3. Smooth ceiling spacing shall not exceed 30 feet (9 m).
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
 5. HVAC: Locate detectors not closer than 36 inches (910 mm) from air-supply diffuser or return-air opening.
 6. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches (9100 mm) long shall be supported at both ends.
 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

H. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
I. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling. Install all devices at the same height unless otherwise indicated.

J. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inches (2440 mm) above the floor shall be installed in EMT.

B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.

3.4 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches (910 mm) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
 2. Alarm-initiating connection to stairwell and elevator-shaft pressurization systems.
 3. Smoke dampers in air ducts of designated HVAC duct systems.
 4. Magnetically held-open doors.
 5. Electronically locked doors and access gates.
 6. Alarm-initiating connection to elevator recall system and components.
 7. Alarm-initiating connection to activate emergency lighting control.
 8. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 10. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
 11. Supervisory connections at elevator shunt-trip breaker.
 12. Data communication circuits for connection to building management system.
 13. Data communication circuits for connection to mass notification system.
 15. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
 16. Supervisory connections at fire-pump engine control panel.
3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION
SECTION 28 39 13
LOCAL-AREA MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. MNS wiring, raceways, terminal cabinets, outlets, and mounting boxes.
 2. Control equipment.
 4. Accessories.
B. Related Requirements:
 1. Section 283111 "Digital, Addressable Fire-Alarm System" for fire alarm system that interfaces with the equipment of this Section.

1.3 DEFINITIONS
A. ATP: Acceptance Test Procedure.
B. Broadcast Media: The speakers, radio, cell phone, and other media that will carry the selected message to the selected audience.
C. LOC: Local operating console.
D. MNS: Mass notification system.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 3. Power calculations.
4. Battery capacity calculations with the following supporting information:
 a. Supervisory power requirements for all equipment.
 b. Alarm power requirements for all equipment.
 c. Power supply rating.
 d. Voltage drop calculations for wiring runs demonstrating worst-case condition.
 e. Notification appliance circuit design.

B. Shop Drawings:
 1. Prepare Shop Drawings by persons with the following qualifications:
 a. Trained and certified by manufacturer in MNS design.
 b. NICET-certified technician; Level III minimum.
 c. Licensed or certified according to the requirements of the authorities having jurisdiction.
 2. Include plans, elevations, sections, and mounting details.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Detail fabrication and assembly of the following:
 a. Speaker clusters on poles.
 b. Racks with amplifiers and terminations.
 c. Control panels.
 5. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For items listed below, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Speaker placement.
 2. Speaker dB output.
 3. Amplifier output.
 4. Remote power booster rating and locations.
 5. Battery sizing calculations.
 6. Voltage drop calculations.
 7. Seismic mounting and supports.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For amplifiers, speakers, racks, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Product Test Reports: For each amplifier and speaker, for tests performed by manufacturer and witnessed by a qualified testing agency.

D. Source quality-control reports.

E. Field quality-control reports.

F. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For amplifiers and speakers to include in emergency, operation, and maintenance manuals.

B. Computer-generated instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. The card shall indicate those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions: normal, alarm, supervisory, and trouble.

C. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

D. Proprietary equipment and software required to implement future changes to the MNS.

E. System documentation to the owner, including but not limited to the following:
 1. System record Drawings and wiring details, including one set of full-size printed Drawings, and a CD ROM with copies of the record Drawings in PDF format and DXF format for use in AutoCAD drafting program, 2012 version.
 2. Documentation of all component and wiring identification, including a copy of each equipment nameplate.
 3. System matrix showing interaction of all input signals with output commands.
 4. Documentation of system voltage, current, and resistance readings taken during the installation, testing, and ATP phases of the system installation.
 5. System program showing control devices and operations, and system functions of equipment and devices.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Speakers: Quantity equal to five percent of quantity installed, but no fewer than one unit.
2. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.
3. Special Tools: Software, connecting cables, and proprietary equipment necessary for the maintenance, testing, and reprogramming of the equipment. Tools listed by part number in the operation and maintenance manuals are considered special tools.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 certified for products delivered.

B. Installer Qualifications: An authorized representative who is trained and approved by manufacturer for installation of units required for this Project.
 1. Personnel certified by NICET as Audio Systems Level II Technician.

C. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NICET at Level III to supervise on-site testing.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of the MNS that fail(s) in materials or workmanship within specified warranty period.
 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Edwards Signaling; UTC Fire & Security.
 2. Notifier by Honeywell.
 4. SimplexGrinnell LP.

B. Source Limitations: Obtain MNS from single source or producer.

2.2 PERFORMANCE REQUIREMENTS

A. Mass Notification Messaging System:
1. Software-operated, network-based communications system with wired and wireless access points for control interface. Designated operators shall be able to log in via a web browser and have complete access to their own portion of the MNS.

2. An autonomous voice notification control unit shall monitor and control the notification appliance network and provide consoles for local operation. Authorized personnel shall be able to use a console to initiate delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and optional textual message notification appliances. The autonomous voice notification control unit shall temporarily override audible fire alarm notification while delivering mass notification messages to ensure they are intelligible.

3. The MNS messaging system shall be capable of the following:

 a. Communicating through the use of wired or wireless networks for one- or two-way communications and control between a building or area and emergency personnel.
 b. Automatically distribute at least 100 simultaneous and unique messages to the appropriate notification appliances.
 c. Allow multiple operators to send messages simultaneously.
 d. Grant access for control to another control station if the location in control becomes inoperable and/or the authorized operator at that control station can no longer operate the control station.
 e. Send voice messages and text messages with an indication of the source of the message that can only be sent from the message source.
 f. Send alert messages to end users (recipients) via multiple delivery methods, including but not limited to the following:
 1) Audio-visual network alerts to computers via desktop pop-up.
 2) Text alerts to mobile phones and pagers.
 3) Text alerts to email clients.
 4) Text alerts to textual visible appliances.
 5) Alerts to visible appliances.
 6) Audio alerts to phones.
 7) Audio alerts to speakers.
 8) Audio alerts to existing wide-area or building voice and/or other MNS.
 9) Network alerts to any other IP-connected devices via standard XML and CAP protocols.
 g. Suppress contact information for other end users with messages or in message headers.

4. Live announcements or prerecorded messages. Live messages shall take precedence over prerecorded messages.

5. Interface with the fire alarm system to utilize the voice modules, visual alarms, and speakers of the fire alarm system.

6. Give priority to MNS announcements over other audible announcements of the system including fire alarm system in a normal or alarm state. When an announcement is activated during a fire alarm, fire alarm system functions shall continue in an alarm state, except for the output signals of the fire alarm audible and visual notification appliances.

7. Comply with speech intelligibility requirements of NFPA 72 as measured according to ANSI/ASA S3.2.

8. Capable of overriding local control of speaker volume levels for emergency communications. Local controls shall be permitted to adjust volume levels of non-emergency signals only, such as, but not limited to, background music and convenience paging.
9. Capable of providing separate messages to one individual building or to multiple buildings at any given time if the MNS serves more than one building.

10. Capable of monitoring emergency notifications from multiple data sources (National Weather Service, Emergency Managers Weather Information Network, Naval Meteorology and Oceanography, and others as determined locally) and automatically send out notifications to designated facilities and personnel based on pre-defined rules.

11. Capable of centrally tracking, in real-time, all alerting activities for each individual recipient, including sending, receiving, and responding to alerts, and of generating reports based on tracked information.

12. Capable of operating remote printer via a USB output. Provide matching printer listed and labeled as part of the MNS.

B. Seismic Performance: MNS speakers, equipment mountings, poles, racks, pathways, conductors, and amplification and control components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

2. Component Importance Factor is 1.5.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 MASTER CONTROL PANEL

A. Description:

1. Fully enclosed in a lockable steel cabinet with access for testing, and maintenance from the front of the enclosure.

2. Solid-state, modular components, internally mounted and arranged for easy access for power, supervision, control, and logic for the system.

3. 120 V ac, 60 Hz power supply.

4. An indicator for each message source shall indicate which sources are available and which are selected.

5. Indicators for broadcast media used to convey the selected message to selected audience shall indicate which sources are available and which are selected.

6. Capable of confirming the receipt of a message. If the message was not confirmed received, the system shall be capable of using other means of contact until receipt of confirmation or until a preset time period.

7. Capable of automatically sending another message after the receipt of a message or messages.

8. Operator Access Functions:

a. Select prerecorded message for transmission.

b. Select microphone for live broadcast.
c. Initiate message broadcast.
d. Terminate message broadcast.

9. Supervisory Access Functions:
 a. Reset time and date.
 b. Enable or disable event-initiated programs, printouts, and initiators.
 c. Enable or disable individual message sources and broadcast media.
 d. Supervisory level functions shall not require computer programming skills. MNS shall record changes to program functions, to be maintained in the control panel for a minimum of one year. The control panel shall maintain the ID of the supervisor making the change.

10. System operator level access functions:
 a. Clear supervisory trouble alarms.
 b. Revise programming.
 c. Revise prerecorded messages.
 d. Assign access rights to all levels.
 e. MNS shall record changes at system operator level in the control panel, to be maintained for a minimum of one year. The control panel shall maintain the ID of the system operator making the change.

11. Capable of at least 1000 users, with each user having its own log-in and password credentials and at least four contact methods.
12. Capable of storing users in one or multiple groups and able to create a minimum of 10 groups.
13. Each panel shall have supervisory functions for power failure, internal component failure, and operation.
14. MNS shall have a complete set of self-diagnostics for controller and appliance network, and local diagnostic information display, local diagnostic information, and system event log.
15. Printed records of changes, supervisory functions, message transmission, and operator actions shall be maintained for a minimum of one year.

2.4 NOTIFICATION COMPONENTS

A. Voice/Alarm Signaling Service:
 1. One-way, multichannel voice notification system incorporating at least eight distinct sounds selectable by user for tone signaling and incorporating a voice module for delivery of prerecorded messages.
 2. Redundant microphones, preamplifiers, amplifiers, and tone generators provided in separate main and remote cabinets.
 3. Voice notification system shall support facility public address paging.
 4. Audible appliances shall produce a code 3 temporal tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced.
 5. Automatic messages shall be broadcast through speakers throughout the building or facility, but not in stairs or elevators.
 6. When using microphones, live messages shall be broadcast throughout a selected floor or floors or all call, including stairs and elevators.
7. Live voice message shall override automatic or recorded audible output through use of a microphone input at the main control panel or the remote cabinet.

8. Number of alarm channels shall be indicated for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone.

 a. Allow sending an evacuation signal to selected zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
 b. Programmable tone and message sequence selection.
 c. Standard digitally recorded messages for "Evacuation" and "All Clear."

B. Audible Notification System: Comply with the requirements of NFPA 72 and ISO 7240-16 for Emergency Voice/Alarm Communications System, except where more stringent requirements are specified. Voice intelligibility shall be evaluated according to IEC 60268-16.

1. Amplifiers:

 a. Comply with UL 1711.
 b. Audio output shall be selectable for line level. Minimum amplifier output shall be 100 W rms.
 c. Capable of operating all speakers at the same time.
 d. Loss of operating power, supervisory power, or any other malfunction that could render the voice module inoperative shall automatically cause the code 3 temporal tone to take over all functions assigned to the failed unit in the event an alarm is activated.

2. Audible Notification Devices:

 a. Handheld push-to-talk microphone shall be supervised and a key shall be required to enable remote microphone use.
 b. Microprocessor shall actively integrate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of stored voice data into appropriate amplifier input.

C. Voice/Tone Notification Appliances:

1. Comply with UL 1480.

2. Indoor Speakers for Voice Notification:

 a. Construction: High-efficiency, sealed back; for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz.
 b. Standard: UL 1480.
 c. Speaker Locations: Comply with NFPA 72, "Notification Appliances" and "Emergency Communications Systems" chapters.
 d. High-Range Units: Rated 2 to 15 W.
 e. Mounting: Semirecessed or Surface mounted and bidirectional.
 f. Matching Transformers: Tap range matched to acoustical environment of speaker location.

D. Text Displays:

1. Programmable, digital text displays having a minimum of 4-inch (100-mm) high letters for hearing-impaired occupants displaying the content of the voice message being played.
2. Capable of sending static, flashing, or scrolling messages to textual visible appliances.
3. Mass notification control panel shall interface with and control the programmable display controller to activate the proper message.
4. Textual visible notification shall be primary notification when it is the only method used to convey emergency MNS information to the general public or to specific individuals.

E. Visual Notification Appliances:

1. Strobes used solely for MNS shall be clear complying with UL 1971 and with the word "ALERT" factory printed on the trim.
2. Strobes used in combination systems where the same strobe is used for both MNS and fire notification shall be clear or nominal white complying with UL 1971.
3. Strobes used for MNS shall be synchronized.

F. Web Interfaces:

1. Capable of utilizing dedicated or existing IP networks to send alert messages. System shall be able to communicate with multiple modalities to include but not limited to pop-up alerts on personal computers, text messages to cellular phones, email messaging to IP-capable computers or devices, and recorded voice messages to voice-over-IP (VoIP) telephones and PCs.
2. Capable of activating, through a single interface, non-IP alerting systems such as wide-area alerting systems, fire alarm systems, PA systems, handheld radio systems, radio broadcast systems, personal pager systems, nurse call systems, and traditional dial-up telephone alerting systems.
3. Capable of accessing user screens via multiple web browsers such as MS Explorer, Mozilla Firefox, or Apple Safari.
4. Capable of sending live video stream from an IP-based camera or security camera system to any PC or video display.

G. Primary Power:

1. 24-V dc obtained from 120-V ac service and a power-supply module.
 a. Power supplies shall be sized to furnish a minimum of 125% of the total connected load in a worst-case condition.
2. Devices Powered by 24-V dc:
 a. Control panels.
 c. Text displays.
 d. Trouble signals.
 e. Supervisory signals.
 f. Supervisory and digital alarm communicator transmitters.
 g. Digital alarm radio transmitters.

H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

4. Battery size shall be a minimum of 125% of the calculated requirement.

I. Overvoltage and Surge Protection:

1. Signaling Line Circuit Surge Protection: Protected against surges induced on any signaling line circuit located outdoors, and complying with IEEE C62.41.1 and IEEE C62.41.2.

2. Protect cables and conductors that serve as communications links with surge protection devices installed at each end that meet the following waveforms:

a. 10 by 1000 mic.sec. waveform with a peak of 1500 V and a peak current of 60 A.
 b. 8 by 20 mic.sec. waveform with a peak of 1000 V and a peak current of 500 A. Protection shall be provided at the equipment. Additional surge protectors, rated for the application, shall be installed on each circuit within 36 inches (900 mm) of the cable entrance to the building.
 c. Fuses shall not be used for surge protection.

3. Sensor Wiring Surge Protection: Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring. The inputs and outputs shall be tested with the following waveforms:

a. 10 by 1000 mic.sec. waveform with a peak of 1500 V and a peak current of 60 A.
 b. 8 by 20 mic.sec. waveform with a peak of 1000 V and a peak current of 500 A.
 c. Fuses shall not be used for surge protection.

2.5 ACCESSORIES

A. Operator's Console:

1. Capable of initiating recorded messages and displays, and for delivering live voice messages.

2. Capacity for at least eight pre-recorded messages and the ability to automatically repeat pre-recorded messages.

3. Having a microphone for delivering live messages.

B. LOC:

1. LOC shall provide redundant control of the notification system control panel.

2. When an installation has more than one LOC, they shall be programmed to allow only one LOC to be available for messaging at a time. Once one LOC becomes active, all other LOC will have an indication that the system is busy (Amber Busy Light) and cannot be used at that time.

3. LOC shall be capable of being locked out or overridden from the Master Control Panel according to NFPA 72.

C. Fire Alarm Interface: Adequate discrete outputs to temporarily deactivate the fire alarm audible notification appliances while delivering voice messages.
2.6 SOFTWARE

A. Control Units and Control Panels: PC-based equipment that is field programmable for control, notification, and supervisory functions; menu-driven program configuration; is password protected.

B. Operational Capability:
 1. Loading and editing instructions and operating sequences as necessary.
 2. Storing and downloading while the system is in operation.
 3. A second set of operating software shall reside in control panels as backup in case primary operating software is corrupted.

C. Memory: Software operations shall be stored in a nonvolatile programmable memory within the MNS control unit. Loss of primary and secondary power shall not erase nonvolatile programmable memory.

2.7 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled equipment according to ARI.

B. MNS will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with installation requirements in NFPA 70, NFPA 72, and NECA 1.

B. Install remote amplification and control units in terminal cabinets. Power each remote amplification and control unit from a wiring riser specifically for that use or from a local emergency power panel located on the same floor as the remote unit.

C. Equipment Installation: Install MNS cabinets with seismic rated anchors and mounting apparatus. Comply with requirements for seismic-restraint devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Comply with requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for mass notification systems.
E. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 1. Comply with requirements for raceways and boxes specified in Section 280528 "Pathways for Electronic Safety and Security."

F. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible. Suspend cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceiling by cable supports not more than 60 inches (1500 mm) apart.

G. Do not install cable through structural members or in contact with pipes, ducts, or other potentially damaging items.

H. Secure and support cables at intervals not exceeding 30 inches (750 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

I. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Maintain separation of conductor types as recommended by manufacturer. Install lacing bars and distribution spools.

J. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

K. Cold-Weather Installation: Bring cable to room temperature before dereeling. The use of heat lamps is prohibited.

L. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or where exposed to weather, install consistent with requirements of weatherproof rating.

M. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install MNS wiring in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches (300 mm) apart for speaker-microphone wiring and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

N. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools. Route conductors to allow accessibility to equipment for adjustment and maintenance.

O. Connections:
 1. Make all terminations on numbered terminal strips in terminal cabinets or equipment enclosures. No splices or butt joints will be accepted.
 2. Terminate all conductors; no cable shall contain unterminated elements.
 3. Crimp-on type spade lugs shall be used for terminations of stranded conductors to binder screw or stud type terminals. Spade lugs shall have upset legs and insulation sleeves sized for the conductors.

P. Mount all devices and appliances to or in an approved electrical box.

Q. Install operating instruction placard on the interior of the mass notification control panel.
R. Install operating instruction placard on the frame in a location acceptable to the Architect and observable from the mass notification control panel.

3.3 GROUNDING

A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment cabinet. Connect to instrument ground system and isolate from power system and equipment grounding.

3.4 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

B. Color-code conductors and apply wire and cable marking tape to designate wires and cables so they identify media in coordination with system wiring diagrams.

C. Permanently label or mark each conductor at both ends with permanent alphanumeric wire markers.

D. Install framed instructions in a location visible from mass notification control unit.

3.5 FIELD QUALITY CONTROL

A. Prepare a written ATP for testing the MNS components and installation according to NFPA 72 and this Section. Demonstrate specified function of the system and verify the correct operation of all system components, circuits, and programming.

 1. Prepare a complete listing of device labels for alphanumeric annunciator displays prior to the ATP.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

 1. Take resistance, current, and voltage readings as work progresses.
 2. Signal Ground Test: Measure and report ground resistance at public address equipment signal ground. Comply with testing requirements specified in Section 280526 "Grounding and Bonding for Electronic Safety and Security."
 3. Verify that wiring for each device is terminated at the properly identified terminals.
 4. Test wiring runs for continuity, short circuits, and grounds before system is energized.
 5. All test equipment, instruments, tools, and labor required to conduct the system tests shall be made available by the installing Contractor. The following equipment shall be a minimum for conducting the tests:
a. Ladders and scaffolds as required to access all installed equipment.
b. Multi-meter for reading voltage, current, and resistance.
c. Two-way radios and flashlights.
d. Decibel meter.
e. In addition to the testing specified to be performed by the installing Contractor, the installation shall be subject to test by the Owner.

6. Schedule tests with at least seven days’ advance notice of test performance.
7. After installing MNS and after electrical circuitry has been energized, test for compliance with requirements.
8. Perform the following tests in 50 percent of all zones and rooms.
9. Perform indoor sound tests in a single test location in rooms less than 20 ft. (6 m) by 20 ft. (6 m). Tests shall be made on a 20 ft. (6 m) by 20 ft. (6 m) grid for larger rooms.
10. Sound test measurements shall be taken at a worst case location within each room or grid, not near any speaker.
11. Operational Test: Perform tests that include originating messages at microphone outlets, prerecorded messages, and other inputs. Verify proper routing and volume levels and that system is free of noise and distortion.
12. Signal-to-Noise Ratio Test: Measure signal-to-noise ratio of complete system at normal gain settings as follows:
 a. Disconnect microphone at connector or jack closest to it and replace it in the circuit with a signal generator using a 1000-Hz signal. Measure signal-to-noise ratio.
 b. Repeat test for each separately controlled zone of loudspeakers.
 c. Minimum acceptance ratio is 50 dB.

13. Distortion Test: Measure distortion at normal gain settings and rated power. Feed signals at frequencies of 50, 200, 400, 1000, 3000, 8000, and 12,000 Hz into each preamplifier channel. For each frequency, measure distortion in the paging and all-call amplifier outputs. Maximum acceptable distortion at any frequency is 3 percent total harmonics.
14. Intelligibility Test: Test for intelligibility in accordance with ANSI/ASA S3.2.
15. Power Output Test: Measure electrical power output of each power amplifier at normal gain settings of 50, 1000, and 12,000 Hz. Maximum variation in power output at these frequencies shall not exceed plus or minus 1 dB. Outdoor sound levels where personnel may be present shall not exceed 120 dB when measured on the A-scale of a standard sound level meter at slow response. Sound levels shall not exceed 85 dB at any local microphone of the MNS under the same conditions.
16. System notification appliances shall be demonstrated as follows:
 a. All alarm notification appliances actuate as programmed.
 b. Audibility and visibility at required levels.
17. System indications shall be demonstrated as follows:
 a. Correct message display at MNS control panel for each alarm input.
 b. Correct message display at remote panels and annunciators for each alarm input.
 c. Correct history logging for all system activity.
18. System off-site reporting functions shall be demonstrated as follows:
 a. Correct zone transmitted for each alarm input.
 b. Trouble signals received.
19.

E. MNS will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.6 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

1. Train a minimum of four employees of the Owner.
2. Conduct training on the installed equipment after acceptance testing.
3. Train on system operation, including manual control of output functions from the system control panel.
4. Train on testing of the system, including logging of system tests, field test of devices, and response to common troubles.
5. The total training requirement shall be a minimum of four hours but shall be sufficient to cover all items specified.

END OF SECTION
SECTION 31 10 00
SITE CLEARING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Removal of existing trees and vegetation
B. Clearing vegetation, debris, trash and other materials within limits indicated
C. Grubbing of vegetation within limits indicated
D. Stripping of topsoil within limits indicated
E. Removing above-grade site improvements within limits indicated
F. Disconnecting, capping or sealing, and abandoning site utilities in place
G. Disconnecting, capping or sealing, and removing site utilities
H. Disposing of objectionable material

1.02 RELATED SECTIONS

A. Section 31 20 00, Earth Moving

1.03 RELATED DOCUMENTS

B. ANSI A300: Industry Standards for Tree Care Practices
C. Applicable Publications
 2. “Arboriculture,” the care of trees and shrubs by Dr. Richard Harris.

1.04 DEFINITIONS

A. ANSI: American National Standards Institute
B. CAL-OSHA: California Occupational Safety and Health Administration
C. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than
underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of weeds, roots, and other deleterious materials.

1.05 SUBMITTALS

D. Photographs or videotape, sufficiently detailed, of existing conditions of trees and plantings, adjoining construction, and site improvements that might be misconstrued as damage caused by site clearing.

1.06 QUALITY ASSURANCE

A. Do not remove or prune trees without first securing a permit from the appropriate agency.

B. Prune to the standards of the International Society of Arborists and to ANSI A300.

1.07 PROJECT CONDITIONS

A. Except for materials indicated to be stockpiled or to remain the Owner’s property, cleared materials are the Contractor’s property. Remove cleared materials from site and dispose of in lawful manner.

B. Salvageable Improvements: Carefully remove items indicated to be salvaged and store where indicated on plans or where designated by the Owner’s Representative. Avoid damaging materials designated for salvage.

C. Unidentified Materials;
 1. If unidentified materials are discovered, including hazardous materials that will require additional removal other than is required by the Contract Documents, immediately report the discovery to the Owner’s Representative.
 2. If necessary, the Owner’s Representative will arrange for any testing or analysis of the discovered materials and will provide instructions regarding the removal and disposal of the unidentified materials.

PART 2 - PRODUCTS

2.01 SOIL MATERIALS

A. Backfill excavations resulting from demolition operations with on-site or import materials conforming to engineered fill defined in Section 31 20 00, Earth Moving.

PART 3 - EXECUTION

3.01 PREPARATION

A. Protect and maintain benchmarks and survey control points during construction.
B. Locate and clearly flag trees and vegetation to remain or to be relocated.

C. Protect existing site improvements to remain during construction.

3.02 RESTORATION

A. Restore damaged improvements to their original condition, as acceptable to the Owner’s Representative.

B. Repair or replace trees and vegetation indicated to remain that are damaged by construction operations, as directed by the Owner’s Representative.
 1. Employ a qualified arborist, licensed in jurisdiction where the Project is located, to submit details of proposed repairs and to repair damage to trees and shrubs.
 2. Replace trees that cannot be repaired and restored to full-growth status, as determined by the Owner’s Representative.

3.03 UTILITIES

A. Locate, identify, disconnect, and seal or cap off utilities indicated to be removed or abandoned.

B. Arrange to shut off indicated utilities with utility companies or verify that utilities have been shut off.

C. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner’s Representative or others unless authorized in writing by the Owner’s representative, and then only after arranging to provide temporary utility services according to requirements indicated.

D. Coordinate utility interruptions with utility company affected.

E. Do not proceed with utility interruptions without the permission of the Owner’s Representative and utility company affected. Notify Owner’s Representative and utility company affected two working days prior to utility interruptions.

F. Excavate and remove underground utilities that are indicated to be removed.

G. Fill abandoned piping with cement slurry.

H. Securely close ends of abandoned piping with tight fitting plug or cement slurry minimum 6 inches thick.

3.04 CLEARING AND GRUBBING

A. Areas to be graded shall be cleared of existing vegetation, rubbish, existing structures, and debris.
B. Remove obstructions, shrubs, grass, and other vegetation to permit installation of new construction. Removal includes digging out stumps and obstructions and grubbing roots.

C. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.

D. Use only hand methods for grubbing within drip line of remaining trees.

3.05 SITE STRIPPING

A. Strippings and spoils shall be disposed at an off-site location, per geotechnical recommendations.

B. Remove vegetation before stripping soil.

C. Surface soils that contain organic matter should be stripped. In general, the depth of required stripping will be relatively shallow (i.e. less than 2 inches); deeper stripping and grubbing may be required to remove isolated concentrations of organic matter or roots.

D. Remove trash, debris, weeds, roots, and other waste materials.

E. Stockpile soil materials designated to remain on site at a location approved by the Owner’s Representative at a location away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust.

F. Do not stockpile soil within drip line of remaining trees.

3.06 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and as necessary to facilitate new construction.

3.07 BACKFILL

A. Place and compact material in excavations and depressions remaining after site clearing in accordance with Section 31 20 00, Earth Moving.

3.08 DISPOSAL

A. Remove surplus soil material, unsuitable soil, obstructions, demolished materials, and waste materials, including trash and debris, and legally dispose of them off the Owner’s property.

END OF SECTION
SECTION 31 20 00

EARTH MOVING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Excavation and/or embankment from existing ground to subgrade, including soil sterilant, for roadways, driveways, parking areas, building pads, walks, paths, or trails and any other site improvements called for on the Plans.

1.02 SECTION EXCLUDES

A. Earthwork related to underground utility installation shall be performed in accordance with Sections 31 21 00, Utility Trenching and Backfill.

1.03 RELATED SECTIONS

A. Section 31 10 00, Site Clearing

1.04 RELATED DOCUMENTS

B. ASTM

1. D1557, Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
2. D1586, Method for Penetration Tests and Split-Barrel Sampling of Soils
3. D2487, Classification of Soils for Engineering Purposes
5. D4318, Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils
7. E548, Guide for General Criteria Used for Evaluating Laboratory Competence

C. California Building Code, California Code of Regulations, Title 24, Part 2, Chapter 18, Soils and Foundations, and Chapter 33, Safeguards During Construction

D. Caltrans Standard Specifications, 2015

1. Section 17, General
2. Section 19, Earthwork

E. CAL/OSHA, Title 8.

1.05 DEFINITIONS

A. Borrow: Approved soil material imported from off-site for use as Structural Fill or Backfill.

B. Excavation: Removal of material encountered above subgrade elevations.
1. Authorized Over-Excavation: Excavation below subgrade elevations or beyond indicated horizontal dimensions as shown on plans or authorized by the Geotechnical Engineer.

2. Unauthorized Over-Excavation: Excavation below subgrade elevations or beyond indicated horizontal dimensions without authorization by the Geotechnical Engineer. Unauthorized excavation shall be without additional compensation.

C. Geotechnical Testing Agency: An independent testing agency qualified according to ASTM E329 to conduct soil materials and rock definition testing, as documented according to ASTM D3740 and ASTM E548.

D. Structural Backfill: Soil materials approved by the Geotechnical Engineer and used to fill excavations resulting from removal of existing below grade facilities, including trees.

E. Structural Fill: Soil materials approved by the Geotechnical Engineer and used to raise existing grades.

F. Rock: Rock material in beds, ledges, unstratified masses, and conglomerate deposits and boulders of rock material ¾ cubic yards or more in volume that when tested by an independent geotechnical testing agency, according to ASTM D1586, exceeds a standard penetration resistance of 100 blows/2 inches.

G. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man made stationary features constructed above or below grade.

H. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, base or topsoil materials.

I. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of weeds, roots, and other deleterious materials.

J. Unsuitable Material: Any soil material that is not suitable for a specific use on the Project. The Geotechnical Engineer will determine if a soil material is unsuitable.

K. Relative Compaction: In-place dry density of soil expressed as percentage of maximum dry density of same materials, as determined by laboratory test procedure ASTM D1557.

L. Utilities: onsite underground pipes, conduits, ducts and cables.

1.06 SUBMITTALS

A. Follow submittal procedure outlined in Section 01 10 00, Supplemental General Requirements.

B. Samples:
 1. If required by the Geotechnical Engineer, provide 20 pound samples, sealed in airtight containers, tagged with source locations and suppliers of each proposed soil
material from on-site or borrow sources, 72 hours prior to use. Do not import materials to the Project without written approval of the Geotechnical Engineer.

2. Provide materials from same source throughout work. Change of source requires approval of the Geotechnical Engineer.

C. Classification according to ASTM D2487 of each onsite or borrow soil material proposed for fill and backfill.
 1. Laboratory compaction curve in conformance with ASTM D1557 for each onsite or borrow soil material proposed for fill and backfill.

1.07 QUALITY ASSURANCE

A. Provide an independent testing agency qualified according to ASTM E329 to conduct soil materials and rock definition testing, as documented according to ASTM D3740 and ASTM E548.

B. Conform all work and materials to the recommendations or requirements of the Geotechnical Report and meet the approval of the Geotechnical Engineer.

C. Conform all work in accordance with Caltrans Standard Specification Section 17, General and Section 19, Earthwork.

D. Percentage of compaction specified shall be the minimum acceptable. The percentage represents the ratio of the dry density of the compacted material to the maximum dry density of the material as determined by the procedure set forth in ASTM D1557.

E. Perform excavation, filling, compaction and related earthwork under the observation of the Geotechnical Engineer. Materials placed without approval of the Geotechnical Engineer will be presumed to be defective and, at the discretion of the Geotechnical Engineer, shall be removed and replaced at no cost to the Owner. Notify the Geotechnical Engineer at least 24 hours prior to commencement of earthwork and at least 48 hours prior to testing.

F. The Geotechnical Engineer will perform observations and tests required to enable him to form an opinion of the acceptability of the Project earthwork. Correct earthwork that, in the opinion of the Geotechnical Engineer, does not meet the requirements of these Technical Specifications and the Geotechnical Report.

G. Upon completion of the construction work, certify that all compacted fills and foundations are in place at the correct locations, and have been constructed in accordance with sound construction practice. In addition, certify that the materials used are of the types, quality and quantity required by these Technical Specifications and the Geotechnical Report. The Contractor shall be responsible for the stability of all fills and backfills constructed by his forces and shall replace portions that in the opinion of the Geotechnical Engineer have been displaced or are otherwise unsatisfactory due to the Contractor’s operations.

H. Finish subgrade tolerance at completion of grading:
 1. Building and paved areas: ±0.05 feet
 2. Other areas: ±0.10 feet

1.08 PROJECT CONDITIONS

A. Promptly notify the Owner’s Representative of surface or subsurface conditions differing from those disclosed in the Geotechnical Report. First notify the Owner’s Representative
verbally to permit verification and extent of condition and then in writing. No claim for conditions differing from those anticipated in the Contract Documents and disclosed in the Geotechnical Report will be allowed unless the Contractor has notified the Owner’s Representative in writing of differing conditions prior to the Contractor starting work on affected items.

B. Protect open excavations, trenches, and the like with fences, covers and railings to maintain safe pedestrian and vehicular traffic passage.

C. Prevent erosion of freshly-graded areas during construction and until such time as permanent drainage and erosion control measures have been installed in accordance with the Erosion Control plan.

D. Temporarily stock-pile fill material in an orderly and safe manner and in a location approved by the Owner’s Representative.

E. Environmental Requirements: When unfavorable weather conditions necessitate interrupting earthwork operation, areas shall be prepared by compaction of surface and grading to avoid collection of water. Provide adequate temporary drainage to prevent erosion. After interruption, compaction specified in last layer shall be re-established before resuming work.

PART 2 - PRODUCTS

2.01 SOIL MATERIALS

A. General: On-site soils are considered suitable for use as fill provided the materials are placed in accordance with Geotechnical Recommendations. Highly expansive soils shall not be used as select structural fill, or used as backfill for trenches located within hardscape areas.

B. Imported fill soils, if required, should free of organic material, debris, and particles greater than 6 inches in maximum dimensions. Import fill shall have a plasticity index less than 18 and at least 20 percent passing the No. 200 sieve.

2.02 SOIL STERILANT

A. Commercial chemical for weed control, registered by EPA. Provide granular, liquid or wet-able powder form.

PART 3 - EXECUTION

3.01 GENERAL

A. Perform work in accordance with Caltrans Standard Specification Section 19, Earthwork, as modified by the Contract Documents.

B. Placement and compaction of material by flooding, ponding, or jetting will not be permitted.

C. The use of explosives will not be permitted.

D. Grading and earthwork operations shall be observed and tested by a representative of the Geotechnical Engineer for conformance with the project plans/specifications and the
geotechnical recommendations. This work includes site preparation, selection of satisfactory materials, and placement and compaction of the subgrades and fills. Sufficient notification prior to commencement of earthwork is essential to make certain that the work will be properly observed.

3.02 CONTROL OF WATER AND DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding the site and surrounding area. Provide dewatering equipment necessary to drain and keep excavations and site free from water.

B. Dewater during backfilling operation so that groundwater is maintained at least 1 foot below level of compaction effort.

C. Obtain the Geotechnical Engineer’s approval for proposed control of water and dewatering methods.

D. Protect subgrades from softening, undermining, washout and damage by rain or water accumulation.

E. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations.

F. Maintain dewatering system in place until dewatering is no longer required.

3.03 WET WEATHER CONDITIONS

A. Do not prepare subgrade, place or compact soil materials if subgrade or materials are above optimum moisture content.

B. Mitigate wet soil conditions by the following methods. Geotechnical Engineer shall evaluate and approve options 3 and 4 prior to implementation.
 1. Frequent spreading and mixing during warm dry weather.
 2. Mixing with drier materials.
 3. Mixing with a lime, lime-flyash, or cement product; or
 4. Stabilizing with aggregate, geotextile stabilization fabric, or both.

C. If the Geotechnical Engineer allows work to continue during wet weather conditions, conform to supplemental recommendations provided by the Geotechnical Engineer.

3.04 BRACING AND SHORING

A. Conform to California and Federal OSHA requirements.

B. Place and maintain such bracing and shoring as may be required to support the sides of the excavations for the proper protection of workmen; to facilitate the work; to prevent damage to the facility being constructed; and to prevent damage to adjacent structures or facilities. Remove all bracing and shoring upon completion of the work.

C. Be solely responsible for all bracing and shoring and, if requested by the Owner’s Representative, submit details and calculations to the Owner’s Representative. The Owner’s Representative may forward the submittal to the Geotechnical Engineer, the Consulting Engineer and/or the California Division of Industrial Safety for their review. The Contractor’s submittal shall include the basic design, assumed soils conditions and
estimation of forces to be resisted, together with plans and specifications of the materials and methods to be used, and shall be prepared by a civil engineer or structural engineer registered in California. No excavations related to the proposed facility shall precede a response to the submittal by the Owner's Representative.

D. Be solely responsible for installing and extracting the sheathing in a manner which will not disturb the position or operation of the facility being constructed or adjacent utilities and facilities.

3.05 TOPSOIL STRIPPING

A. Remove topsoil in accordance with Section 31 10 00, Site Clearing.

3.06 EXCAVATION

A. Excavate earth and rock to lines and grades shown on plans and to the neat dimensions indicated on the plans, required herein or as required to satisfactorily compact backfill.

B. Remove and dispose of large rocks, pieces of concrete and other obstructions encountered during excavation.

C. Excavation through buried concrete and other unknown obstructions will require specialized techniques for demolition and removal.

D. Where forming is required, excavate only as much material as necessary to permit placing and removing forms.

E. Provide supports, shoring and sheet piles required to support the sides of excavations or for protection of adjacent existing improvements.

3.07 GRADING

A. Uniformly grade the Project to the elevations shown on plans

B. Finish ditches, gutters and swales to the sections, lines and grades indicated and to permit proper surface drainage.

C. Round tops and bottoms of slopes as indicated or to blend with existing contours.

3.08 SUBGRADE PREPARATION

A. Following demolition, areas to receive new improvements shall be observed by the Geotechnical Engineering to be firm and unyielding.
B. The subgrade should be scarified to a depth of 6 inches and compacted to the specifications provided in Section 3.09.

C. Over-excavate any remaining soft (pumping) areas down to firm soil and backfill the area.

D. Subgrade shall be maintained in a moist, but not wet, condition by periodically sprinkling water prior to the placement of additional fill or installation of roads. Subgrade that has been permitted to dry out and loosen or develop desiccation cracking should be scarified, moisture conditioned, and re-compacted as recommended above.

E. Install underground utilities and service connections prior to final preparation of subgrade and placement of base materials for final surface facilities. Extend services so that final surface facilities are not disturbed when service connections are made.

F. Prepare subgrades under the structural section of paved areas, curbs, gutters, walks, structures, other surface facilities and areas to receive structural fill.

G. Protect utilities from damage during compaction of subgrades and until placement of final pavements or other surface facilities.

H. Obtain the Geotechnical Engineer’s approval of subgrades prior to placing pavement structural section.

I. The Geotechnical Engineer should be present at the time of subgrade preparation to determine the appropriate specifications. Subgrade processing may not be recommended where competent rock or cemented soil is exposed, as evaluated by Geotechnical Engineer.

J. Caltrans Class 2 Aggregate Base should be compacted to at least 95 percent relative compaction. Moisture condition aggregate base to or slightly above the optimum moisture content prior to compaction.

3.09 FILL PLACEMENT AND COMPACTION

A. When soil with low to medium plastic fines are encountered, all fill should be placed in thin lifts. The lift thickness should not exceed 12 inches or the depth of penetration of the compaction equipment used, whichever is less. The following compaction control requirements should be applied to general fill areas where soil with low to medium plastic fines are encountered:
 1. Required Moisture Content: Not less than 2 percentage points above optimum moisture content.
 2. Required Relative Compaction: Not less than 95 percent.

B. When soil with high plasticity are encountered, all fill should be placed in thin lifts. The lift thickness should not exceed 12 inches or the depth of penetration of the compaction equipment used, whichever is less. The following compaction control requirements should be applied to general fill areas where soil with low to medium plastic fines are encountered:
 1. Required Moisture Content: Not less than 4 percentage points above optimum moisture content.
 2. Required Relative Compaction: Not less than 92 percent.
C. In order to achieve satisfactory compaction in the subgrade and fill soils, it may be necessary to adjust the soil moisture content at the time of soil compaction per geotechnical recommendations. This may require that water be added and thoroughly mixed into any soils which are too dry or that scarification and aeration be performed in any soils which are too wet.

D. Obtain the Geotechnical Engineer’s approval of surface to receive structural fill prior to placement of structural fill material.

E. Place structural fill on prepared subgrade.

F. Do not drop fill on structures. Do not backfill around, against or upon concrete or masonry structures until structure has attained sufficient strength to withstand loads imposed and the horizontal structural system had been installed.

G. Do not compact by ponding, flooding or jetting.

H. Perform compaction using rollers, pneumatic or vibratory compactors or other equipment and mechanical methods approved by the Geotechnical Engineer.

I. Where fill or subgrade materials contain more than 30 percent rock retained on a ¾ inch sieve, a performance specification should be used to evaluate compaction. For this condition, use a maximum loose lift thickness (or subgrade processing depth) of 12 inches. Moisture condition rocky fill such that the moisture content of the matrix soil (minus ¾-inch material) is slightly above the optimum moisture content assessed by visual/manual methods. Compact each lift of rocky fill with at least five passes of a compactor to achieve 90 percent equivalent relative compaction and at least seven passes of a compactor to achieve 95 percent equivalent relative compaction.

3.010 SOIL STERILIZATION

A. Apply soil sterilant to areas indicated, such as beneath asphalt concrete pavement, brick pavement, concrete pavement and at grade concrete slabs, including sidewalks, curbs and gutters. Also where indicated apply soil sterilant below expansion and control joints and at areas where pipes, ducts or other features penetrate slabs.

B. Apply soil sterilant uniformly and at the rates recommended by the manufacturer.

C. Apply soil sterilant to prepared subgrade, or after installation of aggregate base as recommended by the manufacturer.

3.011 DISPOSAL

A. Lawfully dispose of all unsuitable and excess or surplus material off-site at no cost to the Owner.

END OF SECTION
SECTION 31 21 00
UTILITY TRENCHING AND BACKFILL

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Excavation, bedding, and backfill for underground storm drain, sanitary sewer, and water piping, underground HVAC piping, electrical conduit, telephone conduit, gas piping, cable TV conduit, etc., and associated structures.

B. Provide labor, material, equipment, and services necessary to complete the backfilling and compacting as necessary for this project. Section includes, but is not limited to:
 1. Select Backfill Material
 2. Aggregate Base
 3. Detectable Tape
 4. Trench Excavation
 5. Pipe Bedding
 6. Trench Backfill
 7. Trench Surfacing

C. This section excludes drainage fill material and placement around subdrains. See Section 33 46 00 – Subdrainage.

1.02 RELATED SECTIONS

A. Section 31 10 00 – Site Clearing

B. Section 31 20 00 – Earthwork Moving

C. Section 33 10 00 – Water System

D. Section 33 30 00 – Sanitary Sewer System

1.03 RELATED DOCUMENTS

B. ASTM

F. Caltrans Standard Specifications, 2015
 1. Section 19, Earthwork
 2. Section 26, Aggregate Bases
 3. Section 68, Subsurface Drains
 4. Section 96, Geosynthetics

G. CAL/OSHA, Title 8

1.04 DEFINITIONS

A. AC: Asphalt Concrete

B. ASTM: American Society for Testing and Materials

C. Base: The layer placed between the subgrade and surface pavement in a paving system.

D. Bedding: Material from bottom of trench to bottom of pipe

E. CDF: Controlled Density Fill

F. DIP: Ductile Iron Pipe

G. Engineered Fill:
 1. Soil or soil-rock material approved by the Owner and transported to the site by the Contractor in order to raise grades or to backfill excavations.
 2. Contractor shall provide sufficient tests, and a written statement that all materials brought onto the project site comply with specification requirements.

H. Excavation: Consists of the removal of material encountered to subgrade elevations

I. Initial Backfill: Material from bottom of pipe to 12 inches above top of pipe

J. PCC: Portland Cement Concrete

K. RCP: Reinforced Concrete Pipe

L. Relative Compaction: In-place dry density of soil expressed as percentage of maximum dry density of same materials, as determined by laboratory test procedure ASTM D1557.

M. Springline of Pipe: Imaginary line on surface of pipe at a vertical distance of ½ the outside diameter measured from the top or bottom of the pipe.

N. Subgrade: The uppermost surface of an excavation or the top surface of a fill or backfill immediately below base.
O. Subsequent Backfill: Material from 12 inches above top of pipe to subgrade of surface material or subgrade of surface facility or to finish grade.

P. Trench Excavation: Removal of material encountered above subgrade elevations and within horizontal trench dimensions.
 1. Authorized Trench Over-Excavation: Excavation below trench subgrade elevations or beyond indicated horizontal trench dimensions as shown on plans or authorized by the Geotechnical Engineer.
 2. Unauthorized Trench Over-Excavation: Excavation below trench subgrade elevations or beyond indicated horizontal trench dimensions without authorization by the Geotechnical Engineer. Unauthorized excavation shall be without additional compensation.

Q. Utility Structures:
 1. Storm drainage manholes, catch basins, drop inlets, curb inlets, vaults, etc.
 2. Sanitary sewer manholes, vaults, etc.
 3. Water vaults, etc.

1.05 SUBMITTALS

R. Test Reports: Submit the following report for import material directly to the Owner from the Contractor’s testing services:
 1. Compaction test reports for aggregate base.

S. Samples:
 1. If required by the Geotechnical Engineer, provide 20-pound samples of all imported trench bedding and backfill material sealed in airtight containers, tagged with source locations and suppliers of each proposed material. Do not import materials to Project without written approval of the Geotechnical Engineer and the Owner.
 2. Provide materials from same source throughout work. Change of source requires approval of the Geotechnical Engineer and the Owner.

1.06 QUALITY ASSURANCE

A. Conform all work and materials to the recommendations or requirements of the Geotechnical Report and meet the approval of the Geotechnical Engineer.

B. Conform all work to the appropriate portion(s) of the Caltrans Standard Specifications, Section 19, Earthwork.

C. Percentage of compaction specified shall be the minimum acceptable. The percentage represents the ratio of the dry density of the compacted material to the maximum dry density of the material as determined by the procedure set forth in ASTM D 1557.

D. The Geotechnical Engineer will perform observations and tests required to enable him to form an opinion of the acceptability of the trench backfill. Correct the trench backfill that, in the opinion of the Geotechnical Engineer, does not meet the requirements of these Technical Specifications and the Geotechnical Report.
E. Soil Testing:
 1. Contractor to engage a geotechnical testing agency, to include compaction testing and for quality control testing during fill operations.
 2. Test results will be submitted to the Owner.

1.07 PROJECT CONDITIONS

A. Promptly notify the Owner of surface or subsurface conditions differing from those disclosed in the Geotechnical Report. First notify the Owner verbally to permit verification and extent of condition and then in writing. No claim for conditions differing from those anticipated in the Contract Documents and disclosed in the Geotechnical Report will be allowed unless Contractor has notified the Owner in writing of differing conditions prior to contractor starting work on affected items.

B. Barricade open excavations and post with warning lights.
 1. Operate warning lights and barricades as required.
 2. Protect structures, utilities, sidewalks, pavements, and other facilities immediately adjacent to excavations, from damages caused by settlement, lateral movement, undermining, washout, and other hazards.
 3. Protect open, trenches, and utility structure excavations with fences, covers and railings to maintain safe pedestrian and vehicular traffic passage.

C. Stockpile on-site and imported backfill material temporarily in an orderly and safe manner.

D. Provide dust and noise control in conformance with Section 01 10 00 Supplemental General Requirements.

E. Environmental Requirements:
 1. Protect existing storm drainage system from silt and debris resulting from construction activities. If contamination occurs, remove contamination at no cost to the District.
 2. Protect existing streams, ditches and storm drain inlets during work on this project.

F. Protection of Subgrade: Do not allow equipment to pump or rut subgrade, stripped areas, footing excavations, or other areas prepared for project.

G. Transport all excess soils materials by legally approved methods to disposal areas.
 1. Coordinate with the Engineer.
 2. Any additional fill requirements shall be the responsibility of the Contractor.

1.08 EXISTING UTILITIES

H. Locate existing underground utilities in the areas of work. For utilities that are to remain in place, provide adequate means of protection during excavation operations.
 1. Locating of existing underground utilities shall include but not be limited to pot-holing prior to the start of construction.
I. Should uncharted or incorrectly charted piping or other utilities be encountered during excavation, consult Owner and/or utility agency immediately for directions.
 1. Cooperate with the Owner and public and private utility companies in keeping their respective services and facilities in operation.
 2. Repair damaged utilities to the satisfaction of the agency with jurisdiction.

J. Do not interrupt existing utilities serving facilities occupied and used by the Owner or others, except when permitted in writing by the Owner and then only after acceptable temporary utility services have been provided.

PART 2 - PRODUCTS

2.01 GENERAL

A. Import materials will be subject to approval of the Geotechnical Engineer.

B. For approval of imported fill material, notify the Owner at least 7 days in advance of intention to import material.

2.02 PIPE BEDDING AND INITIAL BACKFILL

A. ASTM D2321, Class IA, IB or II.
 1. Clean and free of clay, silt or organic matter.

B. Permeable Material: In accordance with Section 68-2.02F of Caltrans Standard Specifications, Class 1, Type A or Class 2.

C. Class 2 Aggregate Base: In accordance with Section 26 of Caltrans Standard Specifications, ¾ inch maximum.

D. Sand: In accordance with Section 19-3.02F of Caltrans Standard Specifications.

2.03 SELECT BACKFILL

A. Backfill material shall be per Section 2.01 of 03 20 00 Earth moving specifications.

2.04 WARNING TAPE

A. Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant, polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specified below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, “CAUTION, BURIED (intended service) LINE BELOW” or similar wording. Color and printing shall be permanent, unaffected by moisture or soil.
 1. Warning Tape Color Codes
 a. Red: Electric
 b. Yellow: Gas, Oil; Dangerous Materials
 c. Orange: Telephone and Other Communications
 d. Blue: Water Systems
2.05 DETECTION WIRE FOR NON-METALLIC PIPING

A. Detection wire shall be insulated single strand, solid copper with a minimum of 12 AWG.

2.06 SUBSEQUENT BACKFILL

A. Conform to on-site or imported structural backfill in Section 31 20 00, Earth Moving.

PART 3 - EXECUTION

3.01 GENERAL

A. Comply with the recommendations of the Geotechnical Engineer.

B. Protect existing trees to remain. No grading is permitted under the drip line of protected trees.

C. Excavations for appurtenant structures, such as, but not limited to, manholes, transition structures, junction structure, vaults, valve boxes, catch basins, thrust blocks, and boring pits, shall be deemed to be in the category of trench excavation.

D. Unless otherwise indicated in the Plans, all excavation for pipelines shall be open cut.

E. Prior to commencement of work, become thoroughly familiar with site conditions.

F. In the event discrepancies are found, immediately notify the Owner in writing, indicating the nature and extent of differing conditions.

G. Backfill excavations as promptly as work permits.
H. Do not place engineered fill or backfill until rubbish and deleterious materials have been removed and areas have been approved by the Owner.

I. Place acceptable soil material in layers to required subgrade elevations, for each area classification listed below.

J. In excavations, use satisfactory excavated or borrow material.

K. Under grassed areas, use satisfactory excavated or borrow material.

3.02 SITE PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities, which are to remain, from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.

B. Protect existing storm drainage system from silt and debris resulting from construction activities. If contamination occurs, remove contamination at no cost to the Owner.

3.03 EXISTING UTILITIES

A. Identity the location of existing utilities.

1. Prior to trenching, the Contractor shall excavate at locations specifically indicated on the Plans, if any, and where new lines cross other utilities of uncertain depth and determine the elevation of the utility in question to ensure that the new line will clear the potential obstruction.

2. The Contractor shall contact Underground Service Alert (USA) at 1-800-227-2600 for assistance in locating existing utilities.

3. If, after the excavation, a crossing utility does present an obstruction, then the line and grade of the new line will be adjusted as directed by the Owner to clear the utility.

B. Protect all existing utilities to remain in operation.

C. Movement of construction machinery and equipment over existing pipes and utilities during construction shall be at Contractor's risk.

D. Excavation made with power-driven equipment is not permitted within 2 feet of any known utility or subsurface structure.

1. Use hand or light equipment for excavating immediately adjacent to known utilities or for excavations exposing a utility or buried structure.

2. Start hand or light equipment excavation on each side of the indicated obstruction and continue until the obstruction is uncovered or until clearance for the new grade is assured.

3. Support uncovered lines or other existing work affected by excavation until approval for backfill is obtained.

4. Report damage of utility line or subsurface structures immediately to the Owner.

E. Backfill trenches resulting from utility removal in lifts of 8 inches maximum.
3.04 TRENCH EXCAVATION

A. General
 1. Excavation shall include removal of all water and materials that interfere with construction. The Contractor shall remove any water which may be encountered in the trench by pumping or other methods during the pipe laying, bedding and backfill operations. Material shall be sufficiently dry to permit approved jointing.
 2. Excavation shall include the construction and maintenance of bridges required for vehicular and pedestrian traffic, support for adjoining utilities.
 3. The Contractor shall be responsible to safely direct vehicular and pedestrian traffic through or around his/her work area at all times.
 4. The Contractor shall relocate, reconstruct, replace or repair, at his/her own expense, all improvements which are in the line of construction or which may be damaged, removed, disrupted or otherwise disturbed by the Contractor.

B. Existing Paving and Concrete:
 1. Existing pavement over trench shall be sawcut, removed, and hauled away from the job. Existing pavement shall be neatly sawcut along the limits of excavations.
 2. Existing concrete over the trench shall be sawcut to a full depth in straight lines, at a minimum distance of 12 inches beyond the edge of the trench, either parallel to the curb or a right angles to the alignment of the sidewalk.
 3. Boards or other suitable material shall be placed under equipment outrigging to prevent damage to paved surfaces.

C. Trench Width:
 1. The maximum allowable trench widths at the top of the all pipe materials outside diameter of barrel pipe plus 18 inches. shall be as follows:
 a. The maximum trench width shall be inclusive of all shoring.
 b. If the maximum trench width is exceeded, the State’s representative may direct the Contractor to encase or cradle the pipe in concrete at no additional charge.
 2. For pipes 3 inch diameter and larger, the free working space on each side of the pipe barrel shall not be less than 6 inches.

D. Excavation Width at Springline of Pipe:
 1. Up to a nominal pipe diameter of 24 inches: Minimum of twice the outside pipe diameter, or as otherwise allowed or required by the Geotechnical Engineer.
 2. Nominal pipe diameter of 30 inches through 36 inches: Minimum of the outside pipe diameter plus 2 feet, or as otherwise allowed or required by the Geotechnical Engineer.
 3. Nominal pipe diameter of 42 inches through 60 inches: Minimum of the outside pipe diameter plus 3 feet, or as otherwise allowed or required by the Geotechnical Engineer.

E. Open Trench:
 1. The maximum length of open trench shall be 300 feet or the distance necessary to accommodate the amount of pipe installed in a single day, whichever is greater. No trench shall be left open at the end of the day.
 2. Provisions for trench crossings and free access shall be made at all street crossings, driveways, water gate valves, and fire hydrants.
3. Excavate by hand or machine. For gravity systems begin excavation at the outlet end and proceed upstream. Excavate sides of the trench parallel and equal distant from the centerline of the pipe. Hand trim excavation. Remove loose matter.

4. Excavation Depth for Bedding: Minimum of 6 inches below bottom of pipe or as otherwise allowed or required by the Geotechnical Engineer, except that bedding is not required for nominal pipe diameters of 2 inches or less.

5. Over-Excavations: Backfill trenches that have been excavated below bedding design subgrade, with approved bedding material.

6. Where forming is required, excavate only as much material as necessary to permit placing and removal of forms.

7. Grade bottom of trench to provide uniform thickness of bedding material and to provide uniform bearing and support for pipe along entire length. Remove stones to avoid point bearing.

F. Excavated Material:

1. All excavated material not required for backfill shall be immediately removed and properly disposed of in a legal manner by the Contractor.

2. Material excavated in streets and roadways shall be laid alongside the trench no closer than 2 feet from the trench edge and kept trimmed to minimize inconvenience to public traffic.

3. Provisions shall be made whereby all storm and wastewater can flow uninterrupted in gutters or drainage channels.

3.05 CONTROL OF WATER AND DEWATERING

G. Be solely responsible for dewatering trenches and excavations and subsequent control of ground and surface water. Provide and maintain such pumps or other equipment as may be necessary to control ground water and seepage to the satisfaction of the Geotechnical Engineer and the Owner until backfilling is completed.

H. Dewater during backfilling operation so that groundwater is maintained a least one foot below level of compaction effort.

I. Obtain the Geotechnical Engineer’s approval for proposed control of water and dewatering methods.

J. Reroute surface water runoff away from open trenches and excavations. Do not allow water to accumulate in trenches and excavations.

K. Maintain dewatering system in place until dewatering is no longer required.

3.06 BRACING AND SHORING

A. Conform to California and Federal OSHA requirements.

B. Place and maintain such bracing and shoring as may be required to support the sides of the excavations for the proper protection of workmen; to facilitate the work; to prevent damage to the pipes and appurtenances being constructed; and to prevent
damage to adjacent structures or facilities. Remove all bracing and shoring upon completion of the work.

C. Be solely responsible for all bracing and shoring and, if requested by the Owner, submit details and calculations to the Owner. The Owner may forward the submittal to the Geotechnical Engineer, the Consulting Engineer and/or the California Division of Industrial Safety for their review. The Contractor’s submittal shall include the basic design, assumed soils conditions and estimation of forces to be resisted, together with plans and specifications of the materials and methods to be used, and shall be prepared by a civil engineer or structural engineer registered in California. No excavations in trench section or around structures shall precede a response to the submittal by the Owner.

D. Be solely responsible for installing and extracting the sheathing in a manner which will not disturb the line, grade, or backfill compaction or operation of the utility being installed or adjacent utilities and facilities.

3.07 PIPE BEDDING

A. Obtain approval of bedding material from the Geotechnical Engineer.

B. Accurately shape bedding material to the line and grade called for on the Plans. Carefully place and compact bedding material to the elevation of the bottom of the pipe in layers not exceeding 8 inches in loose thickness. Compact bedding material at optimum water content to 90% relative compaction unless specified otherwise on the Plans or by the Geotechnical Engineer. Compact by pneumatic tampers or other mechanical means approved by the Geotechnical Engineer. Jetting or ponding of bedding material will not be permitted.

C. Stabilization of Trench Bottom: When the trench bottom is unstable due to wet or spongy foundation, trench bottom shall be stabilized with gravel or crushed rock. The State’s inspector will determine the suitability of the trench bottom and the amount of gravel or crushed rock needed to stabilize a soft foundation. Soft material shall be removed and replaced with gravel or crushed rock as necessary.

D. Placement of Bedding Material: The trench bottom shall be cleaned to remove all loose native material prior to placing select backfill material. Sufficient select backfill material shall be placed in trench and tamped to bring trench bottom up to grade of the bottom of pipe. The relative compaction of tamped material shall be not less than 90 percent. It is the intention of these requirements to provide uniform bearing under the full length of pipe to a minimum width of 60 percent of the external diameter.

3.08 BACKFILLING

A. Place and compact trench backfill in accordance with the recommendations in Section 3.09 of 03 20 00 Earth moving specifications.
B. Pipe Detection: In trenches containing pressurized plastic pipes, tracer wire shall be placed directly above the pipe and shall be connected to all valves, existing exposed tracer wires, and other appurtenances as appropriate.

C. Do not use compaction equipment or methods that produce horizontal or vertical earth pressures that may cause excessive pipe displacement or damage the pipe. Jetting of trench backfill is not permitted.

D. Utility backfill shall be inspected and tested by the Geotechnical Engineer during placement. Cooperate with the Geotechnical Engineer and provide working space for such tests in operations. Backfill not compacted in accordance with these specifications shall be re-compacted or removed as necessary and replaced to meet the specified requirements, to the satisfaction of the Geotechnical Engineer and the Owner prior to proceeding with the Project.

E. Compaction testing shall be in accordance with California Test Method ASTM D1556 or D1557.

3.09 CLEANUP

A. Upon completion of utility earthwork all lines, manholes catch basins, inlets, water meter boxes and other structures shall be thoroughly cleaned of dirt, rubbish, debris and obstructions of any kind to the satisfaction of the Owner.

END OF SECTION
SECTION 32 11 00

PAVEMENT BASE COURSE

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Aggregate subbase
B. Aggregate base
C. Cement treated base
D. Lime stabilization

1.02 RELATED SECTIONS

E. Section 31 20 00, Earth Moving

1.03 RELATED DOCUMENTS

B. ASTM:
 1. D1557, Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
 2. D3740, Practice for Evaluation of Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 4. E548, Guide for General Criteria Used for Evaluating Laboratory Competence

C. Caltrans Standard Specifications, 2015
 1. Section 24, Stabilized Soils
 2. Section 25, Aggregate Subbases
 3. Section 26, Aggregate Bases
 4. Section 27, Cement Treated Bases

1.04 DEFINITIONS

A. Geotechnical Testing Agency: An independent testing agency qualified according to ASTM E329 to conduct soil materials and rock definition testing, as documented according to ASTM D3740 and ASTM E548.

B. Rock: Rock material in beds, ledges, unstratified masses, and conglomerate deposits and boulders of rock material ¼ cubic yards or more in volume that when tested by an
independent geotechnical testing agency, according to ASTM D1586, exceeds a standard penetration resistance of 100 blows/2 inches.

C. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man made stationary features constructed above or below grade.

D. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, base or topsoil materials. Perform work in accordance with Section 312000, Earth Moving.

1.05 SUBMITTALS

E. Submit material certificates signed by the material producer and the Contractor, certifying that each material item complies with, or exceeds the specified requirements.

1.06 QUALITY ASSURANCE

A. Conform all work and materials to the recommendations or requirements of the Geotechnical Report and meet the approval of the Geotechnical Engineer.

B. Percentage of compaction specified shall be the minimum acceptable. The percentage represents the ratio of the dry density of the compacted material to the maximum dry density of the material as determined by the procedure set forth in ASTM D1557.

C. Perform installation of base materials under the observation of the Geotechnical Engineer. Materials placed without approval of the Geotechnical Engineer will be presumed to be defective and, at the discretion of the Geotechnical Engineer, shall be removed and replaced at no cost to the Owner. Notify the Geotechnical Engineer at least 24 hours prior to commencement of base material installation and at least 48 hours prior to testing.

D. Do not project the finish surface of aggregate subbase above the design subgrade.

E. Finish grade tolerance at completion of base installation: +0.05 feet

1.07 PROJECT CONDITIONS

A. Protect open excavations, trenches, and the like with fences, covers and railings to maintain safe pedestrian and vehicular traffic passage.

B. Temporarily stockpile material in an orderly and safe manner and in a location approved by the Owner.

C. Provide dust and noise control in accordance with Section 011000, Supplemental General Requirements.
PART 2 - PRODUCTS

2.01 AGGREGATE BASE

A. Material: Class 2 ¾ inch maximum in accordance with Caltrans Standard Specification Section 26, Aggregate Bases.

PART 3 - EXECUTION

3.01 GENERAL

A. Placement and compaction of material by flooding, ponding, or jetting will not be permitted.

3.02 WET WEATHER CONDITIONS

A. Do not place or compact subgrade if above optimum moisture content.

B. If the Geotechnical Engineer allows work to continue during wet weather conditions, conform to supplemental recommendations provided by the Geotechnical Engineer.

3.03 AGGREGATE SUBBASE

A. Spreading and Compacting: In accordance with Caltrans Standard Specification Section 25-1.03D, Spreading and 25-1.03E, Compacting.

3.04 AGGREGATE BASE

A. Watering, Spreading and Compacting: In accordance with Caltrans Standard Specification Section 26-1.03D, Spreading and 26-1.03E, Compacting.

3.05 DISPOSAL

B. Lawfully dispose of all unsuitable and excess or surplus material off-site at no cost to the Owner.

END OF SECTION
PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Materials for portland cement concrete
B. Aggregate and aggregate grading for portland cement concrete
C. Water for portland cement concrete
D. Admixtures for portland cement concrete
E. Proportioning for portland cement concrete
F. Mixing and transporting portland cement concrete
G. Formwork for cast in place portland cement concrete
H. Embedded materials for portland cement concrete
I. Steel reinforcement for portland cement concrete
J. Placing and finishing portland cement concrete
K. Curing portland cement concrete
L. Protecting portland cement concrete

1.02 RELATED SECTIONS

A. Section 31 20 00, Earth Moving

1.03 RELATED DOCUMENTS

B. ASTM Standards
 1. A615, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
 2. A1064, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
6. C309, Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete
9. C1017, Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete
10. D1557, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort

C. Caltrans Standard Specifications, 2015
 1. Section 51: Concrete Structures
 2. Section 73: Concrete Curbs and Sidewalks
 3. Section 90: Concrete

1.04 DEFINITIONS

A. ASTM: American Society for Testing and Materials

1.05 SUBMITTALS

B. Concrete Mix Design: Have all concrete mixes designed by a testing laboratory and approved by the Consulting Engineer. Conform all mixes to the applicable building code requirement, regardless of other minimum requirements listed herein or on the Plans. Submit mix designs for review before use. Show proportions and specific gravities of cement, fine and coarse aggregate, and water and gradation of combined aggregates.

C. Reinforcing Steel Shop-Drawings

1.06 QUALITY ASSURANCE

A. Concrete shall be subject to quality assurance in accordance with Section 90 of the Caltrans Standard Specifications.
 1. Slump tests: Have available, at job site, equipment required to perform slump tests. Make one slump test for each cylinder sample, from same concrete batch. Allowable maximum slump shall be 4 inches for walls and 3 inches for slabs on grade and other work.

B. Certifications:
1. Provide Owner’s Representative at the time of delivery with certificates of compliance signed by both Contractor and Supplier containing the following statements:
 a. Materials contained comply with the requirements of the Contract Documents in all respects.
 b. Proportions and mixing comply with the design mix approved by the Consulting Engineer. Design mix shall have been field tested in accordance with the herein requirements of the Caltrans Standard Specifications and produces the required compressive strength under like conditions.
 c. Statement of type and amount of any admixtures.

2. Provide Owner’s Representative, at time of delivery, with certified delivery ticket stating volume of concrete delivered and time of mixing, or time of load-out in case of transit mixers.

 C. Color of finished concrete shall match existing. Confirm color with Owner’s Representative prior to installation.

1.07 DESIGNATION

A. General: Whenever the 28 day compressive strength is designated herein or on the Plans is 3,600 psi or greater, the concrete shall considered to be designated by compressive strength. The 28 day compressive strength shown herein or on the plans which are less than 3,600 psi are shown for design information only and are not considered a requirement for acceptance of the concrete. Whenever the concrete is designated by class or as minor concrete herein or on the Plans, the concrete shall contain the cement per cubic yard shown in Section 90-2 of the Caltrans Standard Specifications.

B. Unless specified otherwise herein or on the Plans, portland cement concrete for curbs, gutters, sidewalks and their appurtenances such as island paving, curb ramps and driveways, shall be minor concrete as specified in Section 90-2 of the Caltrans Standard Specifications.

PART 2 - PRODUCTS

2.01 PORTLAND CEMENT

A. General: Type II or Type V cement conforming to the requirements of ASTM C150. Contractor may substitute pozzolan for portland cement in amounts up to 15% of the required mix unless high early strength concrete is specified. Pozzolan shall consist of Class F Fly Ash meeting the requirements of ASTM C618.

2.02 AGGREGATE AND AGGREGATE GRADATION

A. General: Fine and coarse aggregates shall be ¾ inch maximum size; clean and crushed aggregate free of materials which may cause staining. Aggregates shall conform to the requirements of section 90-1.02C of the Caltrans Standard Specifications.
B. Aggregate Size and Gradation: Conform to the requirements of section 90-1.02C(4)(d) of the Caltrans Standard Specifications for 1 inch maximum combined aggregate.

2.03 WATER

A. General: Water shall be clean, free from injurious amounts of oil, alkali, organic matter, or other deleterious material, and not detrimental to concrete per ASTM C94. Water shall conform to the requirements of section 90-1.02D of the Caltrans Standard Specifications, for mixing and curing portland cement concrete and for washing aggregates.

2.04 CHEMICAL ADMIXTURES

A. Provide admixtures certified by manufacturer to be compatible with other admixtures and to contain no more than 0.1 percent water-soluble chloride ions by mass of cementitious material. Admixtures shall conform to the requirements of section 90-1.02E of the Caltrans Standard Specifications and as noted herein or on the Plans.
2. Water-Reducing Admixture: ASTM C494/C494M, Type A
3. Retarding Admixture: ASTM C494/C494M, Type B
4. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D
5. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F
6. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G
7. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II

2.05 CLASSIFICATION OF PORTLAND CEMENT CONCRETE

A. Unless specified otherwise herein or on the Plans, portland cement concrete for the following items shall be designated as follows:
2. Thrust Blocks: The concrete shall have a minimum compressive strength of 3,000 psi.
3. Sign and Fence Footings: The concrete shall consist of a minimum of 376 pounds of portland cement per cubic yard of concrete.

2.06 REINFORCEMENT AND DOWELS

A. Bar reinforcement for concrete improvements shall be deformed steel bars of the size or sizes called for on the plans conforming to the requirements of ASTM A615 for Grade 60 bars. Size and shape for bar reinforcement shall conform to the details shown or called for on the Plans. Substitution of wire mesh reinforcement for reinforcing bars will not be allowed.

B. Slip dowels, where noted or called for on the Plans or detail drawings shall be smooth billet-steel bars as designated and conforming to the requirements of ASTM A615 for Grade 60 bars. Ends of bars inserted in new work shall be covered with a cardboard tube sealed with cork; no grease or oil shall be used.
C. Mesh for reinforcement for concrete improvements shall be cold drawn steel wire mesh of the size and spacing called for on the plans conforming to the requirements of ASTM A1064. Size and extent of mesh reinforcement shall conform to the details shown or called for on the plans.

D. Tie wire for reinforcement shall be eighteen (18) gauge or heavier, black, annealed conforming to the requirements of ASTM A1064.

E. Suppliers certificates showing conformance with this specification shall be delivered with each shipment of materials delivered to the job site.

2.07 COLOR AND PATTERN FOR DECORATIVE SURFACES

A. Match existing color in all areas of concrete replacement. Provide samples and confirm with Owner prior to installation.

2.08 CURING AND SEALING MATERIALS

A. Curing Compounds:
 1. Concrete surface repellent-vertical and/or flatwork: Repello surface treatment, invisible chemical treatment barrier system.

2.09 FORMS

A. Conform to the requirements of Section 73-1.03C and Section 90-1.03B(5) of the Caltrans Standard Specifications.

B. Tolerance: Not to deviate more than ¼ inch in 10 feet in grade and alignment.

2.10 PRECAST CONCRETE STRUCTURES

A. Conform to the following Sections of Caltrans Standard Specifications:
 1. 51-7, Minor Structures
 2. 70-5.02, Flared End Sections

PART 3 - EXECUTION

3.01 STRUCTURAL EXCAVATION

A. Structural excavation may be either by hand, or by machine and shall be neat to the line and dimension shown or called for on the plans. Excavation shall be sufficient width to provide adequate space for working therein, and comply with CAL-OSHA requirements.
B. Where an excavation has been constructed below the design grade, refill the excavation to the bottom of the excavation grade with approved material and compact in place to 95% of the maximum dry density as determined by ASTM D1557.

C. Remove surplus excavation material remaining upon completion of the work from the job site, or condition it to optimum moisture content and compact it as fill or backfill on the site.

3.02 BRACING AND SHORING

A. Conform to California and Federal OSHA requirements.

B. Place and maintain such bracing and shoring as may be required to support the sides of the excavations for the proper protection of workmen; to facilitate the work; to prevent damage to the facility being constructed; and to prevent damage to adjacent structures or facilities. Remove all bracing and shoring upon completion of the work.

C. Be solely responsible for all bracing and shoring and, if requested by the Owner’s Representative, submit details and calculations to the Owner’s Representative. The Owner’s Representative may forward the submittal to the Consulting Engineer for their review. The Contractor’s submittal shall include the basic design, assumed soils conditions and estimation of forces to be resisted, together with plans and specifications of the materials and methods to be used, and shall be prepared by a civil engineer or structural engineer registered in California. No excavations related to the proposed facility shall precede a response to the submittal by the Owner’s Representative.

D. Be solely responsible for installing and extracting the sheathing in a manner which will not disturb the position or operation of the facility being constructed or adjacent utilities and facilities.

3.03 PLACING CONCRETE FORMS

A. Form concrete improvements with a smooth and true upper edge. Side of the form with a smooth finish shall be placed next to concrete. Construct forms rigid enough to withstand the pressure of the fresh concrete to be placed without any distortion.

B. Thoroughly clean all forms prior to placement and coat forms with an approved form oil in sufficient quantity to prevent adherence of concrete prior to placing concrete.

C. Carefully set forms to the alignment and grade established and conform to the required dimensions. Rigidly hold forms in place by stakes set at satisfactory intervals. Provide sufficient clamps, spreaders and braces to insure the rigidity of the forms.

D. Provide forms for back and face of curbs, lip of gutters and edge of walks, valley gutters or other surface slabs that are equal to the full depth of the concrete as shown, noted or called for on the Plans. On curves and curb returns provide composite forms made from benders or thin planks of sufficient ply to ensure rigidity of the form.
3.04 PLACING STEEL REINFORCEMENT

A. Bars shall be free of mortar, oil, dirt, excessive mill scale and scabby rust and other coatings of any character that would destroy or reduce the bond. All bending shall be done cold, to the shapes shown on the plans. The length of lapped splices shall be as follows:
 1. Reinforcing bars No. 8, or smaller, shall be lapped at least 45 bar diameters of the smaller bar joined, and reinforced bars Nos. 9, 10, and 11 shall be lapped at least 60 bar diameters of the smaller bars joined, except when otherwise shown on the plans.
 2. Splice locations shall be made as indicated on the plans.

B. Accurately place reinforcement as shown on the plans and hold firmly and securely in position by wiring at intersections and splices, and by providing precast mortar blocks or ferrous metal chairs, spacers, metal hangers, supporting wires, and other approved devices of sufficient strength to resist crushing under applied loads. Provide supports and ties of such strength and density to permit walking on reinforcing without undue displacement.

C. Place reinforcing to provide the following minimum concrete cover:
 1. Surfaces exposed to water: 4 inches.
 2. Surfaces poured against earth: 3 inches.
 3. Formed surfaces exposed to earth or weather: 2 inches.
 4. Slabs, walls, not exposed to weather or earth: 1 inch.

D. Minimum spacing, center of parallel bars shall be two and one half (2 ½) times the diameter of the larger sized bar. Accurately tie reinforcing securely in place prior to pouring concrete. Placing of dowels or other reinforcing in the wet concrete is not permitted.

3.05 MIXING AND TRANSPORTING PORTLAND CEMENT CONCRETE

A. Transit mix concrete in accordance with the requirements of ASTM Designation C94. Transit mix for not less than ten (10) minutes total, not less than three (3) minutes of which shall be on the site just prior to pouring. Mix continuous with no interruptions from the time the truck is filled until the time it is emptied. Place concrete within one hour of the time water is first added unless authorized otherwise by the Owner’s Representative.

B. Do not hand mix concrete for use in concrete structures.

3.06 PLACING PORTLAND CEMENT CONCRETE

A. Thoroughly wet subgrade when concrete is placed directly on soil. Remove all standing water prior to placing concrete.

B. Do not place concrete until the subgrade and the forms have been approved.
C. Convey concrete from mixer to final location as rapidly as possible by methods that prevent separation of the ingredients. Deposit concrete as nearly as possible in final position to avoid re-handling.

D. Place and solidify concrete in forms without segregation by means of mechanical vibration or by other means as approved by the Owner’s Representative. Continue vibration until the material is sufficiently consolidated and absent of all voids without causing segregation of material. The use of vibrators for extensive shifting of fresh concrete will not be permitted.

E. Concrete in certain locations may be pumped into place upon prior approval by the Owner’s Representative. When this procedure requires redesign of the mix, such redesign shall be submitted for approval in the same manner as herein specified for approval of design mixes.

3.07 PLACING ACCESSORY MATERIALS

A. Place water stops and other items required to be embedded in portland cement concrete structures at locations shown or required in accordance with Section 51-2.04 of the Caltrans Standard Specifications unless otherwise specifically noted or called for on the Plans.

B. Curing Compounds:
 1. Regular Portland Cement Concrete: Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoad areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 2. Color Conditioned Decorative Portland Cement Concrete: Apply in accordance with the manufacturer’s written instructions.

3.08 FORM REMOVAL

A. Remove forms without damage to the concrete. Remove all shores and braces below the ground surface, before backfilling.

B. Do not backfill against concrete until the concrete has developed sufficient strength to prevent damage.

C. Leave forms for cast-in-place walls in place at least 72 hours after pouring.

D. Leave edge forms in place at least 24 hours after pouring.

3.09 FIELD QUALITY CONTROL

A. Finish subgrade for concrete improvements shall be subject to approval prior to placement of forms.

B. No concrete shall be placed prior to approval of forms.
C. Concrete improvements constructed shall not contain "bird baths" or pond water and shall be smooth and ridge free.

D. Conform the finish grade and cross section of concrete improvements to the design grades and cross sections.

E. Variation of concrete improvements from design grade and cross section as shown or called for on the plans shall not exceed the tolerances ACI 117 and as follows:
 1. Elevation: ¼ inch.
 3. Surface: Gap below 10 foot long, unleveled straightedge not to exceed 1/4 inch.
 4. Lateral Alignment and Spacing of Tie Bars and Dowels: 1 inch.
 5. Vertical Alignment of Tie Bars and Dowels: 1/4 inch.
 6. Alignment of Tie-Bar End Relative to Line Perpendicular to Pavement Edge: 1/2 inch.
 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Pavement Edge: Length of dowel 1/4 inch per 12 inches.
 8. Joint Spacing: 3 inches, unless otherwise indicated.

3.10 RESTORATION OF EXISTING IMPROVEMENTS

A. Replace in kind all pavement or other improvements removed or damaged due to the installation of concrete improvements.

B. Remove, landscaping or plantings damaged or disturbed due to the installation of concrete improvements. Replace in kind.

END OF SECTION
SECTION 33 10 00
WATER SYSTEM

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Site water distribution system for fire protection services up to 5 feet of any on-site building being served.

1.02 RELATED SECTIONS

A. Section 31 21 00, Utility Trenching and Backfill

1.03 RELATED DOCUMENTS

A. ASME

1. ASME A112.1.2: Air Gaps in Plumbing Systems (for Plumbing Fixtures and Water Connect Receptors
2. ASME B1.20.1: Pipe Threads, General Purpose, Inch
3. ASME B16.1: Gray Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, and 250
4. ASME B16.18: Cast Copper Alloy Solder Joint Pressure Fittings
5. ASME B16.22: Wrought Copper and Copper Alloy Solder – Joint Pressure fittings
6. ASME B16.26: Cast Copper Alloy Fittings for Flared Copper Tubes

B. ASTM

2. ASTM A674: Standard Practice for Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids
3. ASTM B61: Standard Specification for Steam or Valve Bronze Castings
4. ASTM B62: Standard Specification for Composition Bronze or Ounce Metal Castings
5. ASTM B88: Standard Specification for Seamless Copper Water Tube
7. ASTM D1785: Standard Specification for Poly Vinyl Chloride (PVC) Plastic Pipe, Schedules 40, 80, and 120

C. AWWA

1. C104: Cement-Mortar Lining for Ductile-Iron Pipe and Fittings
2. C105: Polyethylene Encasement for Ductile-Iron Pipe Systems
4. C111: Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings
7. C150: Thickness Design of Ductile-Iron Pipe
8. C151: Ductile-Iron Pipe, Centrifugally Cast
9. C153: Ductile-Iron Compact Fittings
10. C200: Steel Water Pipe 6 inch and larger
11. C203: Coal-Tar Protective Coatings and Linings for Steel Water Pipe
13. C207: Steel Pipe Flanges for Waterworks Service-Sizes 4 inch through 144 inch
14. C208: Dimensions for Fabricated Steel Water Pipe Fittings
15. C209: Cold Applied Tape Coatings for Steel Water Pipe, Special Sections, Connections, and Fittings
18. C214: Tape Coatings for Steel Water Pipelines
19. C218: Liquid Coatings for Aboveground Steel Water Pipe and Fittings
20. C219: Bolted, Sleeve-type Couplings for Plain-End Pipe
21. C500: Metal-Seated Gate Valves for Water Supply Service
22. C502: Dry-Barrel Fire Hydrants
23. C503: Wet Barrel Fire Hydrants
25. C507: Ball Valves, 6 inch through 60 inch.
27. C509: Resilient-Seated Gate Valves for Water Supply Service
28. C510: Double Check Valve Backflow Prevention Assembly
29. C511: Reduced-Pressure Principle Backflow Prevention Assembly
30. C512: Air-Release, Air/Vacuum, and Combination Air Valves for Water and Wastewater Service
31. C550: Protective Interior Coatings for Valves and Hydrants
32. C600: Installation of Ductile-Iron Water Mains and Their Appurtenances
33. C606: Grooved and Shouldered Joints
34. C651: Disinfecting Water Mains
35. C800: Underground Service Line Valves and Fittings
36. C900: Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 inch through 60 inch for Water Transmission and Distribution
37. C901: Polyethylene (PE) Pressure Pipe and Tubing, ½ inch through 3 inch for Water Service
38. C905: Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 14 inch through 48 inch for Water Transmission and Distribution
39. C906: Polyethylene (PE) Pressure Pipe and Fittings, 4 inch through 65 inch, for Waterworks
41. M23: PVC Pipe – Design and Installation
42. M41: Ductile-Iron Pipe and Fittings

D. Factory Mutual Insurance Company (FM)
1. FM 1530: Fire Department Connections

E. National Fire Protection Association (NFPA)
 1. NFPA 24: Installation of Private Fire Service Mains and Their Appurtenances
 2. NFPA 70: National Electric Code
 3. NFPA 1963: Fire Hose Connection

F. National Sanitation Foundation (NSF)
 1. NSF 61: Drinking Water System Components-Health Effects

G. Underwriters Laboratory (UL)
 1. UL 262: Safety Gate Valves for Fire-Protection Service
 2. UL 405: Safety Fire Department Connection Devices
 3. UL 789: Indicator Posts for Fire-Protection Service

1.04 DEFINITIONS

A. AASHTO: American Association of State Highway and Transportation Officials

B. ASTM: American Society for Testing Materials

C. AWWA: American Waterworks Association

D. DI: Ductile iron

E. DIP: Ductile iron pipe

F. FM: Factory Mutual

G. NFPA: National Fire Protection Association

H. NSF: National Sanitation Foundation

I. PCC: Portland cement concrete

J. PE: Polyethylene

K. PVC: Polyvinyl Chloride

L. UL: Underwriters Laboratory

1.05 SYSTEM PERFORMANCE REQUIREMENTS

A. Minimum Working Internal Pressures: As indicated on Plans.

B. External Load: Earth load indicated by depth of cover plus AASHTO H20 live load unless indicated otherwise.
1.06 SUBMITTALS

C. Product Data: Manufacturer’s literature and data, including, where applicable, sizes, pressure rating, rated capacity, listing/approval stamps, labels, or other marking on equipment made to the specified standards for materials, and settings of selected models, for the following:

1. Piping materials and fittings
2. Gaskets, couplings, sleeves, and assembly bolts and nuts
3. Restrained pipe fittings
4. Gate valves
5. Butterfly valves
6. Check valves
7. Ball valves
8. Valve boxes, meter boxes, frames and covers
9. Backflow preventers
10. Fire hydrants
11. Post indicator valves
12. Fire department connections
13. Thrust block concrete mix
14. Service saddles and corporation stops
15. Identification materials and devices

D. Shop Plans and Calculations: Where an on-site fire water system is required, Contractor shall provide shop plans for Engineer and agency approval prior to construction. Coordinate with the Plans and identify any proposed modifications or deviations. Shop Plans and Calculations shall be stamped and signed by a registered Fire Protection Engineer licensed by the State of California as required.

1. Include the following information:
 a. Design assumptions
 b. Thrust block sizing and calculations
 c. Materials to be used
 d. Available water pressure
 e. Required water pressure
2. The review of fire system components constitutes only a portion of the review and approval required. A copy of the fire system component submittal package shall be forwarded to the local fire marshal for further review and approval.

E. Shop drawings: Include plans, elevations, details and attachments.
1. Precast and cast in-place vaults and covers
2. Wiring diagrams for alarm devices

F. Field test reports: Indicate and interpret test results for compliance with the Project requirements.

1.07 QUALITY ASSURANCE

A. Comply with requirements of utility supplying water. Do not operate existing valves or tap existing piping without written permission and/or presence of utility company representative.

B. Comply with the following requirements and standards:

C. Provide listing/approval stamp, label, or other marking on piping and specialties made to a specified standard.

1.08 MATERIAL DELIVERY, STORAGE AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. Deliver piping with factory-applied end-caps. Maintain end-caps through shipping, storage and handling to prevent pipe end damage and to prevent entrance of dirt, debris and moisture.

C. Handling: Use slings to handle valves and fire hydrants whose size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. During Storage: Use precautions for valves, including fire hydrants according to the following.
 1. Do not remove end protectors, unless necessary for inspection, then reinstall for storage.
 2. Protection from Weather: Store indoors and maintain temperature higher than ambient dew-point temperature. Store indoors and maintain temperature higher than ambient dew point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

E. Do not store plastic pipe and fittings in direct sunlight.

F. Protect pipe, fittings, flanges, seals and specialties from moisture, dirt and damage.

G. Protect linings and coatings from damage.

H. Handle precast boxes, vaults and other precast structures according to manufacturer’s written instructions.

I. Protect imported bedding and backfill material from contamination by other materials.

1.09 COORDINATION

A. Coordinate connection to existing water mains with water utility supplying water.

B. Coordinate piping materials, sizes, entry locations, and pressure requirements with building domestic water distribution piping and fire protection piping.
PART 2 - PRODUCTS

ALL PRODUCTS TO BE APPROVED PER SEPARATE SUBMITTAL WITH CITY OF BERKELEY FIRE DEPARTMENT, AND PER DRAWINGS PREPARED BY LICENSED FIRE PROTECTION ENGINEER.

2.01 PVC PIPE: SIZES 4 INCH THROUGH 48 INCH

A. Pipe: Pressure Class 200, DR 14, spigot and gasket bell end, conforming to AWWA C900 (4 inch through 12 inch and AWWA C905 (14 inch through 48 inch)

B. Fittings: Ductile iron fittings
 1. Standard: AWWA C110, sizes 4 inch through 48 inch
 2. Compact: AWWA C153, sizes 4 inch through 24 inch
 3. All fittings shall be fusion epoxy coated per AWWA C116

C. Unrestrained Joints: Push-On Bell and Spigot Joint: AWWA C900

D. Restrained Joints:
 1. Push-On Bell and Spigot Joint: Harness assembly as manufactured by EBAA Iron, or approved equal.
 2. Plain End PVC to Ductile Iron Mechanical Joint: EBAA Iron, or approved equal.

E. Steel or Ductile Iron Couplings:
 1. Plain End Pipe to Plain End Pipe: Ductile iron or steel bolted couplings, manufacturer’s shop coating with low alloy steel bolts and nuts. Steel couplings to conform to AWWA C219. Smith-Blair, Inc., Dresser, or approved equal.
 2. Plain End Pipe to Ductile Iron or Steel Flanged Pipe: Ductile iron or steel bolted flanged coupling adapters, manufacturer’s shop coating with low alloy steel bolts and nuts. Steel flanged couplings to conform to AWWA C219. Smith-Blair, Inc, Dresser or approved equal.

F. PVC Couplings:
 1. Unrestrained Plain End to Plain End Pipe: AWWA C900, as manufactured by North American Pipe approved equal.
 2. Restrained Plain End to Plain End Pipe: AWWA C900, “Fluid-Tite” as manufactured by North American Pipe, or approved equal.

2.02 GATE VALVES

A. Provide valves conforming to AWWA C500 or AWWA C509

B. Valves shall be resilient-seated, with non-rising stem, gray or ductile-iron body and bonnet, with bronze or gray or ductile-iron gate, bronze stem and square stem operating nut unless noted otherwise.

C. All bolts, nuts and washers, except operating nut, shall be stainless steel.

D. Stem operating nut to be 2 inches square and open counter-clockwise.

E. Stem extensions shall be installed to bring the stem operating nut to within 2 feet of finish grade where the depth from finish grade to the stem operating nut exceeds 4 feet.
F. Provide protective epoxy interior and exterior coating according to AWWA C550 and manufacturer’s recommendations.

G. For the domestic water system, valves shall also conform to NSF 61.

H. Where a post indicator is shown, provide valve with an indicator post flange.

I. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the project include, but are not limited to, the following:
 1. Mueller Company
 2. M&H Valve Company
 3. Crane Company, or approved equal

2.03 SWING CHECK VALVES

A. Provide swing-check type valves conforming to AWWA C508.

B. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Project include, but are not limited to, the following:
 1. Mueller Company
 2. M&H Valve Company
 3. DeZurik/APCO
 4. Watts, or approved equal

2.04 BALL VALVES

A. Provide ball valves (6 inch through 48 inch) per AWWA C507 as manufactured by Crane Company, or approved equal.

B. Valves shall open by counterclockwise rotation of the valve stem.

C. Provide valves with ends as appropriate for the adjoining pipe.

D. Provide valve with lockable operating nut or handle as shown on the Plans.

2.05 SERVICE CONNECTIONS AND WATER METERS

A. Service connections and water meter details and boxes per EBMUD application.

2.06 VALVE BOXES, METER BOXES, FRAMES AND COVERS

A. Water Valve Box: Provide pre-cast concrete valve box for each buried valve. Provide box with steel or cast iron traffic cover marked “WATER”. Christy Model G5 with G5C cover or approved equal.

B. Valve or Meter Boxes: Contractor shall verify box size required for water system appurtenances as shown in the Construction Documents. Provide a precast concrete utility box for each buried appurtenance. Provide a traffic-rated lid for H20 loading. A non-traffic rated lid may be used for boxes located in landscape areas. Christy, or approved equal.
2.07 BACKFLOW PREVENTER

A. Provide backflow device per list of EBMUD approved products. To be confirmed with EBMUD backflow prevention department per EBMUD application.
 1. 6-Way FDC: Connection shall be subject to approval by the local water department or fire marshal. Croker, Potter-Roemer or approved equal.

2.08 THRUST BLOCKS

A. Use concrete conforming to ASTM C94 having a minimum compressive strength of 2,500 psi at 28 days; or use concrete of a mix not leaner than one part cement, 2 ½ parts sand, and 5 parts gravel, having the same minimum compressive strength.

B. Provide thrust blocks or mechanical pipe restraints at all fittings and changes in angle, alignment or elevation.

C. Where depth or location of existing structures prohibit the use of standard thrust blocks, gravity blocks may be used.

2.09 IDENTIFICATION MATERIALS AND DEVICES

A. Warning Tape: Provide warning tape consisting of metallic foil bonded to solid blue plastic film not less than 3 inches wide. Film shall be inert polyethylene plastic. Film and foil shall each not be less than 1 mil thick. The tape continuously shall have printed black-letter, not less than ¾ inch high, message reading "CAUTION: WATER MAIN BELOW".

B. Tracer Wire for Nonmetallic Piping: Provide 12 guage, coated copper or aluminum wire not less than 0.10 inch in diameter, with blue THW, THWN, or THHN rated insulation, in sufficient length to be continuous over each separate run of nonmetallic pipe. Wire shall be tied in at all valves.

PART 3 - EXECUTION

3.01 PIPE INSTALLATION

A. Pipe Depth and Trench Configuration: Conform to elevations, profiles and typical trench section(s) shown on the Plans.

B. Excavation, Bedding, Backfill, and Compaction: Section 31 21 00 – Utility Trenching and Backfill.

C. Handling: Carefully handle during loading, hauling, unloading and placing operations to avoid breakage or damage. Use strap type slings for lifting and placing; no chains or hooks will be permitted. Comply with manufacturer’s recommendations.

D. Pipe laying and jointing:
 1. Provide proper facilities for lowering sections of pipe into trenches.
 2. Do not drop or dump pipe, fittings, valves, or any other water line material into trenches.
 3. Cut pipe accurately to length established at the site and work into place without springing or forcing. Replace any pipe or fitting that does not allow sufficient space for proper installation of jointing material.
4. Blocking or wedging between bells and spigots will not be permitted. Lay bell-and-spigot pipe with the bell end pointing in the direction of laying.

5. Grade the pipeline in straight lines; avoid the formation of dips and low points.

6. Support pipe at proper elevation and grade.

7. Provide secure firm, uniform support. Wood support blocking will not be permitted.

8. Lay pipe so that the full length of each section of pipe and each fitting rests solidly on the pipe bedding; excavate recesses to accommodate bells, joints, and couplings.

9. Provide anchors and supports where indicated and where necessary for fastening work into place.

10. Make proper provision for expansion and contraction of pipelines.

11. Keep trenches free of water until joints have been properly made.

12. Do not lay pipe when conditions of trench or weather prevent proper installation.

13. All fittings shall be blocked with appropriately sized thrust blocks as shown on the Plans.

E. Installation of Tracer Wire:

1. Install a continuous length of tracer wire for the full length of each run of nonmetallic pipe.

2. Attach wire to top of pipe in such manner that it will not be displaced during construction operations.

3. Form a mechanically and electrically continuous line throughout the pipeline, extending to the nearest valve or other pipeline appurtenance. Extend the wire up the outside of the valve box/riser and cut a hole that is 8 inches from the top, extend a 12 inch wire lead to the inside of the box. At other pipeline appurtenances, terminate the 12 inch wire lead inside the enclosure.

4. Splice wire with a splicing device consisting of and electro-tin plated seamless copper sleeve conductor. Install as recommended by the manufacturer. Wrap splices and damaged insulation with electrician’s tape.

F. Installation of Warning Tape

1. Install tape approximately 1 foot above and along the centerline of the pipe.

2. Where tape is not continuous, lap tape ends a minimum of 2 feet.

G. Curved Alignment: When necessary to conform to the alignment specifically indicated, lay pipe on a curved alignment by means of asymmetrical closure of joints or bending of the pipe barrel. If necessary, use shorter than the standard lengths of pipe to achieve curvature specified. Do not exceed the recommendations of the pipe manufacture for deflections at the joints or pipe bending.

H. Connections to Existing Lines:

1. Make connections to existing water lines after approval is obtained and with a minimum interruption of service on the existing line.

2. Make connections to existing lines under pressure in accordance with the recommended procedures of a manufacturer of pipe of which the line being tapped is made.

I. Closure: Close open ends of pipes and appurtenance openings at the end of each day’s work or when work is not in progress.
3.02 INSTALLATION OF POLYVINYL CHLORIDE PIPING

A. Comply with the recommendations for pipe installation, joint assembly and appurtenance installation in AWWA Manual M23.

B. Comply with the applicable requirements of AWWA C600 for joint assembly, and with the recommendations of Appendix A to AWWA C111.

C. Jointing:
 1. Provide push-on joints with the elastomeric gaskets specified for this type joint, using either elastomeric-gasket bell-end pipe or elastomeric-gasket couplings.
 2. For pipe-to-pipe push-on joint connections, use only pipe with push-on joint ends having factory-made bevel.
 3. For push-on joint connections to metal fittings, valves, and other accessories, cut spigot end of pipe off square and re-bevel pipe end to a bevel approximately the same as that on ductile-iron pipe used for the same type of joint.
 4. Use an approved lubricant recommended by the pipe manufacturer for push-on joints.
 5. Assemble push-on joints for connection to fittings, valves, and other accessories in accordance with the applicable requirements of AWWA C600 for joint assembly.
 6. Make compression-type joints/mechanical-joints with the gaskets, glands, bolts, nuts, and internal stiffeners previously specified for this type joint. Cut off spigot end of pipe for compression-type joint or mechanical-joint connections and do not re-bevel.
 7. Assemble joints made with sleeve-type mechanical couplings in accordance with the recommendations of the coupling manufacturer using internal stiffeners as previously specified for compression-type joints.

D. Pipe Anchorage:
 1. Provide concrete thrust blocks or restrained joints for pipe anchorage, except where metal harness is indicated on the Plans.

3.03 INSTALLATION OF VALVES

A. Gate Valves
 1. Install gate valves conforming to AWWA C500 and UL 262 in accordance with the requirements of AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix (Installation, operation, and Maintenance of Gate Valves) to AWWA C509.

 2. Install gate valves conforming to AWWA C509 in accordance with the requirements of AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix (Installation, Operation, and Maintenance of Gate Valves) to AWWA C509.

 3. Install gate valves on PVC water mains in addition in accordance with the recommendations for appurtenance installation in AWWA Manual M23.

B. Butterfly Valves: Install butterfly valves in accordance with the applicable requirements of Appendix A of AWWA C504.

C. Check Valves: Install check valves in accordance with the applicable requirements of AWWA C600 for valve-and-fitting installation, except as otherwise indicated.
D. Joints:
2. Valves on Steel Pipe: As indicated for buried locations. Flanged-end valves for installation in vaults/pits.

3.04 INSTALLATION OF VALVE AND METER BOXES
A. Boxes shall be centered over the appurtenance so as not to transmit shock or stress. Covers shall be set flush with the surface of the finished pavement, or as shown on the Plans. Backfill shall be placed around the boxes and compacted to the specified level in a manner that will not damage or displace the box from proper alignment or grade. Misaligned boxed shall be excavated, plumbed, and backfilled at no additional cost to the Owner.

3.05 INSTALLATION OF FIRE HYDRANTS
A. Install fire hydrants, except for metal harness, plumbed vertical, in accordance with AWWA C600 for hydrant installation and as indicated.
B. Provide and assemble joints as specified for making and assembling the same type joints between pipe and fittings. Hydrants shall be set so that mounting bolts clear the top of finished grade by three inches so bolts may be easily replace if needed.
C. Provide metal harness as specified under pipe anchorage requirements for the respective pipeline material to which hydrant is attached.

3.06 SERVICE LINE CONNECTIONS TO WATER MAINS
A. Connect service lines of size shown on plans to the main with a rigid connection or a corporation stop and gooseneck. Install a gate valve on the service line.
B. Connect service lines to ductile-iron water mains in accordance with AWWA C600 for service taps.
C. Connect service lines to PVC plastic water mains in accordance with the recommendations of AWWA Manual M23.

3.07 INSTALLATION OF BACKFLOW PREVENTERS
A. Backflow devices shall be installed horizontal and level, with three feet minimum clearances from obstructions.

3.08 ANCHORAGE INSTALLATION
A. Mechanically Restrained Joints: Install where indicated for lengths indicated in accordance with manufacturer’s instructions.
B. PCC Thrust Blocks: Install where required and as indicated. Bearing area indicated is to be against undisturbed earth. Allow a minimum of 24 hours curing time before introducing water into the pipeline and allow a minimum of 7 days curing time before pressure testing.
3.09 AND LEAKAGE TEST

A. General:
1. Provide all necessary materials and equipment, including water.
2. Backfill all trenches sufficient to hold pipe firmly in position.
3. Allow time for thrust blocks to cure prior to testing.
4. Flush all pipes prior to testing to remove all foreign material.
5. Perform pressure and leakage test concurrently.
6. Apply test pressure by means of a pump connected to the pipe.
7. Base test pressure on the elevation of the lowest point in the line.
8. Fill each closed valve section or bulk-headed section slowly. Expel air from section being tested by means of permanent air vents installed at high points or by means of temporary corporation cocks installed at such points. Remove and plug the temporary corporation cocks at the conclusion of the test.
9. Ensure the release of air from the line during filling, and prevent collapse due to vacuum when dewatering the line.
10. The pressure test on mortar-lined pipe shall not begin until the pipe has been filled with water for at least 24 hours to allow for absorption in the cement mortar lining.
11. Allow the system to stabilize at the test pressure before conducting the leakage test.
12. Do not operate valves in either the opening or closing direction at differential pressures above the valves rated pressure.
13. Maintain test pressure as specified for type of pipe being tested.
14. Pressure Test: Examine any exposed pipe, fittings, valves, hydrants and joints during the test, if no leaks are observed the section of line has passed the pressure test. If leaks are observed, repair any damaged or defective pipe, fittings, valves, or hydrants, and repeat the pressure test.
15. Leakage Test: Perform as specified hereafter for the type of pipe being installed.

B. Preparation for Test
1. Vents shall be provided at the high points of the system and drains provided where means of venting or draining do not exist.
2. Remove or block off, all relief valves, rupture discs, alarms, control instruments, etc. that shall not be subjected to the test pressure.
3. All discs, balls, or pistons from check valves shall be removed if they interfere with filling of the system. Open all valves between inlet and outlet of the section to be tested.
4. Connect pump and provide temporary closures for all of the external openings in the system. Use caution to insure that the closures are properly designed and strong enough to withstand the test pressure.
5. A joint previously tested in accordance with this specification may be covered or insulated.
6. Expansion joints shall be provided with temporary restraint for additional pressure under test or shall be isolated from the test.
7. Flanged joints, where blanks are inserted to isolate equipment during the test, need not be tested.

C. PVC Pipe Leakage Test: Perform in accordance with AWWA M23. Selected requirements of AWWA M23 are repeated as follows:
1. The pipe shall be subjected to a hydrostatic pressure of 50 percent above the normal operating pressure, or 150 psi, whichever is greater. In no case shall the pressure be allowed to exceed the design pressure for pipe, appurtenances, or thrust restraints.

2. Maintain the test pressure, +/- 5 psi, for a minimum of four hours.

3. No piping will be accepted if the leakage is greater than that determined by the following formula:

 \[L = \frac{(N \times D \times P^{1/2})}{7,400} \]

 - \(L \) = Allowable leakage, gallons per hour.
 - \(N \) = Number of joints in the length of the pipeline tested.
 - \(D \) = Nominal diameter of pipe, inches.
 - \(P \) = Average test pressure during the leakage test, pounds per square inch (gauge).

3.10 CLEANING

 A. At the conclusion of the work, thoroughly clean all pipelines by flushing with water or other means to remove all dirt, stones, pieces of wood, or other material which may have entered the pipes during the construction period. Debris cleaned from the lines shall be removed from the low end of the pipeline. If after this cleaning, obstructions remain, they shall be removed. After the pipelines are cleaned and if the groundwater level is above the pipe or following a heavy rain, the Owner will examine the pipes for leaks. If any further defective pipes or joints are discovered, the Contractor shall repair them. Finished paving shall not be installed prior to completion of all cleaning and testing.

3.11 DISINFECTION OF PIPELINES

 A. After completion of the hydrostatic test, the mains shall be thoroughly flushed with a minimum pipe velocity of 2.5 fps and chlorinated in accordance with the latest revision of AWWA 651, Standards of Disinfecting Water Mains. Any one of the methods therein described may be used, with the additional requirement of 50 ppm chlorination minimum initial application. At the end of the contact period, the mains shall again be flushed, and bacteriological samples taken.

 B. If necessary, the Contractor shall provide, at his expense, outlets from which to take the samples. The location of the chlorination and sampling points will be determined by the Owner in the field. Taps for chlorination and sampling shall be installed. The Contractor shall uncover and backfill the taps as required.

 C. Disinfection of tie-ins shall be performed by the Contractor by swabbing with chlorine or by other approved methods. Following a tie-in, the area affected by the tie-in shall be thoroughly flushed and bacteriological samples will be taken as deemed necessary.

 D. All treated water flushed from the lines shall be dechlorinated and disposed of by discharging to the locations identified in the Plans, or by other approved means. No discharge of chlorinated water to any storm sewer or natural water course will be allowed, unless properly dechlorinated.

 E. The Contractor shall rechlorinate and retest any lines that do not meet the requirements of the above testing. The line shall not be placed in service until the requirements of the State Public Health Department are met.
SECTION 33 30 00
SANITARY SEWER SYSTEM

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Sanitary gravity sewers and force mains up to five feet from any on-site building

1.02 RELATED SECTIONS

A. Section 31 21 00, Utility Trenching and Backfill
B. Section 32 13 18, Cement and Concrete for Exterior Improvements

1.03 RELATED DOCUMENTS

C. ASTM
1. A615: Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
2. ASTM A674: Standard Practice for Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids
3. C143: Standard Test Method for Slump of Hydraulic-Cement Concrete
8. C1244: Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill
10. D3034: Standard Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings
15. F1336: Standard Specification for Poly(Vinyl Chloride) (PVC) Gasket Sewer Fittings

D. AWWA
1. C104: Cement-Mortar Lining for Ductile-Iron Pipe and Fittings
2. C105: Polyethylene Encasement for Ductile-Iron Pipe Systems
4. C111: Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings
7. C153: Ductile-Iron Compact Fittings
8. C219: Bolted, Sleeve-type Couplings for Plain-End Pipe
11. C606: Grooved and Shouldered Joints
12. C900: Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 60 In. for Water Transmission and Distribution
13. C905: Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 14 In. Through 48 In. for Water Transmission and Distribution

E. Caltrans Standard Specifications, 2015
 1. Section 51, Concrete Structures
 2. Section 65, Concrete Pipe
 3. Section 75 Miscellaneous Metal
 4. Section 90, Concrete

F. Federal Specification
 1. SS-S-00210 (GSA-FSS)

1.04 DEFINITIONS

 A. AASHTO: American Association of State Highway and Transportation Officials
 B. ASTM: American Society for Testing Materials
 C. AWWA: American Water Works Association
 D. HDPE: High-density polyethylene
 E. PE: Polyethylene
 F. DIP: Ductile iron pipe
 G. PVC: Polyvinyl Chloride
 H. RCP: Reinforced concrete pipe
 I. NPS: Nominal pipe size

1.05 SUBMITTALS

 J. Product data for the following:
 1. Piping materials and fittings
 2. Special pipe couplings
 3. Joint sealants
4. Cleanout plugs or caps

K. Shop drawings: Include plans, elevations, details and attachments for the following:
 1. Precast concrete manholes, frames and covers
 2. Precast concrete clean out boxes and box covers

L. Design Mix Reports and Calculations: For each class of cast in place concrete

M. Field Test Reports: Indicate test results for compliance with performance.

1.06 DELIVERY, STORAGE AND HANDLING

A. Delivery and Storage
 1. Piping: Inspect materials delivered to site for damage; store with minimum of handling. Store materials on site in enclosures or under protective coverings. Store plastic piping and jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes and fittings free of dirt and debris.
 2. Metal Items: Check upon arrival; identify and segregate as to types, functions, and sizes. Store off the ground in a manner affording easy accessibility and not causing excessive rusting or coating with grease or other objectionable materials.

B. Handling
 1. Handle pipe, fittings, and other accessories in such manner as to ensure delivery to the trench in sound undamaged condition. When handling lined pipe, take special care not to damage linings of pipe and fittings; if lining is damaged, make satisfactory repairs. Carry, do not drag, pipe to trench.
 2. Handle precast concrete pipe, manholes and other precast structures according to manufacturer’s written instructions.
 3. Protect imported bedding and backfill material from contamination by other materials.

PART 2 - PRODUCTS

2.01 PVC PIPE

A. Pipe:
 1. 4 inch through 15 inch: ASTM D3034, SDR 26

B. Bell and spigot joints

C. Fittings:
 1. 4 inch through 27 inch: ASTM F1336

D. Joint Gasket: Elastomeric seal, ASTM F477

E. Special Pipe Coupling: ASTM C1173. Rubber or elastomeric sleeve and band assembly fabricated to match outside diameters of pipes to be joined.

2.02 GRAVITY PIPE CLEANOUTS

A. Piping: Same as sanitary sewer line if possible
B. Top Cap: Threaded and of same material as piping if possible

C. Box Size: As required to provide access and allow easy removal and reinstallation of cap

D. Box Types:
 1. Traffic Areas: Portland cement concrete box and box cover or steel or cast iron cover, heavy duty, both box and cover to be rated for AASHTO H20 loading

E. Box Cover Markings: “SANITARY SEWER” unless otherwise specified

F. Available Manufacturers: Subject to compliance with requirements, box manufacturers offering products that may be incorporated into the Project include, but are not limited to the following:
 1. Associated Concrete Products, Inc.
 2. Brooks Products Inc.
 3. Christy Concrete Products, Inc., or approved equal

2.03 PIPE TO STRUCTURE CONNECTOR/SEAL

A. A flexible pipe to manhole connector shall be used for all pipe penetrations to pre-cast and/or cast-in-place concrete structures.
 1. The seal shall provide a flexible, positive, watertight connection between pipe and concrete wastewater structures. The connector shall assure that a seal is made between (1) the connector and the structure wall, and (2) between the connector and the pipe. The seal between the connector and the manhole wall shall be made by casting the connector integrally with the structure wall during the manufacturing process in such a manner that it will not pull out during coupling. The seal between connector and pipe will be made by way of a stainless steel take down band compressing the gasket against the outside diameter of the pipe.
 2. The connector shall be molded from materials whose physical/chemical properties meet or exceed the physical/chemical resistant properties outlined in ASTM C923. The connector and stainless steel hardware shall meet or exceed the performance requirements proscribed in ASTM C923.
 3. The connector shall be of size specifically designed for the pipe material being used and shall be installed in accordance with recommendations of the manufacturer.
 4. Connectors shall be Z-LOK or G3 connectors manufactured by A-LOK Products Inc. or approved equivalent.

PART 3 - EXECUTION

3.01 GRAVITY PIPE INSTALLATION

A. General: Install pipe, fittings, and appurtenances utilizing best practices, manufacturer’s instructions, and in accordance with Section 6 and 7 of ASTM D 2321 for plastic pipe, Caltrans Standard Specification Section 65-2.03 for reinforced concrete pipe and chapter 11.3.3 of AWWA M41 for ductile iron pipe.

B. Pipe Depth and Trench Configuration: Conform to typical trench section(s) indicated.

C. Excavation, Bedding, Backfill, and Compaction: Section 31 21 00, Utility Trenching and Backfill.
D. Handling: Carefully handle during loading, hauling, unloading and placing operations to avoid breakage or damage. Use strap type slings for lifting and placing; no chains or hooks will be permitted. Comply with the manufacturer’s recommendations.

E. Laying: Before lowering pipe into the trench, remove all stakes, debris, loose rock and other hard materials from the bottom of the trench. Lay accurately in conformance with lines and grades indicated. Start laying the pipeline at the low end and proceed upstream. Lay bell and spigot pipe with the bell end facing upstream. Lay pipe on a bed prepared by handwork, dug true to grade. Furnish firm bearing for pipe throughout its entire length with bell holes provided at the ends of each pipe length of sufficient size to permit making up the particular type of joint being used. Adjust pipe to line and grade by scraping away or filling and tamping material under the body of the pipe for the entire pipe length and not by blocking or wedging. After final positioning, hold pipe in place in trench with backfill material placed equally on both sides of the pipe at as many locations as required to hold the pipe section in place.

F. Curved Alignment: When necessary to conform to the alignment specifically indicated, lay pipe on a curved alignment by means of asymmetrical closure of joints or bending of the pipe barrel. Use shorter lengths of pipe than the standard length if necessary to achieve curvature specified. Do not exceed the recommendations of the pipe manufacture for deflections at the joints or pipe bending.

G. Closure: Close open ends of pipes and appurtenance at the end of each day’s work or when work is not in progress.

3.02 INSTALLATION OF POLYVINYL CHLORIDE PIPING

A. Comply with the recommendations for pipe installation, joint assembly and appurtenance installation in AWWA M23.

B. Comply with the applicable requirements of AWWA C600 for joint assembly, and with the recommendations of Appendix A to AWWA C111.

C. Jointing:
 1. Provide push-on joints with the elastomeric gaskets specified for this type joint, using either elastomer-gasket bell-end pipe or elastomer-gasket couplings.
 2. For pipe-to-pipe push-on joint connections, use only pipe with push-on joint ends having factory-made bevel.
 3. For push-on joint connections to metal fittings, valves, and other accessories, cut spigot end of pipe off square and re-bevel pipe end to a bevel approximately the same as that on ductile-iron pipe used for the same type of joint.
 4. Use an approved lubricant recommended by the pipe manufacturer for push-on joints.
 5. Assemble push-on joints for connection to fittings, valves, and other accessories in accordance with the applicable requirements of AWWA C600 for joint assembly.
 6. Make compression-type joints/mechanical-joints with the gaskets, glands, bolts, nuts, and internal stiffeners previously specified for this type joint. Cut off spigot end of pipe for compression-type joint or mechanical-joint connections and do not re-bevel.
 7. Assemble joints made with sleeve-type mechanical couplings in accordance with the recommendations of the coupling manufacturer using internal stiffeners as previously specified for compression-type joints.
D. Pipe Anchorage:
 1. Provide concrete thrust blocks or restrained joints for pipe anchorage, except where metal harness is indicated on the Plans.

3.03 SPECIAL PIPE COUPLINGS

A. General: Use where required to join piping and no other appropriate method is specified. Do not use instead of specified joining methods.

B. Installation: Manufacturers’ instructions

3.04 POURED-IN-PLACE CONCRETE

A. Concrete shall be mixed in accordance with applicable provisions of Section 90 of Caltrans Standard Specifications.

B. Construction of concrete structures shall conform to applicable provisions of Section 51 of the Caltrans Standards Specifications. Unless otherwise noted herein or in the Plans, exposed surfaces of structures shall be Class 1 surface finish.

C. Curing shall conform to applicable portions in Section 90 of Caltrans Standard Specifications. No pigment shall be used in curing compounds. All work shall be subject to inspection. No concrete shall be placed until the Project Manager has approved the forms and reinforcement.

D. Concrete shall not be cropped freely where reinforcing bars will cause segregation, nor shall it be dropped freely more than six feet. Spouts, elephant trunks, or other approved means shall be used to prevent segregation.

3.05 GRAVITY PIPELINE AIR TESTING AND FLUSHING

A. All new sections of sanitary sewer shall be tested using the following procedures:
 1. Test is conducted between two consecutive manholes, or as directed by the Project Manager.
 2. The test section of the sewer shall be plugged at each end. One of the plugs used at the manhole shall be tapped and equipped for the air inlet connection for filling the line from an air compressor.
 3. All service laterals, stubs, and fittings into the sewer test section shall be properly capped or plugged and carefully braced against the internal pressure to prevent air leakage by slippage and blowout.
 4. Connect air hose to tapped plug selected for the air inlet. Connect the other end of the air hose to the portable air control equipment, which consists of valves and pressure gauges used to control the air entry rate into the sewer test section, and to monitor the air pressure in the pipeline. More specifically, the air control equipment includes a shut-off valve, pressure regulating valve, pressure reduction valve, and a monitoring pressure gauge having a pressure range from 0-5 psi. The gauge shall have minimum divisions of 0.10 psi and an accuracy of 0.40 psi.
 5. Connect another air hose between the air compressor (or other source of compressed air) and the air control equipment. This completes the test equipment set-up. Test operations may commence.
 6. Supply air to the test section slowly, filling the pipeline until a constant pressure of 3.5 psig is maintained. The air pressure must be regulated to prevent the pressure inside the pipe from exceeding 5.0 psig.
7. When constant pressure of 3.5 psig is reached, throttle the air supply to maintain the internal pressure above 3.0 psig for at least 5 minutes. This time permits the temperature of the entering air to equalize with the temperature of the pipe wall. During this stabilization period, it is advisable to check all capped and plugged fittings with a soap solution to detect any leakage at these connections. If leakage is detected at any cap plug, release the pressure in the line and tighten all leaky caps and plugs. Start the test operation again by supplying air. When it is necessary to bleed off the air to tighten or repair a faulty plug, a new 5-minute interval must be allowed after the pipeline has been refilled.

8. After the stabilization period, adjust the air pressure to 3.5 psig and shut-off or disconnect the air supply. Observe the gauge until the air pressure reached 3.0 psig. At 3.0 psig, commence timing with a stopwatch until the pressure drops to 2.5 psig, at which time the stop watch is stopped. The time required, as shown on the stopwatch, for a pressure loss of 0.5 psig is used to compute the air loss.

9. If the time, in minutes and seconds, for the air pressure drop from 3.0 to 2.5 psi is greater than that shown in the following table for the designated pipe size, the section undergoing test shall have passed and shall be presumed to be free of defects. The test may be discontinued at any time.

10. If the time, in minutes and seconds, for the 0.5 psig drop is less than that shown in the following table for the designated pipe size, the section of the pipe shall not have passed the test; therefore, adequate repairs must be made and the line retested.

Requirements for Air Testing

<table>
<thead>
<tr>
<th>Pipe Size (in inches)</th>
<th>Time (in minutes)</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

11. For 8 inch and smaller pipe, only: if, during the 5 minute saturation period, pressure drops less than 0.5 psig after the initial pressurization and air is not added, the pipe section undergoing test shall have passed.

12. Multi-pipe sizes: when the sewer line undergoing test is 8 inch or larger diameter pipe and includes 4 inch or 6 inch laterals, the figures in the table for uniform sewer main sizes will not give reliable or accurate criteria for the test. Where multi-pipe sizes are to undergo the air test, the Project Manager can compute the “average” size in inches which is then multiplied by 38.2 seconds. The results will give the minimum time in seconds acceptable for a pressure drop of 0.5 psig for the “averaged” diameter pipe.

13. Adjustment Required for Groundwater:
 a. An air pressure correction is required when the ground water table is above the sewer line being tested. Under this condition, the air test pressure must be increased .433 psi for each foot the ground water level is above the invert of the pipe.
 b. Where ground water is encountered or is anticipated to be above the sewer pipe before the air testing will be conducted, the following procedure shall be implemented at the time the sewer main and manholes are constructed.
 1. Install a ½ inch diameter pipe nipple (threaded one or both ends, approximately 10 inch long) through the manhole wall directly on top of one of the sewer pipes entering the manhole with threaded end of nipple extending inside the manhole.
2. Seal pipe nipple with a threaded ½ inch cap.
3. Immediately before air testing, determine the ground water level by removing the threaded cap from the nipple, blowing air through the pipe nipple to remove any obstruction, and then connecting a clear plastic tube to the pipe nipple.
4. Hold plastic tube vertically permitting water to rise in it to the groundwater level.
5. After water level has stabilized in plastic tube, measure vertical height of water, in feet, above invert of sewer pipe.
6. Determine air pressure correction, which must be added to the 3.0 psig normal starting pressure of test, by dividing the vertical height in feet by 2.31. The result gives the air pressure correction in pounds per square inch to be added.

B. After the line has passed the air test, it shall be balled and flushed with water to clean. A metal screen shall be used downstream at the point of connection to the existing system to collect and remove any rock or other debris that is flushed out during cleaning.

3.06 DEFLECTION TESTING

A. Upon completion of work, perform a deflection test on entire length of installed plastic pipeline. Completed work includes superimposed loads adjacent to and over the pipeline, such as compacted backfill and earthwork, and does not include paving, concrete curbs and gutters, sidewalks, walkways, and landscaping.

B. Under external loads, deflection of pipe in the installed pipeline shall not exceed 4.5 percent of the average inside diameter of pipe.

C. Determine whether the allowable deflection has been exceeded by use of a pull-through device or a deflection-measuring device.

D. Pull-Through Device:
 1. Provide a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft.
 a. Circular sections shall be so spaced on the shaft that distance from external faces of front and back sections will equal or exceed diameter of the circular section.
 b. Pull-through device may also be of a design approved by the Uni-Bell Plastic Pipe Association, provided that the device meets the applicable requirements specified in this paragraph, including those for diameter of the device.
 2. Ball, cylinder, or circular sections shall conform to the following:
 a. A diameter, or minor diameter as applicable, of 95 percent of the average inside diameter of the pipe; tolerance of plus 0.5 percent will be permitted.
 b. A homogeneous material throughout, with a density greater than 1.0 as related to water at 39.2 degrees F, and a surface Brinell hardness of not less than 150.
 c. Center bored and through bolted with a ¼ inch minimum diameter steel shaft having a yield strength of not less than 70,000 pounds per square inch, with eyes or loops at each end for attaching pulling cables.
d. Each eye or loop shall be suitably backed with a flange or heavy washer such that a pull exerted on opposite end of shaft will produce compression throughout remote end.

E. Pull-Through Device:
1. Pass the pull-through device through each run of pipe, either by pulling it through or flushing it through with water.
2. If the device fails to pass freely through a pipe run, replace pipe which has the excessive deflection and completely retest in same manner and under same conditions as specified.

F. Deflection measuring Device:
1. Sensitive to 1.0 percent of the diameter of the pipe being tested and accurate to 1.0 percent of the indicated dimension.
2. Obtain approval of deflection measuring device prior to use.

G. Deflection Measuring Device Procedure:
1. Measure deflections through each run of installed pipe.
2. If deflection readings in excess of 4.5 percent of average inside diameter of pipe are obtained, retest pipe by a run from the opposite direction.
3. If retest continues to show a deflection in excess of 4.5 percent of average inside diameter of pipe, remove pipe which has excessive deflections, replace with new pipe, and completely retest in same manner and under same conditions.

H. Warranty Period Test: Pipe found to have a deflection of greater than 5 percent of average inside diameter when deflection test is performed just prior to end of 1 year warranty period shall be replaced with new pipe and tested as specified for leakage and deflection.

3.07 CLEANING

A. Thoroughly clean sewer lines and manholes of sediments, dirt, debris, and obstructions of any kind.

3.08 TELEVISION INSPECTION

A. After completion of the pipe installation, service connections, flushing and cleaning, and prior to placement of pavement, the sewer line shall be televised with a color closed-circuit television with tilt-head camera recorded in DVD format. The original disc and log sheets shall be provided to the Owner for review.

B. The following observations from television inspections will be considered defects in the construction of sewer pipelines and will require correction prior to placement of pavement:
1. Low spot (1 inch or greater - mainlines only)
2. Joint separations (3/4 inch or greater opening between pipe sections)
3. Cocked joints present in straight runs or on the wrong side of pipe curves
4. Chips in pipe ends
5. Cracked or damaged pipe
6. Dropped joints
7. Infiltration
8. Debris or other foreign objects
9. Other obvious deficiencies
10. Irregular condition without logical explanation

END OF SECTION