NOTICE OF AVAILABILITY OF
DRAFT ENVIRONMENTAL IMPACT REPORT
2201 DWIGHT WAY PROJECT
AND
NOTICE OF PUBLIC HEARINGS
State Clearinghouse #2012102041

Notice is hereby given that the City of Berkeley has completed a Draft Environmental Impact Report (Draft EIR), pursuant to the California Environmental Quality Act (CEQA), for the proposed 2201 Dwight Way Project in the Southside area of Berkeley.

PUBLIC HEARINGS: The Landmarks Preservation Commission (LPC) is scheduled to receive public comments on the Draft EIR on March 7, 2013 at 7:00 p.m. at the North Berkeley Senior Center, 1901 Hearst Avenue, Berkeley, CA.

The Zoning Adjustments Board (ZAB) is scheduled to receive public comments on the Draft EIR on March 14, 2013 at 7:00 p.m. at 2134 Martin Luther King Jr. Way, Second Floor Council Chambers, Berkeley, CA.

PUBLIC REVIEW TIMELINE: The public review and comment period for the Draft EIR begins January 30, 2013 and ends March 18, 2013. The City must receive all written comments regarding the adequacy of the Draft EIR within this time period. Written comments may be submitted in person, by mail or by e-mail. The mailing address is Aaron Sage, Land Use Planning Division, 2120 Milvia Street, Berkeley, CA 94704 and the email address is asage@ci.berkeley.ca.us.

DOCUMENT AVAILABILITY: Copies of the Draft EIR are available for review Monday through Friday, between the hours of 8:30 a.m. and 4:00 p.m. at the City of Berkeley Planning and Development Department, 2120 Milvia Street, Berkeley, California or online at http://www.ci.berkeley.ca.us/Planning_and_Development/Land_Use_Division/Environmental_Impact_Analysis.aspx. Copies are also available at the City Clerk, 2180 Milvia Street and the Berkeley Main Public Library Reference Desk, 2090 Kittredge Street.

PROJECT LOCATION: The approximately 0.62-acre rectangular project site is situated at the northeast corner of the intersection of Dwight Way and Fulton Street, at 2201 Dwight Way in the Southside area of the City of Berkeley. The site is located approximately four blocks south of the University of California, Berkeley campus and about six blocks southeast of the Downtown Berkeley BART station.

EXISTING CONDITIONS: The generally level project site is currently developed with a 20,500-square-foot commercial office building and a 25-stall surface parking lot. The building is one story with a mezzanine and is 20 feet tall. The existing structure was constructed in the late 1940’s and, in 1983, the building was converted from an automobile showroom and service center to its present use as office space. The building is currently fully occupied by 2201 Dwight Way, LLC, Dogwood Leasing, and Odin Wave. A masonry retaining wall is located along the northern property line and a portion of the eastern property line, where its maximum height reaches about 6 feet. Approximately 400 square feet of landscaping is included on the site and there are five street trees that border the site on Dwight Way and Fulton Street.
PROJECT DESCRIPTION: The proposed project would involve demolition of the existing 20,500 square foot building and surface parking lot and construction of 81 student-oriented rental apartment units (73 market-rate units and 8 very-low income units) in a five-story building (a maximum of 50 feet tall). The building would be divided into 18 distinct volumes intended to resemble separate buildings. A common area of approximately 1,500 square feet would be located on the ground floor. The proposed project would also provide approximately 8,714 square feet of common open space on-site. The total building area would be about 81,070 square feet. The proposed project evaluated in this Draft EIR considers two variants with regard to the provision of on-site vehicle parking to serve the proposed project: 1) construction of a 49-stall, 20,000 square-foot subterranean parking garage and 2) provision of no on-site parking.

Discretionary actions/approvals by the City that would be necessary for this project include various Use Permits, an Encroachment Permit, and waivers/modifications and concessions under the State Density Bonus Law.

ENVIRONMENTAL EFFECTS: The Initial Study (circulated in October 2012, and included as an Appendix to the Draft EIR) identified no impacts or less-than-significant impacts to the following environmental issues: Agricultural and Forestry Resources; Biological Resources; Geology and Soils; Greenhouse Gas Emissions; Land Use and Planning; Mineral Resources; Population and Housing; Public Services; Recreation; Transportation/traffic; and Utilities and Service Systems.

The Initial Study identified potentially significant impacts to the following environmental issues; however, these were mitigated to a less-than-significant level with mitigation measures recommended in the Initial Study: Air Quality; Archaeological and Paleontological Resources; Hydrology and Water Quality; and Noise.

The Draft EIR evaluates the following environmental issues in detail:

- Visual Resources
- Cultural Resources
- Hazards and Hazardous Materials

Impacts to visual resources and cultural resources would be less than significant. Impacts to hazards and hazardous materials would be mitigated to a less-than-significant level.

The project site is listed on the Cortese List, Govt. Code Section 65962.5 (an annually updated list of hazardous materials release sites) due to releases from former underground storage tanks at the site.

ALTERNATIVES: The CEQA Guidelines require analysis of a reasonable range of alternatives to the project, or to the location of the project, which would feasibly attain most of the project’s basic objectives and avoid, or substantially lessen, any of the significant effects of the project. The range of alternatives required in an EIR is governed by a “rule of reason” that requires the EIR to set forth only those alternatives necessary to permit a reasoned choice. The Draft EIR analyzes the following three alternatives: 1) No Project alternative; 2) Zoning Compliant alternative; and 3) Single-Volume Density Bonus alternative.

QUESTIONS: If you have any questions about this project, contact Aaron Sage at (510) 981-7425 or asage@ci.berkeley.ca.us.
2201 DWIGHT WAY PROJECT
DRAFT ENVIRONMENTAL IMPACT REPORT

STATE CLEARINGHOUSE #2012102041

Submitted to:

City of Berkeley
Planning and Development Department
Land Use Planning Division
2120 Milvia Street
Berkeley, California 94704

Prepared by:

LSA Associates, Inc.
2215 Fifth Street
Berkeley, California 94710
510.540.7331

January 2013
TABLE OF CONTENTS

I. INTRODUCTION
- PURPOSE OF THE EIR ... 1
- PROPOSED PROJECT ... 1
- EIR SCOPE ... 2
- REPORT ORGANIZATION .. 2

II. SUMMARY
- PROJECT UNDER REVIEW .. 5
- SUMMARY OF IMPACTS AND MITIGATION MEASURES 7
- SUMMARY TABLE ... 10

III. PROJECT DESCRIPTION
- PROJECT SITE .. 27
- PROJECT OBJECTIVES .. 37
- PROPOSED PROJECT ... 38
- USES OF THIS EIR ... 46

IV. SETTING, IMPACTS AND MITIGATION MEASURES
- VISUAL RESOURCES ... 53
- CULTURAL RESOURCES .. 67
- HAZARDS AND HAZARDOUS MATERIALS 83

V. ALTERNATIVES
- NO PROJECT ALTERNATIVE .. 99
- ZONING COMPLIANT ALTERNATIVE 99
- SINGLE-VOLUME DENSITY BONUS ALTERNATIVE 103
- ENVIRONMENTALLY SUPERIOR ALTERNATIVE 107

VI. CEQA-REQUIRED ASSESSMENT CONCLUSIONS
- GROWTH INDUCING IMPACTS ... 109
- SIGNIFICANT IRREVERSIBLE CHANGES 110
- EFFECTS FOUND NOT TO BE SIGNIFICANT 111
- UNAVOIDABLE SIGNIFICANT ENVIRONMENTAL IMPACTS ... 121

VII. REPORT PREPARATION
- REPORT PREPARERS ... 123
- REFERENCES .. 123

APPENDICES *(Provided on CD located inside the back cover of the Draft EIR)*
- Appendix A: NOP and Comment Letters
- Appendix B: Initial Study
- Appendix C: Historical Evaluation
FIGURES

Figure III-1: Project Vicinity and Regional Location .. 29
Figure III-2: Aerial Photograph of the Project Site and Existing Site Photo
 Location Map ... 30
Figure III-3: Photos of Existing Site ... 31
Figure III-4: Location of Landmark Structures and Tall Buildings and
 Surrounding Land Uses Photo Location Map ... 32
Figure III-5a: Photos of Surrounding Land Uses ... 33
Figure III-5b: Photos of Surrounding Land Uses ... 34
Figure III-5c: Photos of Surrounding Land Uses ... 35
Figure III-6: Proposed Site Plan – Parking Garage Variant 39
Figure III-7: Proposed Site Plan – No Parking Garage Variant 40
Figure III-8: Proposed Building Elevations .. 41
Figure III-9: Proposed Subsurface Parking Plan – Parking Garage Variant 44
Figure IV.A-1: Photo and Visual Simulation Viewpoint Location Map 55
Figure IV.A-2a: Visual Simulations - Viewpoint A .. 56
Figure IV.A-2b: Visual Simulations - Viewpoint B .. 57
Figure IV.C-1: Previous Soil and Groundwater Sampling Locations 85
Figure V-1: Zoning Compliant Alternative Site Plan ... 101
Figure V-2: Zoning Compliant Alternative Site Rendering 102
Figure V-3: Single-Volume Density Bonus Alternative Site Plan 105
Figure V-4: Single-Volume Density Bonus Alternative Site Rendering 106

TABLES

Table II-1: Summary of Impacts and Mitigation Measures .. 11
Table III-1: Required Permits and Approvals ... 48
Table IV-1: Cumulative Projects ... 50
I. INTRODUCTION

A. PURPOSE OF THE EIR
In compliance with the California Environmental Quality Act (CEQA), this report describes the environmental consequences of the proposed 2201 Dwight Way Project (proposed project) in the City of Berkeley (City), Alameda County. This Draft Environmental Impact Report (EIR) is designed to inform City decision-makers, responsible agencies and the general public of the proposed project and the potential physical consequences of project approval. This Draft EIR also examines alternatives to the proposed project and recommends mitigation measures to reduce or avoid potentially significant physical impacts, where appropriate. The City of Berkeley is the Lead Agency for environmental review of the proposed project. This Draft EIR, together with the Responses to Comments (RTC) document, will constitute the Final EIR, which will be used by the City, responsible agencies, and the public in their review of the proposed project and associated approvals described below and in more detail in Chapter III.

B. PROPOSED PROJECT
The proposed project would involve demolition of the existing 20,500 square foot building and surface parking lot and construction of 81 student-oriented\(^1\) rental apartment units (73 market-rate units and 8 very-low income units) in a five-story building (a maximum of 50 feet tall). The building would be divided into 18 distinct volumes intended to resemble separate buildings. A common area of approximately 1,500 square feet would be located on the ground floor. The proposed project would also provide approximately 8,714 square feet of common open space on-site. The total building area would be about 81,070 square feet. The proposed project evaluated in this Draft EIR considers two variants with regard to the provision of on-site vehicle parking to serve the proposed project: 1) construction of a 49-stall, 20,000 square-foot subterranean parking garage and 2) provision of no on-site parking.

Discretionary actions/approvals by the City that would be necessary for this project include various Use Permits, an Encroachment Permit, and waivers/modifications under the State Density Bonus Law. Two concessions are also being requested. Refer to Chapter III, Project Description, for a more detailed description of the proposed project and associated discretionary actions.

\(^1\) The term “student-oriented” reflects the applicant’s desire to market the proposed dwelling units primarily to UC Berkeley students. The units would be relatively small and would have less common space than units designed for non-student households, due to the large amount of time many students spend studying outside of their residences.
C. EIR SCOPE

The City circulated a Notice of Preparation (NOP) notifying responsible agencies and interested parties that an EIR would be prepared for the project and indicated the environmental topics anticipated to be addressed in the EIR. An Initial Study was also prepared for the proposed project and was circulated with the NOP. The NOP was published on October 18, 2012. The NOP was mailed to public agencies, organizations, and individuals likely to be interested in the potential impacts of the project. A public scoping session for the Draft EIR was held by City staff on November 5, 2012. Comments on the NOP were received by the City and considered during preparation of the Draft EIR. Four comment letters regarding the NOP were received, in addition to the verbal comments provided at the public scoping session. Copies of the NOP and the comment letters are included in Appendix A.

Based on the preliminary analysis provided in the Initial Study (included as Appendix B), consultation with City staff, and review of the comments received during the scoping process, the following environmental topics are addressed as separate sections of this Draft EIR:

A. Visual Resources
B. Cultural Resources
C. Hazards and Hazardous Materials

It has been determined that the following potential effects of the proposed project would be less than significant or have no impact, and therefore these topics are not studied in detail in the Draft EIR: agricultural and forestry resources; air quality; biological resources; archaeological and paleontological resources; geology and soils; greenhouse gas emissions; hydrology and water quality; land use and planning; mineral resources; noise; population and housing; public services; recreation; transportation/traffic; and utilities and service systems. Each of these topics is addressed in the Initial Study provided in Appendix B and summarized in Chapter VI, CEQA-Required Assessment Conclusions (subsection C).

D. REPORT ORGANIZATION

This EIR is organized into the following chapters:

- *Chapter I – Introduction*: Discusses the overall EIR purpose, provides a summary of the proposed project and the environmental impact report scope, and summarizes the organization of the EIR.

- *Chapter II – Summary*: Provides a summary of the proposed project and the impacts that might result from implementation of the proposed project, and describes mitigation measures recommended to reduce or avoid significant impacts. Potential areas of controversy and alternatives to the proposed project are also summarized.

- *Chapter III – Project Description*: Provides a description of the project site, project objectives, required approval process, and details of the project itself.
Chapter IV – Setting, Impacts and Mitigation Measures: Describes the following for each environmental technical topic: existing conditions (setting); potential environmental impacts and their level of significance; and measures to mitigate identified impacts. Cumulative impacts are also discussed in each topical section. Potential adverse impacts are identified by levels of significance, as follows: less-than-significant impact (LTS), significant impact (S), and significant and unavoidable impact (SU). The significance of each impact is categorized before and after implementation of any recommended mitigation measure(s).

Chapter V – Alternatives: Provides an evaluation of two alternatives to the proposed project in addition to the CEQA-required No Project alternative.

Chapter VI – CEQA-Required Assessment Conclusions: Provides additional specifically-required analyses of the proposed project’s growth-inducing effects, significant irreversible changes, and effects found not to be significant.

Chapter VII – Report Preparation: Identifies preparers of the EIR, references used and persons and organizations contacted.

Appendices: The appendices contain the NOP and comment letters received on the NOP (Appendix A); the Initial Study (Appendix B); and the Historical Evaluation prepared for the project (Appendix C).
This page intentionally left blank.
II. SUMMARY

This chapter provides an overview of the proposed project and the findings outlined in this EIR, including a discussion of alternatives and cumulative impacts.

A. PROJECT UNDER REVIEW

The approximately 0.62-acre rectangular project site is situated at the northeast corner of the intersection of Dwight Way and Fulton Street, at 2201 Dwight Way in the Southside area of the City of Berkeley. The generally level project site is currently developed with a 20,500-square-foot commercial office building and a 25-stall surface parking lot. The building is one story with a mezzanine and is 20 feet tall. The existing structure was constructed in the late 1940’s and, in 1983, the building was converted from an automobile showroom and service center to its present use as office space.

The proposed project would involve demolition of the existing building and surface parking lot and construction of 81 student-oriented rental apartment units (73 market-rate units and 8 very-low income units) in a five-story building (a maximum of 50 feet tall). The building would be divided into 18 distinct volumes intended to resemble separate buildings. A common area of approximately 1,500 square feet would be located on the ground floor. The total building area would be about 81,070 square feet. The proposed project would also provide approximately 8,714 square feet of common open space on-site.

The proposed project evaluated in this Draft EIR includes two variants with regard to the provision of on-site vehicle parking to serve the proposed project: 1) construction of a 49-stall, 20,000 square-foot subterranean parking garage and 2) provision of no on-site parking, as outlined below:

- **Parking Garage Variant.** If constructed, access to the garage would be via a one-way driveway ramp at the site’s southeast corner at Dwight Way and egress would be via a one-way driveway ramp at the site’s northwest corner at Fulton Street. The garage would include 49 vehicle stalls (two of which would be ADA-compliant spaces), 4 motorcycle/moped stalls, and 27 bicycle stalls. An additional 28 bicycle stalls would be provided at ground level for a total of 55 on-site bicycle stalls. As discussed below, this variant requires a reduction from the 70 parking spaces required under the City’s Zoning Ordinance.

- **No Parking Garage Variant.** Under the no parking garage variant, the parking garage would not be constructed and no on-site parking would be provided. New driveways and vehicles access points would not be required on Fulton Street or Dwight Way. A total of 55 bicycle stalls would be provided at ground level. This variant was not analyzed in the Initial Study; however, development of this variant would not result in any new significant impacts related to any of the issue topics identified as “no impact” or “less-than-significant impact” in the Initial Study. See
Chapter VI for further discussion. As discussed below, this variant requires a reduction from the 70 parking spaces required under the City’s Zoning Ordinance.

The applicant prefers the no parking garage variant of the project, but has requested that the parking garage variant also be analyzed in this Draft EIR so that it will be available for the City to consider during the review process, should the no parking garage variant be deemed unsuitable for the neighborhood or if the City determines that State Density Bonus Law does not require the City to grant the no parking garage variant as a concession.

Per the Berkeley Municipal Code and State Density Bonus Law, it is anticipated that the proposed project would require the following discretionary approvals:

Berkeley Municipal Code (BMC):
- Use Permit for establishment of multi-family dwelling units in the R-S District (BMC Section 23D.48.030);
- Use Permit for demolition of the existing commercial building (BMC Section 23C.08.050.A);
- Administrative Use Permit for installation of elevator mechanical equipment reaching 54 feet in height and protruding beyond the height of the roofline (BMC Section 23D.04.020.C);
- Administrative Use Permit for reduction of front setback requirement from 10 feet to 0 feet (BMC Section 23D.48.070.E);\(^1\) and
- Encroachment Permit to allow window shades to project into public right-of-way (BMC Chapter 16.18).

Waivers/Modifications Under State Density Bonus Law (Govt. Code Section 65915(e)):
- Increase in maximum building height from three stories (35 feet) to five stories (50 feet) (not otherwise allowed under BMC);\(^2\)
- Reduction of street side setback requirement from 6, 8, or 10 feet (depending on story) to 0 feet (not otherwise allowed under BMC);
- Reduction of rear yard setback requirement from 10 or 17 feet (depending on story) to 10 feet (not otherwise allowed under BMC); and
- Reduction of required parking from 70 spaces to either 49 or zero spaces, depending on which parking variant the City approves (not otherwise allowed under BMC).

1. This reduction, although allowed under the Zoning Ordinance, is necessary to physically accommodate the project’s density bonus and is therefore required by State density bonus law (Government Code Section 65915(e)).

2. Under BMC Section 23D.48.070.C.2, a Use Permit may be granted to allow a height of 4 stories and 45 feet. Therefore, the requested waiver/modification is to exceed the maximum height otherwise allowed under the Zoning Ordinance by one story and five feet.
Two concessions are also requested under the Density Bonus Law: 1) two additional units on the fifth story, to accommodate a “building services’ area on the ground floor without reducing the total number of project units, and 2) reduction of the parking requirement to either 49 or zero spaces, depending on which parking variant the City approves.

Refer to Chapter III, Project Description, for a more detailed description of the proposed project.

B. SUMMARY OF IMPACTS AND MITIGATION MEASURES

This summary provides an overview of the analysis contained in the Initial Study (included in Appendix B) and Chapter IV, Setting, Impacts and Mitigation Measures of the Draft EIR. The following subsection includes a discussion of: (1) the Initial Study findings; (2) potential areas of controversy; (3) significant and significant unavoidable impacts; (4) cumulative impacts; and (5) alternatives to the proposed project. These topics are discussed below.

1. **Findings of the Initial Study**

The Initial Study for the proposed project was prepared in October 2012 and was circulated for public review along with the Notice of Preparation of the Draft EIR. The project evaluated in the Initial Study consisted of the proposed project with the parking garage variant; the no parking garage variant was not considered at that time and was therefore not analyzed in the Initial Study. The Initial Study identified no impacts or less-than-significant impacts to the following environmental issues:

- Agricultural and Forestry Resources
- Biological Resources
- Geology and Soils
- Greenhouse Gas Emissions
- Land Use and Planning
- Mineral Resources
- Population and Housing
- Public Services
- Recreation
- Transportation/traffic and
- Utilities and Service Systems

The Initial Study identified potentially significant impacts to the following environmental issues; however, these were mitigated to a less-than-significant level with mitigation measures recommended in the Initial Study:

- Air Quality
- Archaeological and Paleontological Resources
II. SUMMARY

- Hydrology and Water Quality
- Noise

Table II-1, Summary of Impacts and Mitigation Measures, (located at the end of this Chapter) shows recommended mitigation measures as they relate to each of the above topics. For a complete description of potential impacts and recommended mitigation measures, please refer to the specific discussion in the Initial Study, included as Appendix B to this EIR. Chapter VI, CEQA-Required Assessment Conclusions, also summarizes the findings for each topic not discussed in the EIR. The discussion in Chapter VI also includes supplemental analysis of the no parking garage variant, which was not evaluated in the Initial Study, for each issue topic, as appropriate.

2. Potential Areas of Controversy

Four letters (three expressing concerns about the project's impacts) were submitted in response to the NOP, in addition to the verbal comments made at the scoping session held on November 5, 2012; the NOP and comment letters are included in Appendix A. Many of the scoping comments pertained to impacts in the following areas that were analyzed in the Initial Study (included in Appendix B) and determined to be less than significant: increased shadows on surrounding properties; noise; police services and safety; and traffic and parking. City staff reviewed these comments and determined that the analysis and conclusions in the Initial Study remained sound.

Other comments pertained to impacts from the project's overall height, massing, bulk, and density, in addition to its compliance with applicable zoning requirements and General Plan policies. Some of these comments requested that a Land Use and Planning chapter be included in the Draft EIR to analyze these impacts, particularly vis-à-vis policies that call for compatibility of new buildings with surrounding ones. However, as noted in the Section X, Land Use and Planning Section in the Initial Study:

"Policy conflicts are considered to be environmental impacts only when they would result in direct physical impacts or where those conflicts relate to avoiding or mitigating environmental impacts. Any such associated physical environmental impacts are discussed in this Initial Study under specific topical sections or will be discussed in the appropriate sections of the EIR."

Because all potentially significant impacts of the project's height, bulk, and density etc. have been analyzed in Sections IV.A, Visual Resources and IV.B, Cultural Resource in this Draft EIR, a Land Use and Planning chapter is not necessary and had not been included. Please also refer to Chapter IV, Impacts, Setting and Mitigation Measures for further explanation of how the Draft EIR addresses and potential zoning or policy inconsistencies. Also refer to Chapter III, Project Description, for the City's definition of building separation standard and for a revised description of the surrounding land uses and densities in the project area.

3. Significant Impacts

Under CEQA, a significant impact on the environment is defined as "...a substantial, or potentially substantial, adverse change in any of the physical conditions within the area
affected by the project including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance.” Development of the proposed project has the potential to result in adverse environmental impacts in several environmental areas. In addition to the impacts identified in the Initial Study described above, impacts related to hazards and hazardous materials would be significant without the implementation of mitigation measures, but would be reduced to a less-than-significant level if the mitigation measures recommended in this Draft EIR are implemented.

Table II-2, Summary of Impacts and Mitigation Measures in the EIR, (located at the end of this Chapter, following Table II-1) summarizes the impacts and mitigation measures discussed in Chapter IV of the EIR.

4. Significant Unavoidable Impacts

As shown in the analysis provided in Chapter IV, development of the proposed project would not result in any significant unavoidable impacts.

5. Cumulative Impacts

CEQA defines cumulative impacts as “two or more individual effects which, when considered together, are considerable, or which can compound or increase other environmental impacts.” Section 15130 of the CEQA Guidelines requires that an EIR evaluate potential environmental impacts that are individually limited, but cumulatively significant. These impacts can result from the proposed project when combined with other past, present, or reasonably foreseeable future projects. The cumulative impacts analysis in this Draft EIR is based on information provided by the City of Berkeley on currently planned, approved, or proposed projects primarily located within the Southside area or at least within ¼ mile of the project site, unless otherwise noted in cumulative discussion for each of the topical sections. A list of cumulative projects is included in Table IV-1, in Chapter IV, Setting, Impacts and Mitigation Measures. As discussed at the end of each subsection in Chapter IV, no cumulative impacts would result with development of the proposed project.

6. Alternatives to the Proposed Project

In accordance with CEQA and the CEQA Guidelines (Section 15126.6), an EIR must describe a reasonable range of alternatives to the project, or to the location of the project, that could attain most of the project’s basic objectives, while avoiding or substantially lessening any of the significantly adverse environmental effects of the project. The range of alternatives required in an EIR is governed by a “rule of reason” that requires the EIR to set forth only those alternatives necessary to permit a reasoned choice. CEQA states that an EIR should not consider alternatives “whose effect cannot be ascertained and whose implementation is remote and speculative.”

The three alternatives to the proposed project analyzed in Chapter V of this EIR are summarized below. These alternatives (with the exception of the CEQA-mandated No Project alternative) were intended to achieve the key objectives of the project while reducing or avoiding significant environmental effects.
II. SUMMARY

• **No Project Alternative.** Under the No Project alternative, the existing project site would remain in essentially its current condition and use.

• **Zoning Compliant Alternative.** Under the Zoning Compliant alternative, the project site would be redeveloped with 60 residential units within a three-story building that would fully comply with the applicable development standards of the R-S Zoning District.

• **Single-Volume Density Bonus Alternative.** The Single-Volume Density Bonus alternative would have the same number of units, floor area, and height as the proposed project, but would have a single large volume rather than the 18 smaller volumes of the proposed project. The alternative would also more closely comply with the setback requirements of the City’s Zoning Ordinance, but would require waivers/modifications under State Density Bonus Law to reduce the rear setback on the fourth and fifth stories, and to exceed three stories in height.

Each alternative is compared to the proposed project, and discussed in terms of its various mitigating or adverse effects on the environment. Analysis of the alternatives focuses on those topics for which significant adverse impacts would result from the proposed project. The Zoning Compliant alternative is considered to be the environmentally superior alternative.

C. SUMMARY TABLE

As previously discussed, Table II-1 summarizes the impacts and mitigation measures identified in the Initial Study and in Chapter IV of the EIR. Table II-1 is arranged in four columns: (1) impacts; (2) level of significance without mitigation; (3) mitigation measures; and (4) level of significance after mitigation. Levels of significance are categorized as follows:

<table>
<thead>
<tr>
<th>LTS</th>
<th>Less Than Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Significant</td>
</tr>
<tr>
<td>SU</td>
<td>Significant and Unavoidable</td>
</tr>
</tbody>
</table>

The numbering for each issue topic corresponds to the numbering system used in either the Initial Study or in Chapter IV of this EIR (e.g., III. Air Quality corresponds to that section of the Initial Study; A. Visual Resources corresponds to that section of Chapter IV in the EIR). For a complete description of potential impacts and recommended mitigation measures, please refer to the specific discussion in the Initial Study and Chapter IV of this EIR, as appropriate.
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL STUDY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. AESTHETICS</td>
<td>Refer to Environmental Impact Report section at the end of this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. AGRICULTURAL AND FORESTRY RESOURCES</td>
<td>There are no significant agricultural and forestry impacts.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **III. AIR QUALITY** | AIR-1: Construction of the proposed project would generate air pollutant emissions that could violate air quality standard or contribute substantially to an existing or projected air quality violation. | S | AIR-1: Consistent with the Best Management Practices required by the BAAQMD, the following actions shall be incorporated into construction contracts and specifications for the project:
 • All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
 • All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
 • All visible mud or dirt tracked-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
 • All vehicle speeds on unpaved roads shall be limited to 15 mph.
 • All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible.
 • Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
 • Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points. | LTS |
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR-1 Continued</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• All construction equipment shall be maintained and properly tuned in accordance with manufacturer’s specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A publicly visible sign shall be posted with the telephone number and contact information for the designated on-site construction manager available to receive and respond to dust complaints. This person shall report all complaints to the City of Berkeley and take immediate corrective action as soon as practical but not more than 48 hours after the complaint is received. The BAAQMD’s phone number shall also be visible to ensure compliance with applicable regulations.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. BIOLOGICAL RESOURCES

There are no significant biological resources impacts.

V. CULTURAL AND PALEONTOLOGICAL RESOURCES

CULT-1: Project demolition and construction activities could cause a substantial adverse change in the significance of previously unidentified archaeological resources.

<table>
<thead>
<tr>
<th>Level</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTS</td>
<td></td>
</tr>
</tbody>
</table>

The project applicant shall inform the construction contractor(s) of the appropriate procedures to follow in the event that archaeological deposits are identified by including the following directive in the project building plans:

If any deposit(s) of apparent prehistoric or historical archaeological materials are encountered during project activities, all work within 25 feet of the discovery shall be halted and a qualified archaeologist shall be contacted to assess the situation, consult with agencies as appropriate, and make recommendations for the treatment of the materials. Project personnel shall not collect or move any archaeological materials. Prehistoric archaeological materials include, but are not limited to, flaked-stone tools (e.g., projectile points, knives, and choppers) or obsidian, chert, basalt, or quartzite toolmaking.
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-1 Continued</td>
<td></td>
<td>debris; bone tools; culturally darkened soil (i.e., midden soil often containing heat-affected rock, ash and charcoal, shellfish remains, bones, and other cultural materials); and stone-milling equipment (e.g., mortars, pestles, and handstones). Historical archaeological materials include, but are not limited to, wood, stone, concrete, or adobe footings, walls, and other structural remains; debris-filled wells or privies; and deposits of wood, glass, ceramics, metal, and other refuse. The City shall verify that the above language has been included in the building plans prior to issuance of a grading permit or other permitted project action that includes ground-disturbing activities on the project site. If the materials are not eligible for the California Register of Historical Resources, a determination shall be made as to whether they qualify as a “unique archaeological resource” under CEQA. If the materials are neither a historical nor a unique archaeological resource, avoidance is not necessary. If the materials are eligible for the California Register, or are a unique archaeological resource, adverse effects to the materials shall be avoided or mitigated through the implementation of a treatment plan developed by a qualified archaeologist in consultation with the City of Berkeley Planning and Development Department. Mitigation may consist of, but is not necessarily limited to, systematic recovery and analysis of archaeological materials; recording the resource; preparation of a report of findings; and accessioning recovered archaeological materials at an appropriate curation facility. The report shall be submitted to the Planning and Development Department and the Northwest Information Center.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-2: Project demolition, site preparation, and construction activities could adversely affect previously unidentified fossils.</td>
<td>S</td>
<td>CULT-2: Should any apparent fossil be encountered during project sub-surface construction, all ground-disturbing activities within 25 feet shall be halted, and a qualified paleontologist contacted to assess the situation, consult with agencies as appropriate, and make recommendations for the treatment of the fossil. If the fossil is found to be significant, and project activities cannot avoid the fossils, adverse effects to the fossil shall be mitigated. Mitigation may include, but shall not be limited to, monitoring, recording the fossil locality, data recovery and analysis, a final report, and submitting the fossil material and technical report to a paleontological repository. Public educational outreach may also be appropriate. Upon completion of the assessment, a report documenting methods, findings, and recommendations shall be prepared and submitted to the Planning and Development Department for review and, if significant paleontological materials are recovered, a paleontological repository, such as the University of California Museum of Paleontology. Prior to any groundbreaking activities, the project applicant shall inform the construction contractor(s) of the sensitivity of the project site for fossils and include the following directive in the appropriate contract documents. The sub-surface of the construction site may be sensitive for paleontological resources (fossils). If fossils are encountered during project sub-surface construction and a paleontologist is not on site, all ground-disturbing activities within 25 feet shall be halted and a qualified paleontologist shall be contacted to assess the situation, consult with agencies as appropriate, and make recommendations for the treatment of the fossil. Project personnel shall not collect or move any fossil.</td>
<td>LTS</td>
</tr>
</tbody>
</table>
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-2 Continued</td>
<td></td>
<td>Paleontological resources include fossil plants and animals, and such trace fossil evidence of past life as tracks. Ancient marine sediments may contain invertebrate fossils such as snails, clam and oyster shells, sponges, and protozoa; and vertebrate fossils such as fish, whale, and sea lion bones. Vertebrate land mammals may include bones of mammoth, camel, saber tooth cat, horse, and bison. Paleontological resources also include plant imprints, petrified wood, and animal tracks. The City shall verify that the language has been included in the building plans prior to issuance of a grading permit or other permitted project action that includes ground-disturbing activities on the project site.</td>
<td></td>
</tr>
<tr>
<td>CULT-3: Ground-disturbing activities could adversely affect previously unidentified human remains.</td>
<td>S</td>
<td>CULT-3: Any human remains encountered during project ground-disturbing activities shall be treated in accordance with California Health and Safety Code Section 7050.5. The project applicant shall inform all contractor(s) performing excavation of the sensitivity of the project site for human remains and include the following directive in the appropriate contract documents: If human remains are uncovered, all work within 25 feet of the discovery shall be halted and the County Coroner notified immediately. At the same time, an archaeologist shall be contacted to assess the situation and consult with agencies as appropriate. Project personnel shall not collect or move any human remains or associated materials. If the human remains are of Native American origin, the Coroner must notify the Native American Heritage Commission (NAHC) within 24 hours of this identification. The Native American Heritage Commission will identify a Native American Most Likely Descendant to inspect the site and provide recommendations for the proper treatment of the remains and associated grave</td>
<td>LTS</td>
</tr>
</tbody>
</table>

LTS
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-3 Continued</td>
<td></td>
<td>goods. Such recommendations shall be carried out to the satisfaction of the NAHC prior to work resuming within 25 feet of the discovered remains. The City shall verify that the language has been included in the building plans prior to issuance of a grading permit or other permitted project action that includes ground-disturbing activities on the project site.</td>
<td></td>
</tr>
</tbody>
</table>

VI. GEOLOGY AND SOILS
There are no significant geology and soils impacts.

VII. GREENHOUSE GAS EMISSIONS
There are no significant greenhouse gas emissions impacts.

VIII. HAZARDS AND HAZARDOUS MATERIALS
Refer to Environmental Impact Report section at the end of this table.

IX. HYDROLOGY AND WATER QUALITY

HYD-1: Construction of the proposed project could violate water quality standards and waste discharge requirements.

S

HYD-1: Prior to construction, the project applicant shall prepare and implement a SWPPP, meeting Construction General Permit requirements (State Water Resources Control Board Order No. 2009-000—DWQ, as amended) designed to reduce potential adverse impacts to surface water quality through the project construction period. The SWPPP shall be submitted to the City for review and approval prior to the issuance of any permits for ground disturbing activities.

The SWPPP shall be prepared by a Qualified SWPPP Developer in accordance with the requirements of the Construction General Permit. These include: BMPs for erosion and sediment control, site management/housekeeping/waste management, management of non-stormwater discharges, runoff and runoff controls, and BMP inspection/maintenance/repair activities. BMP implementation shall be consistent with the BMP requirements in the most recent version of the California Stormwater Quality Association Stormwater Best Management Handbook—Construction.

LTS
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYD-1 Continued</td>
<td></td>
<td>The SWPPP shall include a construction site monitoring program that identifies requirements for dry weather visual observations of pollutants at all discharge locations, and as appropriate (depending on the Risk Level), sampling of the site effluent and receiving waters. A Qualified SWPPP Practitioner shall be responsible for implementing the BMPs at the site and performing all required monitoring and inspection/maintenance/repair activities.</td>
<td></td>
</tr>
<tr>
<td>HYD-2: Operation of the proposed project could violate water quality standards and waste discharge requirements.</td>
<td>S</td>
<td>HYD-2: The project applicant shall fully comply with the Water Board stormwater permit requirements, including Provision C.3 of the MRP. The project applicant shall prepare and implement a SCP for the project. The SCP shall be submitted to the city for review and approval prior to the issuance of any permits for ground disturbing activities. The SCP would act as the overall program document designed to provide measures to mitigate potential water quality impacts associated with the operation of the proposed project. At a minimum, the SCP for the project shall include: 1. An inventory and accounting of existing and proposed impervious areas. 2. Low Impact Development (LID) design details incorporated into the project. Specific LID design may include, but is not limited to: using pervious pavements and green roofs, dispersing runoff to landscaped areas, and/or routing runoff to rain gardens, cisterns, swales, and other small-scale facilities distributed throughout the site. 3. Measures to address potential stormwater contaminants. These may include measures to cover or control potential sources of stormwater pollutants at the project site.</td>
<td>LTS</td>
</tr>
</tbody>
</table>

Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYD-2 Continued</td>
<td>4. A Draft Stormwater Facility Operation and Maintenance Plan for the project site, which will include periodic inspection and maintenance of the storm drainage system. Persons responsible for performing and funding the requirements of this plan shall be identified. This plan must be finalized prior to issuance of building permits for the project.</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>X. LAND USE AND PLANNING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>There are no significant land use and planning impacts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XI. MINERAL RESOURCES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>There are no significant mineral resources impacts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XII. NOISE</td>
<td></td>
</tr>
<tr>
<td>NOISE-1: Construction of the project would expose sensitive uses in the project vicinity to noise levels in excess of standards established in the City of Berkeley's noise ordinance.</td>
<td>S NOISE-1: Prior to the issuance of building permits, the applicant shall develop a noise reduction program prepared by a qualified acoustical consultant to reduce construction noise impacts to the maximum extent feasible, subject to review and approval of the Zoning Officer. The noise reduction program shall include appropriate time limits for construction (from 7:00 a.m. to 7:00 p.m. weekdays and from 9:00 a.m. to 8:00 p.m. on weekends or holidays, unless more restrictive hours are required by the Zoning Adjustments Board) as well as technically and economically feasible controls to reduce construction noise levels to the maximum extent feasible. The noise reduction program should include, but shall not be limited to, the following available controls: a. Construction equipment shall be well maintained and used judiciously to be as quiet as practical. Equipment and trucks used for project construction shall utilize the best available noise control techniques (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures, and acoustically attenuating shields or shrouds), wherever feasible;</td>
<td>LTS</td>
</tr>
</tbody>
</table>
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE-1 Continued</td>
<td>b. Utilize “quiet” models of air compressors and other stationary noise sources where such technology exists. Select hydraulically- or electrically-powered equipment and avoid pneumatically powered equipment where feasible. Impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project demolition or construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed air exhaust from pneumatically powered tools. However, where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used if such jackets are commercially available, and this could achieve a reduction of 5 dBA. Quieter procedures shall be used, such as drills rather than impact equipment, whenever such procedures are available and consistent with construction procedures;</td>
<td>c. Locate stationary noise-generating equipment as far as possible from sensitive receptors that adjoin construction sites. Construct temporary noise barriers or partial enclosures to acoustically shield such equipment where feasible; d. Prohibit unnecessary idling of internal combustion engines; e. Prior to initiation of on-site construction-related demolition or earthwork activities, a minimum 8-foot-high temporary sound barrier shall be erected along the northern and eastern project boundaries abutting adjacent residential land uses. These temporary sound barriers shall be constructed with a minimum surface weight of 4 pounds per square foot and shall be constructed so that vertical or horizontal gaps are eliminated. These temporary barriers shall remain in place through the construction phase in</td>
<td></td>
</tr>
</tbody>
</table>
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
</table>
| NOISE-1 Continued | | which heavy construction equipment, such as excavators, dozers, scrapers, loaders, rollers, pavers, and dump trucks, are operating on the project site. This measure could lower construction noise levels at adjacent ground floor residential units by up to 8 dBA; | *f. Erect temporary noise control blanket barriers along building façades facing construction sites if necessary to prevent sleep disturbance. This measure will only be necessary if conflicts occur which are irresolvable by proper scheduling;
*g. To the maximum extent feasible, route construction-related traffic along major roadways and away from sensitive receptors;
*h. Notify all businesses, residences or other noise-sensitive land uses within 300 feet of the perimeter of the construction site of the construction schedule in writing prior to the beginning of construction and prior to each construction phase change that could potentially result in a significant temporary increase in ambient noise levels in the project vicinity;
*i. Signs shall be posted at the construction site that include permitted construction days and hours, a day and evening contact number for the job site, and a day and evening contact number for the on-site complaint and enforcement manager, and the City’s Noise Enforcement Officer, in the event of problems;
*j. An on-site complaint and enforcement manager shall be available to respond to and track complaints. The manager will be responsible for responding to any complaints regarding construction noise and for coordinating with the adjacent land uses. The manager will determine the cause of any complaints (e.g., starting too early, bad muffler, etc.) and coordinate with the construction team to implement |
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE-1 Continued</td>
<td></td>
<td>effective measures (considered technically and economically feasible) warranted to correct the problem. The telephone number of the coordinator shall be posted at the construction site and provided to neighbors in a notification letter. The manager shall notify the City’s Noise Enforcement Officer of all complaints within 24 hours. The manager will be trained to use a sound level meter and should be available during all construction hours to respond to complaints; and k. A preconstruction meeting shall be held with the Noise Enforcement Officer and the general contractor/on-site project manager to confirm that noise measures and practices (including construction hours, neighborhood notification, posted signs, etc.) are fully operational.</td>
<td></td>
</tr>
<tr>
<td>NOISE-2: Operation-period motor vehicle trips and stationary sources associated with the project would generate noise levels that could adversely affect nearby sensitive land uses.</td>
<td>S</td>
<td>NOISE-2: All residential units of the proposed project that are within 100 feet of the centerline of Dwight Way or within 60 feet of the centerline of Fulton Avenue shall include an alternative form of ventilation, such as noise-baffled passive air ventilation systems or mechanical ventilation systems, that would allow windows to remain closed for prolonged periods of time to meet the interior noise standard of 45 dBA Ldn established by the City and the California Building Code Requirements.</td>
<td>LTS</td>
</tr>
<tr>
<td>NOISE-3: Construction of the project would expose adjacent structures to excessive groundborne vibration.</td>
<td>S</td>
<td>NOISE-3a: Prior to construction and issuance of required building permits by the City, the project applicant shall retain a qualified noise and vibration specialist, who, in consultation with the City, shall determine the construction equipment and methods that would generate the least groundborne vibration levels (as measured in PPV). The construction equipment and methods that would generate the least groundborne vibration levels, and that can be feasibly implemented, shall be used to construct the project. Pile driving shall not be utilized.</td>
<td>LTS</td>
</tr>
</tbody>
</table>
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE-3a Continued</td>
<td></td>
<td>The noise and vibration specialist shall prepare a memorandum to document the results of the consultation with the City, including the specific construction equipment and methods to be used by the project. The recommendations of the memorandum shall be included in the appropriate contract documents to be signed by contractors assigned to construct the project. While it is not anticipated that all the construction equipment and methods selected for the project during consultation with the applicant's noise and vibration specialist and City would generate groundborne vibration levels below the FTA threshold for fragile structures (0.12 PPV), judicious selection and use of construction equipment and methods would minimize the potential of damage to and repair of structures adjacent to the project site. NOISE-3b: Implement all portions of Mitigation Measure NOISE-1.</td>
<td></td>
</tr>
</tbody>
</table>

XIII. POPULATION AND HOUSING
There are no significant population and housing impacts.

XIV. PUBLIC SERVICES
There are no significant public services impacts.

XV. RECREATION
There are no significant recreation impacts.

XVI. TRANSPORTATION/TRAFFIC
There are no significant transportation and traffic impacts.

XVII. UTILITIES AND SERVICE SYSTEMS
There are no significant utilities and service systems impacts.
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENTAL IMPACT REPORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. VISUAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no significant visual resources impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. CULTURAL (HISTORIC) RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are no significant historic resources impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td>LTS</td>
</tr>
<tr>
<td>HAZ-1: With development of the parking garage variant, construction activities may encounter contaminated soil and groundwater which could pose a risk to public health or the environment.</td>
<td>S</td>
<td>HAZ-1: If the parking garage variant is implemented, a Soil and Groundwater Management Plan (SGMP) shall be prepared. The SGMP shall identify procedures for soil and groundwater management including identification of pollutants and disposal methods and shall comply with the hazardous materials and waste management standards required by Berkeley Municipal Code Section 15.12.100, the San Francisco Bay Regional Water Quality Control Board’s Order No. R2-2009-0074 C3 and C6, California hazardous waste generator regulations (Title 22 California Code of Regulations (CCR) 66360 et seq.), and the East Bay Municipal Utility District’s Ordinance 311. The SGMP shall also include: • A requirement that TMD be notified within 24 hours of the discovery of any previously undiscovered contamination; • Procedures to manage odors, dust and other potential nuisance conditions expected during development. • A requirement that the name and phone number of the individual responsible for implementing the SGMP and responding to community questions and complaints be posted at the construction site on the same notice required by Mitigation Measure NOISE-1 for noise management. TMD shall review the SGMP and may require additional information or impose additional conditions as deemed necessary to protect human health and the environment. All requirements of the approved SGMP shall be deemed conditions of approval of this Use Permit.</td>
<td></td>
</tr>
</tbody>
</table>

P:\CBE1205 2201 Dwight Way\PRODUCTS\DEIR\Public2-Summary.doc (01/28/13)
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZ-2: Hazardous materials transport and use during construction activities could result in adverse effects to public health or the environment.</td>
<td>S</td>
<td>HAZ-2a: The construction contractor(s) shall designate storage areas suitable for material delivery, storage, and waste collection. These locations must be as far away from catch basins, gutters, drainage courses, and water bodies as feasible. All hazardous materials and wastes used or generated during project site development activities shall be labeled and stored in accordance with applicable local, State, and federal regulations. In addition, an accurate up-to-date inventory, including Material Safety Data Sheets, shall be maintained on-site to assist emergency response personnel in the event of a hazardous materials incident. All maintenance and fueling of vehicles and equipment shall be performed in a designated, bermed area, or over a drip pan that will not allow run-off of spills. Vehicles and equipment shall be regularly checked and leaks shall be repaired promptly at an off-site location. Secondary containment shall be used to catch leaks or spills any time that vehicle or equipment fluids are dispensed, changed, or poured.</td>
<td>LTS</td>
</tr>
</tbody>
</table>

HAZ-2b: Emergency preparedness and response procedures shall be developed by the construction contractor(s) for emergency notification in the event of an accidental spill or other hazardous materials emergency during project site preparation and development activities. These procedures shall include evacuation procedures, spill containment procedures, and required personal protective equipment, as appropriate, in responding to the emergency. The contractor(s) shall submit these procedures to the City’s Toxics Management Division for approval prior to the issuance of demolition or construction permits.
Table II-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Level of Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZ-3: Demolition of the existing project site building may result in the release of lead, asbestos, and/or other hazardous materials which could pose a risk to construction workers, the general public, and the environment.</td>
<td>S</td>
<td>HAZ-3: Prior to approving any permit for partial or complete demolition activities, a hazardous materials survey shall be conducted by a qualified professional. The survey shall include, but not be limited to, identification of any lead-based paint, asbestos, PCB containing equipment, treated wood and mercury containing devices. The survey shall include hazardous materials removal and disposal procedures to be implemented that fully comply with hazardous waste generator requirements (22 California Code of Regulations (CCR) 66360 et seq.). If the survey identifies hazardous materials, the removal and disposal procedures included in the survey shall become conditions of any building or demolition permit for the project. Documentation evidencing disposal of hazardous waste in compliance with the survey shall be submitted to TMD within 30 days of the completion of the demolition.</td>
<td>LTS</td>
</tr>
</tbody>
</table>

This page intentionally left blank.
III. PROJECT DESCRIPTION

This chapter describes the 2201 Dwight Way project (project) that is proposed by 2201 Dwight Way, LLC/Randall Miller (applicant) and evaluated in this Environmental Impact Report (EIR). A description of the project's location, context and objectives is followed by details of the project itself and a summary of required approvals and entitlements.

A. PROJECT SITE

The following discussion describes the geographic context of the project site and provides a brief overview of existing land uses within and in the vicinity of the site.

1. Location

The approximately 0.62-acre rectangular project site is located in the Southside area of the City of Berkeley in Alameda County. Figure III-1 depicts the site’s regional and local context. The project site is situated at the northeast corner of the intersection of Dwight Way and Fulton Street, at 2201 Dwight Way. The site is bounded primarily by two- and three-story multi-family residential buildings on Haste Street and Dwight Way to the north and east, respectively; one- to three-story multi-family and commercial buildings across Dwight Way to the south; and two-story multi-family residences across Fulton Street to the west. The project site is located approximately four blocks south of the University of California (UC) Berkeley campus.

Regional vehicular access to the project site is provided by Interstate 80 (I-80), located approximately 2 miles west of the site. Direct local access is provided by Shattuck Avenue, a major arterial roadway providing north-south access through the City; and Dwight Way, a one-way, east-west arterial street with two travel lanes. Transit in the project vicinity includes the Downtown Berkeley Bay Area Rapid Transit (BART) station, located about six blocks northwest of the project site. In addition, there is extensive bus transit service provided by Alameda-Contra Costa County (AC) Transit at the BART station. The closest bus stop near the project site is at the southeast corner of Shattuck Avenue and Dwight Way.

2. Site Characteristics and Current Site Conditions

As shown in the aerial view of the site depicted in Figure III-2, the generally level project site (Assessor’s Parcel Number (APN) 055-1889-014) is currently developed with a 20,500-square-foot commercial office building and a 25-stall surface parking lot. The building is one story with a mezzanine and is 20 feet tall. The existing structure was constructed in the late 1940s and, in 1983, the building was converted from an automobile showroom and service center to its present use as office space. The building is one story with a mezzanine and is 20 feet tall. The existing structure was constructed in the late 1940s and, in 1983, the building was converted from an automobile showroom and service center to its present use as office space. The building is currently fully occupied by 2201 Dwight Way, LLC, Dogwood Leasing, and Odin Wave. A masonry retaining wall is located along the northern property line and a portion of the eastern property line, where its maximum height reaches about 6 feet. Approximately 400 square feet of landscaping is
included on the site and there are five street trees that border the site on Dwight Way and Fulton Street. Figure III-3 includes photos of the existing developed site; viewpoint locations are depicted in Figure III-2.

3. General Plan and Zoning

The project site is designated High Density Residential in the City’s General Plan Land Use Diagram. The site is within the Residential Southside (R-S) District of the City’s Zoning Ordinance.

4. Surrounding Land Uses

As previously described, the project site is located within the Southside area of the City and is primarily surrounded by multi-family residential uses, as depicted in Figure III-2 and further described below. There are also a number of residential and commercial structures near the site that are designated as City of Berkeley Landmark structures (also described below). Figure III-4 depicts City of Berkeley Landmark structures and tall buildings (four stories or more) in the project vicinity. Figures III-5a, III-5b, and III-5c include photos of some of the land uses that surround the site, further described below. Figure III-4 shows the viewpoint locations for each of these photos.

a. North. As shown in Figure III-5a (Photo 1), the project site is bordered immediately to the north by two three-story, 12-unit apartment buildings (2425 Fulton and 2206 Haste Streets) and a two-story former single-family dwelling converted to five apartment units (2210 Haste Street). Similar land uses are located on the north side of Haste Street and on Fulton Street north of Haste Street. As previously described, the UC Berkeley campus is located four blocks to the north and Downtown Berkeley and the Downtown Berkeley BART station are located about six blocks to the north.

b. East of the Project Site. The project site is bordered immediately to the northeast by a three-story former single-family dwelling converted to nine apartment units (2214 Haste Street) and to the southeast by a two-story former single-family dwelling converted to four apartment units (2213-2215 Dwight Way) and a rear duplex (2209-2211 Dwight Way). As shown in Figure III-5a (Photo 2) the area to the east primarily contains other two- and three-story multi-unit buildings (many converted dwellings), in addition to several four-story apartment buildings (2230 Dwight Way [Photo 3], 2230 Haste and 2431 Ellsworth Streets), and one six-story apartment building (2491 Ellsworth Street) shown in Photo 4. Telegraph Avenue, a major transportation and commercial corridor, is located approximately three blocks to the east.

c. South of the Project Site. The project site is bordered immediately to the south by Dwight Way, a two-lane, one-way arterial street which travels east. Parallel parking is allowed on both sides of Dwight Way. The following buildings are located directly across Dwight Way (starting at Fulton Street and moving east): a three-story, 14-unit apartment building (2200 Dwight Way/2511 Fulton Street) shown in Photo 5, a two-story duplex converted from a single-family dwelling (2204 Dwight Way) also shown in Photo 5, two three-story, five-unit apartment buildings (2206-2208 Dwight Way), and a four-story, 30-unit apartment building (2216 Dwight Way). South of the site and west of Fulton Street, land uses on Dwight Way consist primarily of one- and two-story commercial and mixed-use buildings. Multi- and single-family residential neighborhoods are located farther south.
Aerial Photograph of the Project Site and Existing Site Photo Location Map

SOURCES: GOOGLE EARTH, 10/30/11; LSA ASSOCIATES, INC., 2012.
I:CBE1205 2201 Dwight Way\figures\EIR\Fig_III2.ai (11/14/12)
Photo 1: Existing building on project site, as seen from Dwight Way

Photo 2: Existing parking lot and building on the site, as seen from Fulton Street
Photo 1: Existing residential buildings at the southeast intersection of Haste Street and Fulton Street, immediately north of the project site.

Photo 2: Existing residential buildings on Dwight Way, immediately east of the project site.
Photo 3: Existing four-story residential building on Dwight Way, east of the site

Photo 4: Existing six-story residential building on Dwight Way, east of the site
Photo 5: Existing residential buildings on Dwight Way, south of the project site

Photo 6: City of Berkeley Landmark Structures (2430, 2426, and 2424 Fulton Street), west and northwest of the project site
This page intentionally left blank.
d. **West of the Project Site.** The project site is bordered immediately to the west by Fulton Street, a two-lane one-way arterial street.\(^1\) Parallel parking is allowed on both sides of Fulton Street. The following buildings are located immediately across Fulton Street (starting at Haste Street and moving south): a two-story duplex converted from a single-family dwelling (2424 Fulton Street/2140 Haste Street), a two-story, triplex apartment building converted from a single-family dwelling (2426 Fulton Street), a three-story duplex converted from a single-family dwelling (2430-2432 Fulton Street), a three-story duplex located behind 2430 Fulton Street (2434-2436 Fulton Street), and a two-story four-unit apartment building (2185 Dwight Way). The three buildings fronting on Fulton Street are depicted in Figure III-5c (Photo 6) and are designated as City of Berkeley Landmarks. On Dwight Way to the west, multi-unit residential buildings are located on the north side, and commercial and mixed-use buildings are located on the south side. The Shattuck Avenue commercial/transportation corridor, located one block west of the site is developed with a mixture of commercial and residential uses, including a five-story mixed-use building at the southeast corner of Shattuck Avenue and Haste Street (2451 Shattuck Avenue). In addition, a six-story mixed-use building has been proposed at the northeast corner of Shattuck Avenue and Dwight Way (2107 Dwight Way).

B. PROJECT OBJECTIVES

The applicant’s project objectives are as follows:

- Redevelop the project site with an 81-unit student-oriented\(^2\) apartment project.
- Improve the community and support the Southside Area Plan’s policies by replacing an existing legal, non-conforming commercial building located in a residential zone with high-density student-oriented apartments.
- Encourage the use of public transportation, bicycling and walking by constructing a high-density housing project in a location with excellent access to these transportation modes.
- Increase the affordable housing stock in the City of Berkeley by designating 8 units (13.3 percent of the project’s total) for very low-income households.
- Create a building with unique design and massing compatible with the surrounding neighborhood that provides residents with abundant air and light.
- Implement contemporary (rather than historicist) architectural design that does not detract from the significance of surrounding historic structures.
- Create significant new revenue streams for the City of Berkeley through increased property taxes.

\(^1\) Fulton Street continues as a two-way local street south of Dwight Way; a traffic diverter at Dwight Way and Fulton Street requires southbound vehicles to turn left (east) onto Dwight Way.

\(^2\) The term “student-oriented” reflects the applicant’s desire to market the proposed dwelling units primarily to UC Berkeley students. The units would be relatively small and would have less common space than units designed for non-student households, due to the large amount of time many students spend studying outside of their residences.
C. PROPOSED PROJECT

This section provides a description of the proposed project as identified in the applicant’s Zoning Project Re-Submittal package submitted to the City of Berkeley in July 2012. The proposed project would involve demolition of the existing building and surface parking lot and construction of 81 student-oriented rental apartment units in a five-story building. The building would be divided into 18 distinct volumes intended to resemble separate buildings. Total gross building area would be about 81,070 square feet. The proposed project is envisioned as a modern, urban, mixed-income apartment community.

The proposed project evaluated in this Draft EIR considers two variants with regard to the provision of on-site vehicle parking to serve the proposed project: 1) construction of a 49-stall, 20,000 square-foot subterranean parking garage and 2) provision of no on-site parking.

Project site plans for the two project variants are depicted in Figures III-6 and III-7. Figure III-8 shows proposed building elevations on the east and south. The proposed project components are described in detail below.

1. Building Program

The proposed project would redevelop the project site with a five-story building divided into 18 distinct but connected volumes, ranging from three to five stories in height (a maximum of 50 feet tall). Each volume would be oriented towards one of three internal pathways and would be connected by outdoor walkways, stairwells, and internal courtyards. Five-story volumes would be located at the site perimeter and three- to four-story volumes would be located within the interior. The building would be set back 10 feet from the northern and eastern property boundaries. There would be no setback from Fulton Street or Dwight Way.

The project would include a total of 70,410 square feet of gross residential floor area and a total of 81 residential units. In accordance with the City’s procedures for projects requesting a density bonus under State law (Govt. Code Section 65915), the “base project” has been determined to be 60 units. Of these 60 units, 8 (13.3 percent) would be affordable to very-low-income (VLI) households, which would qualify the project for a density bonus of 21 units (35 percent of the base project) and two “incentives or concessions,” as further described below in Subsection D, Uses of this EIR.

The proposed apartment units would be designed to appeal primarily to UC Berkeley students and would include full kitchens and common living space. A total of approximately 29 (3 of which would be below market-rate) two-bedroom, 660-square-foot units and 52 (5 of which would be below-market rate) four-bedroom, 960-square-foot units would be distributed throughout the building. All units would be fully furnished.

4 Under the City’s density bonus procedures, the base project is the number of units (based on the proposed average unit size) that could be built without any additional Use Permits for additional height, reduced setbacks, reduced parking, etc. This base project is the “otherwise maximum allowable residential density” under Government Code Section 65915(f).

5 VLI households are those earning 50 percent or less of area median income.
Figure III-6: Proposed Site Plan - Parking Garage Variant

SOURCE: STANLEY SAITOWITZ/NATOMA ARCHITECTS, INC., DECEMBER 2012.

I:\CBE1205 2201 Dwight Way\figures\EIR\Fig_III6.ai (12/14/12)
FIGURE III-8

2201 Dwight Way Project EIR
Proposed Building Elevations

SOURCE: STANLEY SAITOWITZ/NATOMA ARCHITECTS, INC., 3/12/12.
I:\CBE1205 2201 Dwight Way\figures\EIR\Fig_III8.ai (11/13/12)
Due to the unit and bedroom design, location, marketing plan, and experience with similar projects near universities, the applicant anticipates that most, if not all, residents would be students, although this cannot be guaranteed due to the City’s anti-discrimination policies (BMC Section 13.24.030). In addition, pursuant to Federal fair housing guidelines, families of five could be allowed to lease four-bedroom units. However, occupancy limits of two unrelated adults per two-bedroom unit and four unrelated adults per four-bedroom unit would be reflected in all tenant leases and enforced by the building manager. Given that double occupancy of the bedrooms would not be permitted and that the site is likely to be primarily occupied by students, the project is expected to generate a population of 266 residents. In addition, the fact that the units would be provided with furnishings for one resident per bedroom would help to discourage higher occupancies.

An indoor “resident services” area of approximately 1,500 square feet would be located on the ground floor adjacent to Dwight Way. The main building entrance would also be on Dwight Way. Among other things, the resident services area could include space for an exercise room, game room, community room, study lounge, and/or leasing office.

The project applicant would designate an on-site residential manager, as recommended by the Police Department. It is currently anticipated that a security guard would be present on-site from 10:00 p.m. to 3:00 a.m. The security guard would respond to noise complaints and address the source of any excess noise. The security phone number would be posted within the building premises as well as on the building directory located on Dwight Way.

2. Access, Circulation and Parking

Pedestrian access to the proposed apartments and common areas would be provided by a secured entrance on Fulton Street and the main entrance on Dwight Way. Internal pathways would provide access to building entrances and external stairwells for each building volume. An elevator would provide access to all levels of the building.

Delivery vehicles would park where available, including within the street as permissible by law. To ease the potential for traffic congestion, temporary parking permits would be applied for on Dwight Way for two days at the beginning of UC Berkeley’s fall semester and at the end of the spring semester. Students would be assigned to a moving window and would be scheduled at 30 to 45 minute intervals. Moving carts and staff would be available to assist students with moving their personal belongings. Non-student residents would move belongings on a non-scheduled basis.

As previously described, the proposed project evaluated in this Draft EIR considers two variants with regard to the provision of on-site vehicle parking to serve the proposed project: 1) construction of a 49-stall subterranean parking garage and 2) provision of no on-site parking, as further described below.

6 Should the project be approved, the applicant has agreed to provide the on-site security guard for at least 5 years, with City approval required to remove or reduce this requirement after 5 years.
a. Parking Garage Variant. The parking garage variant proposes a 20,000-square-foot subsurface parking garage, located beneath the ground level building deck. As shown in Figure III-9, access to the garage would be via a one-way driveway ramp at the site’s southeast corner at Dwight Way and egress would be via a one-way driveway ramp at the site’s northwest corner at Fulton Street. However, if this variant is selected, with the City’s approval, the applicant may revise the circulation plan to provide access to the garage via Fulton Street and egress at Dwight Way. An internal stairwell and elevator would provide access from the garage to the ground floor. The garage would include 49 vehicle stalls (two of which would be ADA-compliant spaces), 4 motorcycle/moped stalls, and 27 bicycle stalls. An additional 28 bicycle stalls would be provided at ground level for a total of 55 on-site bicycle stalls. As discussed in subsection D below, this variant would require a reduction from the 70 parking spaces required under the City’s Zoning Ordinance.

b. No Parking Garage Variant. Under the no parking garage variant, the parking garage would not be excavated and constructed and no on-site parking would be provided. New driveways and vehicle access points would not be required on Fulton Street or Dwight Way. A total of 55 bicycle stalls would be provided at ground level. The applicant anticipates that if this variant of the project is implemented, most, if not all, project residents would not have vehicles as designated parking would not be available on site or within the vicinity. The nearest on-street parking that is not located within a Residential Parking Permit area is approximately 0.4 miles from the site, and No Residential Parking Permits would be issued for project residents under this variant, per BMC Section 23D.52.080.B (see Section IV.C, Cultural Resources for further discussion). As discussed in subsection D below, this variant would require a reduction from the 70 parking spaces required under the City’s Zoning Ordinance.

3. Open Space and Landscaping

Under the parking garage variant, the proposed project would provide approximately 8,714 square feet of common open space on-site. Approximately 4,214 square feet of separate common courtyards would be provided on the ground level; development of the no parking garage variant would eliminate the driveway ramp areas, allowing for an additional 1,000 square feet of landscaping at the site perimeter (for an approximate total of 9,714 square feet of open space).

Common roof decks would consist of 1,920 square feet of space on the third level and 2,580 square feet of space on the fourth level. These five roof decks would be located at the interior of the site. All outdoor areas would be ADA-compliant and planted areas would comprise at least 40 percent of the project’s required open space. The five existing street trees at the perimeter of the site would be removed and replaced with a minimum of five new trees and as many additional new trees as space permits, subject to the approval of the City Forester. New trees would be a minimum 24-inch box size.

4. Green Building Features

The project applicant proposes to incorporate a number of active and passive green building features into the design of the proposed project. The building would be constructed off-site using modular construction methods which, when compared to traditional construction methods, typically include centralized materials handling, fewer trips to and from the project...
site, and less overall material waste. In addition, excavation and subterranean concrete work would occur on-site at the same time that the modules are being constructed off-site, lessening the overall construction period. Materials with high recycled content, such as metal studs and MDF-core trim and doors would be used throughout. Low-impact materials such as engineered flooring and solid surface counter tops would be used in place of slow-growth oak and natural stone.

Under the parking garage variant, permeable surface coverage on the site would increase from 400 square feet to 2,000 square feet on grade, providing for increased water infiltration. Under the no parking garage variant, permeable surface coverage would increase to approximately 10,900 square feet as all ground level open space and planting areas would be permeable.

All roof surfaces would be of a high-albedo membrane to reduce heat island effects. Landscaping would consist of local and low-water demanding species; in rooftop gardens and other impervious areas, landscaping would be planted in above-grade pots with drip irrigation. No turf or above-ground irrigation would be installed. The latest water and energy-saving fixtures would be utilized in all bathrooms and kitchens, including Energy Star appliance packages.

Floor-to-ceiling windows, open floor plans and uncovered grill-work “catwalks” would increase the amount of natural light, thus reducing the amount of artificial light needed. Apartments would not have air conditioning and would be heated using high-efficiency wall-mounted convection plate heaters with individual room-by-room control. Natural ventilation through the large low-E windows would allow for increased air circulation and further reduce the need for conditioned air. Rather than a central plant with a heating hot water boiler, individual tankless hot water heaters would be installed for each unit thereby reducing energy loss from hot water distribution and circulation.

Under the no parking garage variant, the need for ventilation and lighting would be reduced when compared to the parking garage variant, resulting in decreased energy use.

5. Utilities and Infrastructure

The proposed project would be required to install the following utility connections to the satisfaction of the applicable utility providers: water; wastewater; stormwater drainage; power; and telecommunications services. These utilities would generally connect to existing infrastructure in the vicinity of the site.

Development of the project would result in approximately 11,900 square feet of new permeable surfaces, including open space, paving, and landscaping. However, under the parking garage variant, only approximately 2,000 square feet of new permeable surfaces would be installed. The 2,000 square feet represents the portion of the ground level landscaped area that would be located beyond the perimeter of the underground garage (if constructed), and would therefore be permeable. Total ground-level open space would be 4,214 square feet; however, slightly over half of this area would be located above the garage and therefore would not allow water infiltration.
would occur on grade, providing for water infiltration; areas over the subsurface parking garage (approximately 9,900 square feet) would have limited stormwater detention and infiltration capacity. Excess runoff would be treated in accordance with the Alameda County Clean Water Program (ACCWP) before flowing to the City’s storm drain system. Under the no parking garage variant, permeable surface coverage would increase to approximately 10,900 square feet as all ground level open space and planting areas would be permeable.

The proposed project would also be required to comply with current C.3 requirements regulating storm water discharges.

The applicant is also proposing that all above-ground utility poles that serve the project site be relocated underground.

The building would be equipped with an automatic sprinkler system.

6. Demolition, Grading and Construction

The proposed project would demolish the existing building and surface parking lot on the site. Construction debris, such as old foundations, pavements, utilities, and structures, would be collected and off-hauled. It is estimated that approximately 250 tons of demolition waste and 400 cubic yards of construction waste would be generated by the project. Under the parking garage variant, approximately 7,400 cubic yards of soil would also be off-hauled as part of site excavation for the subsurface parking garage and grading. Approximately 1,000 cubic yards of soil would be off-hauled under the no parking garage variant.

Under the parking garage variant, the project would be built on a mat foundation under the garage. Under the no parking garage variant, the foundation would be raised to grade level and would be a continuous grade beam system. As discussed in subsection D below, the City’s building separation standard (BMC Section 23D.48.070.E) would not apply to the proposed project because, in either case, the project would consist of one building over a single foundation.

The construction period would include approximately 3 months of excavation for the subsurface parking garage (if constructed) and construction of the podium deck on which the modular housing units would be assembled. Excavation of the subsurface parking garage would occur at a maximum depth of 12 feet (16 feet at elevator pit). The modular units would be constructed off-site and installation would occur over a 6-month period. The demolition and construction period is expected to begin in October 2013 and would occur over a 9-month period under the parking garage variant; the total construction time would be reduced to about 7 months under the no parking garage variant. Occupancy of the units could occur as early as July 2014.

D. USES OF THIS EIR

It is anticipated that this EIR will provide environmental review for all discretionary approvals necessary for the proposed project as described within this chapter. A list of the required permits and approvals that may be required by the City and other agencies is provided in
Table III-1. Per the Berkeley Municipal Code and State Density Bonus Law, it is anticipated that the proposed project would require the discretionary approvals described below.

1. **Berkeley Municipal Code (BMC)**

 The City’s Zoning Adjustments Board (ZAB) would be required to grant the following permits for construction of the project, as proposed:

 - Use Permit for establishment of multi-family dwelling units in the R-S District (BMC Section 23D.48.030);
 - Use Permit for demolition of the existing commercial building (BMC Section 23C.08.050.A);
 - Administrative Use Permit for installation of elevator mechanical equipment reaching 54 feet in height and protruding beyond the height of the roofline (BMC Section 23D.04.020.C);
 - Administrative Use Permit for reduction of front setback requirement from 10 feet to 0 feet (BMC Section 23D.48.070.E); and
 - Encroachment Permit to allow window shades to project into public right-of-way (BMC Chapter 16.18).

 Although the 18 volumes of the building would have the appearance of separate buildings, they would share a single foundation, and they would be structurally connected to each other above the ground floor by catwalks that comprise a single circulation system for the project. Therefore, the project is considered a single building under Section 202 of the City’s Building Code, and the individual volumes are not subject to the building separation standard requirement of the City’s Zoning Ordinance (BMC Section 23D.48.070.E).

2. **State Density Bonus Law**

 The project applicant is requesting the following waivers/modifications under the State Density Bonus Law (Government Code Section 65915(e)) and these will be processed by the City in conjunction with the permits described above.

 - Increase in maximum building height from three stories (35 feet) to five stories (50 feet) (not otherwise allowed under BMC);
 - Reduction of street side setback requirement from 6, 8, or 10 feet (depending on story) to 0 feet (not otherwise allowed under BMC);
 - Reduction of rear yard setback requirement from 10 or 17 feet (depending on story) to 10 feet (not otherwise allowed under BMC); and

8 This reduction, although allowed under the Zoning Ordinance, is necessary to physically accommodate the project’s density bonus and is therefore required by State density bonus law (Government Code Section 65915(e)).

9 Under BMC Section 23D.48.070.C.2, a Use Permit may be granted to allow a height of four stories and 45 feet. Therefore, the requested waiver/modification exceeds the maximum height otherwise allowed under the Zoning Ordinance by one story and 5 feet.
• Reduction of required parking from 70 spaces to either 49 or zero spaces, depending on which parking variant the City approves (not otherwise allowed under BMC).

As previously described, the proposed project is also eligible for two concessions based on the number of proposed affordable units.

The first concession requested by the applicant would allow two dwelling units that would otherwise be located on the ground floor of the base project to be located on the fifth floor, thereby expanding the building envelope by approximately 1,500 square feet. The purpose of this concession is to allow the 1,500-square-resident services area on the first floor of the building without reducing the number of dwelling units in the project. This request could be accommodated with the waivers/modifications already required for the density bonus such that no further waivers/modifications would be needed.

The second concession requested would allow a reduction in vehicle parking requirements from 70 spaces to either 49 or 0 spaces, primarily to avoid the need for additional excavation and construction of a second below-grade garage level or to entirely avoid the need for any substantial below-grade excavation. As noted above, a waiver/modification is also requested to implement this concession. As noted in Chapter II, Summary, the applicant prefers the no parking garage variant, but has requested that the garage variant also be analyzed in this Draft EIR so that it will be available for the City to consider during its review process should the no parking garage variant be deemed unsuitable for the neighborhood or if the City determines that State Density Bonus Law does not require the City to grant the no parking garage variant as a concession. Prior to the ZAB’s consideration of the project, City staff will evaluate the financial necessity of the no parking garage variant in order to determine if this concession is required under Government Code Section 65915(d)(1)(A).

Table III-1: Required Permits and Approvals

<table>
<thead>
<tr>
<th>Lead Agency</th>
<th>Permit/Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Berkeley</td>
<td>• Certification of EIR
• Use Permits
• Encroachment Permit
• Demolition/Construction Permits</td>
</tr>
</tbody>
</table>

Responsible Agencies

<table>
<thead>
<tr>
<th>East Bay Municipal Utility District</th>
<th>Approval of water line, water hookups and review of water needs.
Approval of wastewater hookups
Waste Discharge Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Regional Water Quality Control Board (RWQCB)</td>
<td>National Pollutant Discharge Elimination System (NPDES) “C.3” permit for storm water discharge.</td>
</tr>
</tbody>
</table>

Other Agencies and Service Providers

<table>
<thead>
<tr>
<th>AT&T</th>
<th>Approval of communication line improvements and connection permits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Gas & Electric (PG&E)</td>
<td>Undergrounding of electrical infrastructure
Approval of electric/natural gas improvements and connection permits.</td>
</tr>
</tbody>
</table>

IV. SETTING, IMPACTS AND MITIGATION MEASURES

This chapter contains an analysis of each potentially-significant environmental issue identified in the Notice of Preparation (NOP) and Initial Study (refer to Appendices A and B) prepared for the 2201 Dwight Way Project (proposed project) and, as such, constitutes the major portion of the Draft EIR. Potential significant impacts that could result from implementation of the proposed project and mitigation measures that would reduce these impacts are also presented in each of the sections.

DETERMINATION OF SIGNIFICANCE

Under CEQA, a significant effect is defined as a substantial, or potentially substantial, adverse change in the environment.\(^1\) The CEQA Guidelines direct that this determination be based on scientific and factual data. Each topical section of this chapter includes criteria of significance. These criteria have been developed in a cooperative process with the City of Berkeley (City) and LSA Associates, Inc. staff using the CEQA Guidelines and applicable City policies and guidelines or the standards of other regulatory agencies.

ISSUES ADDRESSED IN THE DRAFT EIR

The following environmental issues are addressed in this chapter:

A. Visual Resources
B. Cultural Resources
C. Hazards and Hazardous Materials

Direct and indirect impacts of the proposed project itself, as well as cumulative impacts, are discussed in each topical section of the EIR. CEQA defines cumulative impacts as “two or more individual effects, which, when considered together, are considerable, or which can compound or increase other environmental impacts.” Section 15130 of the CEQA Guidelines requires that an EIR evaluate potential environmental impacts that are individually limited but cumulatively significant. These impacts can result from the proposed project alone, or together with other projects. The CEQA Guidelines state: “The cumulative impact from several projects is the change in the environment which results from the incremental impact of the project when added to other closely related past, present, and reasonably foreseeable probable future projects.” Cumulative impacts can result from individually minor but collectively significant projects taking place over time.

\(^1\) Public Resources Code 21068.
For the evaluation of cumulative impacts, CEQA allows the use of either a list of past, present, or reasonably anticipated relevant projects, including projects outside the control of the lead agency, a summary of the projections in an adopted planning document, or a thoughtful combination of the two. The cumulative impacts analysis in this Draft EIR is based on information provided by the City of Berkeley on currently planned, approved, or proposed projects primarily located within the Southside area or at least within ¼ mile of the project site, unless otherwise noted in cumulative discussion for each of the topical sections. Cumulative projects are listed in Table IV.1, below.

Table IV-1: Cumulative Projects

<table>
<thead>
<tr>
<th>Project Address</th>
<th>Status</th>
<th>Use</th>
<th>Dwelling Units</th>
<th>Commercial Area (Sq. Ft.)</th>
<th>Building/ Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>2323 Shattuck Avenue</td>
<td>Under construction</td>
<td>Residential/ Commercial</td>
<td>16</td>
<td>2,600</td>
<td>5 stories (60 ft.)</td>
</tr>
<tr>
<td>2301 Durant Avenue</td>
<td>Under construction</td>
<td>Dormitory/ Church Hall/ Parking Garage</td>
<td>164 (existing)</td>
<td>2,600</td>
<td>5 stories (52 ft.)</td>
</tr>
<tr>
<td>2526 Durant Avenue</td>
<td>Approved</td>
<td>Residential/ Commercial (relocate City Landmark off-site)</td>
<td>44</td>
<td>2,500</td>
<td>5 stories</td>
</tr>
<tr>
<td>2598-2600 Shattuck Avenue</td>
<td>Approved</td>
<td>Residential/ Commercial</td>
<td>155</td>
<td>23,000</td>
<td>Two buildings, 5 stories (65 ft.)</td>
</tr>
<tr>
<td>2107 Dwight Way</td>
<td>Proposed</td>
<td>Residential/ Commercial</td>
<td>99</td>
<td>5,600</td>
<td>6 stories (65 ft.)</td>
</tr>
<tr>
<td>2024 Durant Avenue</td>
<td>Proposed</td>
<td>Residential/ Commercial</td>
<td>96</td>
<td>–</td>
<td>4 to 8 stories</td>
</tr>
<tr>
<td>2701 Shattuck Avenue</td>
<td>Proposed</td>
<td>Residential/ Commercial</td>
<td>69</td>
<td>7,000</td>
<td>4 stories (55 ft.)</td>
</tr>
</tbody>
</table>

Based on analysis contained in the Initial Study (included in Appendix B) the City determined that the proposed project would result in no impacts or less-than-significant impacts to agricultural and forestry resources; air quality; biological resources; archaeological and paleontological resources; geology and soils; greenhouse gas emissions; hydrology and water quality; land use and planning; mineral resources; noise; population and housing; public services; recreation; transportation/traffic; and utilities and service systems. Consequently, these issues are not examined in this chapter of the EIR, but are briefly summarized in Chapter VI, CEQA-Required Assessment Conclusions.

Consistency with the City’s land use and planning policies, including the Zoning Ordinance, are discussed in the Land Use and Planning section of the Initial Study. It should be noted that, according to CEQA, policy conflicts do not, in and of themselves, constitute a significant environmental impact. Policy conflicts are considered to be environmental impacts only when they would result in direct physical impacts or where those conflicts relate to avoiding or mitigating environmental impacts. Any such associated physical environmental impacts are discussed in the Initial Study or appropriate sections of this Draft EIR. Zoning compliance and other policy considerations will be further evaluated by the Zoning Adjustments Board when it considers approval of the proposed project.
In some cases the Initial Study identified potentially significant impacts that could be mitigated to a less-than-significant level with implementation of recommended mitigation measures. These impacts and mitigation measures are not addressed in the Draft EIR, but are identified in Chapter II, Summary of the Draft EIR and in the Initial Study (Appendix B) and will also be included in the Mitigation Monitoring and Reporting Program that will be adopted by the City.

FORMAT OF ISSUE SECTIONS

Each environmental topic considered in Chapter IV comprises two primary sections: 1) Setting, and 2) Impacts and Mitigation Measures. An overview of the general organization and the information provided in the two sections is provided below.

- **Setting.** The Setting section for each environmental topic generally provides a description of the applicable physical setting for the project site and its surroundings (e.g., existing land uses, existing structures). Each section begins by describing the regional context for the proposed project and then more specific information about the project site, as appropriate.

- **Impacts and Mitigation Measures.** The Impacts and Mitigation Measures section for each environmental topic presents a discussion of the impacts that could result from implementation of either of the two proposed project variants. The section begins with the criteria of significance, establishing the thresholds to determine whether an impact is significant. The latter part of the section identifies impacts related to implementation of the proposed project and any mitigation measures, if required. Where impacts of the two project variants may differ, mitigation measures are specified for each project variant, as applicable. The impacts of the proposed project options are organized into separate categories based on the criteria listed in each topical section. Cumulative impacts are also addressed.

Impacts are numbered and shown in bold type, and the corresponding mitigation measures are numbered and indented. Impacts and mitigation measures are numbered consecutively within each topic and begin with an acronymic reference to the impact section (e.g., VIS). The following symbols are used for individual topics:

- VIS: Visual Resources
- CULT: Cultural Resources
- HAZ: Hazards and Hazardous Materials

Impacts are also categorized by type of impact as follows: Less-Than-Significant (LTS); Significant (S); and Significant and Unavoidable (SU). These notations are provided following each impact and each mitigation measure to identify their significance before and after mitigation.
This page intentionally left blank.
A. VISUAL RESOURCES

This section evaluates the effects of the proposed project on visual resources in the vicinity of the project site. This section is based on: (1) field surveys of the project site; (2) a review of the data provided by the project applicant, including perspective drawings; and (3) view simulations prepared by the project applicant that show “before and “after” representations of the proposed project. View simulations have been prepared for two representative vantage points in the vicinity of the site and these are intended to convey an impression of the location, scale and massing of the building that could be constructed at the project site, and to demonstrate potential effects of the proposed project on visual resources. Refer to Section IV.B, Cultural Resources for a discussion of potential impacts related to nearby historic architectural resources.

1. Setting

The following section describes the visual character of the project site and its surroundings as well as views from and in the vicinity of the site. Figure IV.A-1 also shows the locations of the two existing viewpoints depicted in Figures IV.A-2a and IV.A-2b. For a detailed description of the physical characteristics and photographs of the project site, refer to Chapter III, Project Description.

a. Existing Visual Character of the Project Site. The generally level project site is visually characterized by a 20-foot tall, rectangular-shaped commercial building and a 25-stall surface parking lot with minimal landscaping. The 20,500 square-foot building occupies the southern portion of the site, at the northeast intersection of Dwight Way and Fulton Street, and is not set back from the sidewalk. The building’s architectural features are defined by the Streamline Moderne-style, which is further described in Section IV.B, Cultural Resources. The parking area is located at the northern portion of the site and access is provided by a driveway on Fulton Street. Small shrubs and other landscaping are located at the building’s main entrance which is oriented towards the interior parking lot. A masonry retaining wall is located along the northern property line and a portion of the eastern property line, where its maximum height reaches about 6 feet. There are five street trees that border the site on Dwight Way and Fulton Street.

b. Visual Character of the Project Site Surroundings. The visual character of the area surrounding the project site is urban with a mix of residential and commercial buildings that vary in age, size, and architectural character. As shown in Figure III-4 in Chapter III, Project Description, building heights range from one to three stories immediately bordering the site, with four- to six-story buildings located within the same or nearby blocks (see Photos 3 and 4 in Figure III-5b). Buildings generally range in age from construction in the late 19th century to the present and, as also shown in Figure III-4, include several City of Berkeley Landmark structures and structures listed on the California Historic Resources Inventory. Large, block-style apartment buildings and complexes are generally built to the property line with minimal setbacks and landscaping and older single-family structures are generally setback from the street front and include landscaped front and side yards. Roadways in the area are organized on a grid system and are bordered by sidewalks, street trees and parallel parking spaces. Following is a brief discussion of the visual character of the areas immediately surrounding the project site.
- **North.** The project site is bordered immediately to the north by two three-story apartment buildings minimally set back from the street front and separated by an internal courtyard as well as an older two-story former single-family dwelling that has been converted to apartment units. The area north of Haste Street is also generally characterized by this same development pattern, with newer three- to four-story apartment buildings interspersed with older two- to three-story existing and former single-family residential structures.

- **East.** The project site is bordered immediately to the northeast by a three-story former single-family dwelling that has been converted to apartment units and to the southeast by a two-story former single-family dwelling that has also been converted to apartment units and a rear duplex. The area to the east primarily consists of other two- and three-story multi-unit buildings (many converted single-family dwellings, in addition to several four-story and one six-story apartment buildings.

- **South.** South of the project site, across two-lane Dwight Way, are one- to four-story residential buildings. Moving east from the intersection of Dwight Way and Fulton Street, these buildings are a three-story apartment building, a two-story duplex that has been converted from a single-family dwelling, two three-story apartment buildings, and a four-story apartment building. South of the site and west of Fulton Street, buildings on Dwight Way are primarily one- and two-story older commercial and mixed-use buildings.

- **West.** Northwest and west of the project site, across two-lane Fulton Street, are the two-story Bertha Bossé Cottages and the Kueffer House, all three of which are City of Berkeley Landmark Structures. These original single-family structures have all been converted to multiple dwelling units. Two two-story recently constructed apartment buildings are located at the southwest corner of the intersection of Fulton Street and Dwight Way. On Dwight Way to the west, two-story residential buildings are located on the north side, and one- to three-story commercial and mixed-use buildings are located on the south side. A five-story mixed-use building is located at the southeast corner of Shattuck Avenue and Haste Street.

c. **Views from the Project Site.** Views from the sidewalks surrounding the project site and from within the interior parking area at the project site are generally limited in most directions due to the very gentle slope of the site and its vicinity, and the existing development that surrounds the site on all sides. Views towards the Berkeley Hills to the east are limited to intermittent views from the project site parking lot and sidewalks and adjacent roadways that surround the site. There are no views of San Francisco Bay to the west due to existing buildings, street trees, street furniture, parked cars, and traffic, as well as the distance from the site (nearly 2½ miles).

d. **Views of the Project Site.** Views of the project site from the surrounding area are also generally limited to the immediate vicinity due to existing development surrounding the project site. Other than from adjacent roadways, direct open views of the site are unavailable from other public vantage points (such as a public park). People’s Park, located approximately ½-mile east of the site on Dwight Way, is the nearest public park to the project site.
Existing view from Dwight Way, looking east

Visual Simulation of the proposed project

FIGURE IV.A-2a
This page intentionally left blank.
Although Dwight Way gently slopes upward as it travels east from the site, thus providing slightly elevated and more open views of the distant San Francisco Bay and Mt. Tamalpais to the west, the view of the project site from this vantage point generally blends with existing development and landscaping on either side of the roadway.

The following subsection describes views of the project site, from each of the photo simulation viewpoints. Photos of these existing viewpoints are shown in Figure IV.A-2a and Figure IV.A-2b, with Figure IV.A-1 mapping the locations of the viewpoints.

- **Views from Dwight Way, looking east (Viewpoint A).** As shown in Figure IV.A-2a, views from the Dwight Way corridor looking east towards the Berkeley Hills offer urban views of the Southside area, with direct and open views of the distant hills. The view is framed by the two- to three-story buildings on either side of Dwight Way as it slopes gently upwards and the street trees and utility poles that line the sidewalks. Taller four- to six-story buildings can also be seen from this vantage point and these buildings generally blend in with surrounding development.

- **Views from Fulton Street, looking southwest (Viewpoint B).** As shown in Figure IV.A-2b, views from the intersection of Fulton Street and Haste Street, looking southwest and west of the site, are primarily of the street trees and landscaping that line the sidewalks on either side of Fulton Street. The low- to medium-density one- to three-story commercial and residential buildings on either side of Fulton Street are primarily obstructed by the existing vegetation. The three City Landmarks located on Fulton Street can be seen on the west side of Fulton Street, although the Kueffer House (2430 Fulton Street) and one of the Bertha Bossé Cottages (2426 Fulton Street) are set back from the roadway and are less visible from this vantage point.

e. **Regulatory Setting.** The following General Plan and Southside Plan policies that are applicable to visual resources and architectural design within and in the vicinity of the site are outlined below.

City of Berkeley General Plan

Land Use Element

- **Policy LU-3:** Encourage infill development that is architecturally and environmentally sensitive, embodies principles of sustainable planning and construction, and is compatible with neighboring land uses and architectural design and scale.

- **Policy LU-4:** Preserve and enhance the aesthetic, environmental, economic, and social character of Berkeley through careful land use and design review decisions.

Urban Design and Preservation Element

- **Policy UD-3:** Use regulations to protect the character of neighborhoods and districts, and respect the particular condition of each area.

- **Policy UD-16:** The design and scale of new or remodeled buildings should respect the built environment in the area, particularly where the character of the build environment is largely defined by an aggregation of historically and architecturally significant buildings.
IV. SETTING, IMPACTS AND MITIGATION MEASURES

A. VISUAL RESOURCES

- **Policy UD-17**: In relating a new design to the surrounding area, the factors to consider should include height, massing, materials, color, and detailing or ornament.

- **Policy UD-18**: The overall urban experience should contain variety and stimulating contrasts achieved largely through contrast between different areas each of which is visually cohesive.

- **Policy UD-19**: In areas that are now visually heterogeneous, a project should be responsive to the best design elements of the area or neighborhood.

- **Policy UD-22**: Regulate new construction and alterations to ensure that they are individually well-designed and that they are so designed and located as to duly respect and where possible enhance the existing built environment.

- **Policy UD-23**: Ensure that the design review process ensures excellence in design and that new construction and alterations to existing buildings are compatible with the best elements of the character of the area.

- **Policy UD-24**: Regulate new construction and alterations to ensure that they are truly compatible with and, where feasible, reinforce the desirable design characteristics of the particular area they are in.

- **Policy UD-25**: Buildings should have significant exterior features and façades that stimulate the eye and invite interested perusal.

- **Policy UD-26**: Architecture and site design should give special emphasis to enjoyment by, and convenience and safety for, pedestrians.

- **Policy UD-27**: Projects generally should be designed to orient the main entrance toward the public sidewalk, not a parking lot, and avoid confronting the sidewalk with a large window-less wall or tall solid fence.

- **Policy UD-31**: Construction should avoid blocking significant views, especially ones toward the Bay, the hills, and significant landmarks, such as the Campanile, Golden Gate Bridge, and Alcatraz Island. Whenever possible, new buildings should enhance a vista or punctuate or clarify the urban pattern.

Environmental Management Element

- **Policy EM-42**: Outdoor lighting should be chosen to avoid glare and provide an attractive nighttime environment with “fully shielded” fixtures to limit light rays emitted above the horizontal plane.

Southside Plan

Community Character Element

- **Objective CC-F**: Enhance the urban streetscape, landscaping, and open space in the Southside.

- **Policy CC-F1**: Maintain and enhance the existing street tree canopy and develop a street tree planting program for all streets in the Southside. Choose trees appropriate to each site; these may not always be those that grow fastest in their early years. Allow flexibility in the planting of multiple street tree species in order to avoid the loss of entire blocks of trees to disease.
2. Impacts and Mitigation Measures

This section discusses potential impacts on visual resources that could result from implementation of the proposed project. The section begins with the significance criteria, which establish the thresholds used to determine whether an impact is significant. The latter part of this section presents the impacts associated with the proposed project and identifies mitigation measures, as appropriate.

To guide the assessment of whether the proposed project would create a significant adverse impact when measured against the following criteria, the analysis includes computer-generated photo simulations illustrating “before” and “after” views and vistas across the project site (see Figures IV.A-2a and IV.A-2b).

a. Criteria of Significance. Implementation of the proposed project would have a significant effect on visual resources if it would:

- Have a substantial adverse effect on a scenic vista; or
- Substantially degrade the existing visual character or quality of the site and its surroundings.

Although the visual conditions in and around the project site would change with implementation of the proposed project, views of scenic vistas or of the project site itself as seen from private property are not considered to be significant impacts under CEQA. These conditions are described in the analysis below for informational purposes, but the criteria for “substantial adverse effects” and “substantial degradation of the visual character or quality of the site and its surroundings” are evaluated based on views from public areas, as these are experienced by more people and with greater frequency. In addition, the City of Berkeley does not have any standards or policies which explicitly protect views from private property.

b. Project Impacts. The following discussion describes the potential impacts to visual resources that would result from implementation of the proposed project. It should be noted that potential impacts to visual resources would be similar with development of either of the project variants; therefore, impacts related to the two variants are not differentiated in this section. Refer to the Initial Study (Appendix B) for a discussion of impacts related to scenic resources within a State scenic highway and new sources of light and glare. Also refer to the Land Use and Planning discussion in the Initial Study, which discusses potential impacts associated with shade and shadow and potential conflicts with General Plan policies.

(1) Scenic Vistas. Policy UD-31 of the City’s General Plan states that, “Construction should avoid blocking significant views, especially ones towards the Bay, the hills, and significant landmarks such as the Campanile, Golden Gate Bridge, and Alcatraz Island. Whenever possible, new buildings should enhance a vista or punctuate or clarify the urban pattern.” The City’s Zoning Ordinance also defines a view corridor as one that provides, “a significant view of the Berkeley Hills, San Francisco Bay, Mt. Tamalpais, or a significant
landmark such as the Campanile, Golden Gate Bridge, and Alcatraz Island or any other significant vista that substantially enhances the value and enjoyment of real property.¹

As previously described, the project site is located in an urbanized area and is developed with a 20-foot tall commercial building and a surface parking lot. The site is also located within a diverse area of the City’s Southside planning area and buildings here range in size, age, and architectural style. Although not specifically identified as a scenic corridor in the City’s General Plan, some segments of the Dwight Way corridor provide motorists, bicyclists, and pedestrians traveling in the eastbound direction with scenic views of the Berkeley Hills.

The proposed project would introduce a new structure on the site that would range from three- to five-stories in height (a maximum height of 50 feet, with an elevator shaft that reaches 54 feet), increasing the building heights on the site by about 20 to 30 feet. As shown in Viewpoint A (Figure IV.A-2a), existing views from Dwight Way looking northeast towards the project site offer limited visibility of the Berkeley Hills, particularly due to the existing street trees and other mature landscaping within the vicinity. Existing development on both sides of Dwight Way, including the building on the project site, frame the view to the east, including the view of the hills. The proposed three- to five-story building at the site would appear as several individual structures and, as shown in the visual simulation provided in Figure IV.A-2a, six of the five-story volumes that would border Fulton Street and Dwight Way would be visible from this vantage point. As shown in the visual simulation, while building heights on the site would increase, existing views of the Berkeley Hills from public vantage points would not be substantially altered or obstructed with development of the proposed project. Similarly, existing street level views towards the Berkeley Hills from other roadways in the vicinity (such as Fulton Street) would also not be substantially affected since views of the hills towards and through the site are also currently partially obstructed by existing development either on the site or in the vicinity.

As shown in the visual simulation provided in Figure IV.A-2b, there are no existing scenic views looking south towards the site from the intersection of Fulton Street and Haste Street. The view from the Fulton Street corridor looking south is primarily of existing buildings in the foreground (including the three City of Berkeley Landmark structures on the west side of the roadway) and street trees and other vegetation which obstruct visibility of existing commercial and residential buildings in the distance. From the vantage point depicted in Figure IV.A-2b, four of the proposed five-story building volumes would be visible on the east side of Fulton Street. Although these buildings would be taller than existing buildings in the immediate vicinity, no existing significant views (such as the Berkeley Hills, San Francisco Bay or significant landmarks), would be altered looking south towards the site, as none currently exist.

Views from Dwight Way looking west towards the site and views from Fulton Street looking north towards Downtown Berkeley are similar to the views to the south described above and depicted in Figure IV.A-2b. Views to the west and north from these roadways are framed by

existing development and street trees and no existing significant views in these directions (such as San Francisco Bay or significant landmarks) are available from within or in the vicinity of the site. Therefore, no existing significant views looking west or north of the site would be affected by the proposed project.

Existing views of the Berkeley Hills from private properties west of the site, including the Landmark structures on the west side of Fulton Street (particularly 2430 Fulton Street), would be altered with development of the proposed project. Views looking east through the existing on-site surface parking offer very limited visibility of the hills. Existing development and vegetation on Fulton Street and within the project site block generally obstructs any direct or open views of the hills. The proposed five-story building volumes would completely obstruct any existing views of the hills that may currently be available from private properties located immediately west of the site. In addition, distant views of San Francisco Bay and Mt. Tamalpais to the west may be available from some of the upper floors of taller structures located east of the site, particularly the six-story building located at the intersection of Dwight Way and Ellsworth Street (see Figure III-4 in Chapter III, Project Description). Viewed from a distance, the increased building heights on the site would generally blend in with the surrounding development pattern; however, existing private views of scenic features to the east could be altered by the proposed project, particularly from the third or fourth stories of the six-story building. It is unlikely though that the proposed project would completely obstruct or substantially alter any existing views of San Francisco Bay or Mt. Tamalpais from taller structures east of the site, given the distance of these buildings from the site. Although some private views within the vicinity of the site may be altered with development of the project, changes to these views are not considered significant impacts under CEQA.

As described above, although development of the proposed project would alter existing views within the vicinity of the site, the proposed project would not result in a substantial adverse effect on a scenic vista or significant views, as defined by the City’s General Plan and Zoning Ordinance. Therefore, this impact would be less-than-significant.

(2) Visual Character. As previously described, the project site is located in a developed area within the City’s Southside planning area. Development of the proposed project would change the visual character of the project site by demolishing the existing one-story building and surface parking lot and constructing a new building with 18 distinct but connected volumes. Five-story building components would be located at the site perimeter and three- to four-story components would be located at the interior of the site. Each building volume would be oriented towards one of three internal pathways and would be connected by outdoor walkways, stairwells, and internal courtyards. The building would be set back 10 feet from the northern and eastern property boundaries, where the site abuts existing residential properties. There would be no setback from Fulton Street or Dwight Way. The five existing street trees that border the site would be removed and replaced with as many new trees as space permits, but not less than five. Existing above-ground utility infrastructure would also be placed underground where it borders the project site. Specific improvements proposed for the site and their potential to adversely affect the visual quality and character of the site and surroundings are discussed below.
The proposed building design would be a modern urban apartment community of modular construction. The 18 distinct building volumes are intended to harmonize with the size, shape, and scale of much of the surrounding neighborhood and avoid the appearance of one large apartment building. The project includes articulated design and color features for each building (e.g., window boxes, patios, and recessed balconies), all of which are intended to reduce the solid massing of the building. Siding materials would have differing textures and variation in colors to add visual interest. The building volumes would be configured and spaced to allow for light and air to flow through each unit.

As described in Chapter III, Project Description, to physically accommodate the density bonus, the proposed project would require several waivers/modifications to 1) increase the maximum building height on the site from three stories (35 feet) to five stories (50 feet); and 2) to reduce several setbacks from the property line. It should be noted that lot coverage would be approximately 56 percent, which is below the 60 percent lot coverage limitation applicable to properties with four-story buildings within the R-S District.

As shown in Figure III-4 and in Photos 3 and 4 in Figure III-5b in Chapter III, Project Description, although the project site is surrounded by one- to three-story structures, there are several taller buildings (4 to 6 stories in height) within one block of the site. As shown in the visual simulations depicted in Figures IV.A-2a and IV.A-2b, the five-story volumes at the site would be compatible with, and generally represent a continuation of, the existing pattern of development in the area. Furthermore, it is not unusual in this area of the City for buildings of four stories or taller to be located adjacent to shorter buildings, as the current existing development in the vicinity shows. However, many of the taller buildings in the area are comprised of a single large volume, which can contrast with the smaller, narrower volumes of neighboring buildings. The proposed project seeks to avoid the potential impacts of such contrasting bulks by dividing the building into 18 separate volumes no more than 32 feet wide.

With respect to the reduced setbacks proposed by the project, it is not uncommon for existing apartment buildings within this urban area of the City to have no or minimal setbacks from the sidewalk or from adjacent properties. The architectural design of the project is intended to soften the overall effects of the increased building heights and reduced setbacks and to reduce the scale, bulk, and massing of the new building.

Although the proposed project would alter the existing visual character of the site, the scale and architectural style would not be inherently incompatible with existing buildings in the immediate and general vicinity (such as the existing apartment buildings on Dwight Way and

2 Regarding the requested waivers/modifications, it should be noted that although the project could be designed as a single large volume with greater (i.e., more conforming) setbacks, State Density Bonus Law does not require cities to accommodate required bonuses and concessions with the fewest possible waiver/modifications. This gives the Zoning Adjustments Board discretion to determine the most appropriate and least detrimental height and massing for the project. Please refer to Chapter V, Alternatives, for a discussion of the Single Building Volume Alternative, which would develop a single five-story building that would conform more closely to setback requirements but would result in different massing and bulk impacts when compared to the proposed project.
Fulton Street). The new building would further integrate modern construction in an area that already includes both modern and visually significant historic structures, which is consistent with the existing development pattern in the Southside area. Furthermore, the juxtaposition of historic and modern buildings is often considered part of what creates an interesting urban fabric, particularly in the Southside area of Berkeley, and reflects the way cities continually grow and change. In addition, the addition of new street trees (which are depicted at 5 years of growth in the visual simulations) and other streetscape improvements noted above would also improve the overall visual character and vibrancy of the area. As such, the proposed project would not visually degrade the site or surrounding area and impacts associated with the visual quality and character of the site and surroundings would be less-than-significant.

Please refer to Section IV.B, Cultural Resources for a discussion of potential impacts related to historic resources, including potential impacts to the aesthetic and historic integrity of the three nearby City of Berkeley Landmark structures located on Fulton Street. Potential impacts to the visual quality and character of these structures would also be less-than-significant.

c. **Cumulative Impacts.** The geographic area considered for the cumulative visual resources analysis includes the Southside planning area of Berkeley as well as areas to the west of the site that may be outside of the Southside area but still within ¼ mile of the site (as shown in Table IV-1). None of the projects listed are immediately adjacent to the project site. Although additional development and increases in building heights would eventually occur in this area with implementation of the recently adopted Southside Plan, as described above, the proposed project itself would not result in a significant impact to visual resources by 1) creating a substantial adverse effect on a scenic vista; 2) substantially degrading the existing visual character or quality of the site and its surroundings; or 3) creating a new source of light or glare. Developments occurring within the vicinity of the site are also likely to result in similar less-than-significant impacts to visual resources. Therefore, the proposed project would not contribute to a cumulative impact to visual resources and this impact would be less than significant.

Furthermore, many future development projects would be subject to the City’s Design Review process. The purpose of the Design Review process is to consider the design treatment and relationship to the surrounding built environment and to ensure that no significant adverse aesthetic impacts (including those from cumulative development) would result.
This page intentionally left blank.
B. CULTURAL RESOURCES

This section describes the cultural resources baseline conditions for built-environment resources in the project site and vicinity, identifies potentially significant impacts to such resources that may result from project implementation, and identifies mitigation measures to reduce the severity of significant impacts as necessary. The analysis in this section is based on the Historical Evaluation\(^1\) prepared for the project and included as Appendix C.

Cultural resources are sites, buildings, structures, objects, and districts that may have cultural value for their historical significance. For a cultural resource to be considered a “historical resource” for purposes of CEQA, it generally must be 50 years or older (California Code of Regulations (CCR) section 4852(d)(2)) and (1) be listed in, or determined eligible for listing in, the California Register of Historical Resources; (2) be included in a local historical register of historical resources, as defined in Public Resources Code (PRC) section 5020.1(k) or identified as part of a survey meeting the requirements of PRC section 5024.1(g); or (3) be determined by the lead agency as historically significant.

1. Setting

This section describes the methods used to establish the baseline conditions for cultural resources in and around the project site, provides a brief historical overview of the project area, includes the State and local legislative regulatory context for cultural resources, and describes the cultural resources identified in the project site and their significance under CEQA.

a. Methods. To establish the baseline conditions for built-environment cultural resources in the project site and vicinity, LSA conducted background research consisting of records searches at local repositories, a literature review, and a historical architectural field survey. Each task is described below.

(1) Records Searches. Records searches were conducted to identify cultural resources within and adjacent to the project site. They were conducted at the Northwest Information Center (NWIC) of the California Historical Resources Information System, Sonoma State University, Rohnert Park; Berkeley Architectural Heritage Association (BAHA); Berkeley Historical Society (BHS) History Center; and the City of Berkeley Planning and Development Department. The NWIC, an affiliate of the State of California Office of Historic Preservation, is the official State repository of cultural resources records and reports for Alameda County. The BAHA and BHS archives were reviewed for historical information and survey records for the building in the project site. Sources at the City of Berkeley Planning and Development Department were reviewed to provide information on building permit records.

As part of the records search, LSA reviewed the following State and local inventories for cultural resources in and immediately adjacent to the project site:

• California Inventory of Historic Resources;
• California Historical Landmarks;
• California Points of Historical Interest;
• Five Views: An Ethnic Historic Site Survey for California;
• Directory of Properties in the Historic Property Data File. The directory includes
 the listings of the National Register of Historic Places, National Historic Landmarks,
 the California Register of Historical Resources, California Historical Landmarks,
 and California Points of Historical Interest;
• City of Berkeley Landmarks List;
• City of Berkeley Downtown Survey and Contexts; and
• City of Berkeley Downtown Area Plan Historic Resource Evaluation.

(2) Literature Review. Publications, maps, historical aerial photographs, and
internet sites were reviewed for historical information about the project site and its vicinity.
The purpose of this review was to identify cultural resources in the project site and
alterations to such resources over time.

(3) Field Survey. An architectural historian conducted an architectural field survey of
the project site on September 20, 2012, to identify built-environment resources. All cultural
resources in the project site and adjacent resources (i.e., City Landmarks) were visually
inspected and photographed. A review of the project area vicinity was also done to obtain
contextual information.

b. Cultural Resources Overview. This section briefly describes the history of the project
site vicinity, including the project site’s historical architectural context, as determined by the
records searches and literature review described above.

(1) Berkeley History. The project site is within the 44,800-acre Rancho San Antonio land grant, which was originally granted to Luis Maria Peralta on August 3, 1820, for his service to the Spanish government. Peralta’s land grant was confirmed after Mexico’s independence from Spain in 1822, and this title was honored when California entered the Union by treaty in 1848. In 1842, Peralta’s son José Domingo received the northern portion of the rancho lands, which includes today’s cities of Albany and Berkeley.

In 1852, Francis Kittredge Shattuck, George Blake, James Leonard, and William Hillegass purchased one-square mile of land bounded by what are now College Avenue, Martin Luther King Jr. Way, Addison Street, and Russell Street. The main thoroughfare through this land would later become Shattuck Avenue. This area later became the core of Berkeley’s early commercial, residential, and civic development. The establishment of the University of California in 1873 bolstered the futures of Berkeley’s early residents and real estate speculators.

In 1876, Shattuck purchased a spur line of the Southern Pacific Railroad originating in Oakland and running north to Berkeley along Adeline Street, then along Shattuck Avenue to its terminus at what would become Shattuck Square. Shattuck Avenue provided the necessary width for wagon and rail transportation into the heart of the fledgling community. This event and the burgeoning importance of Shattuck and University Avenues were the catalysts for downtown development. Berkeley experienced dramatic growth during the early 20th century and many neighborhoods began to grow. Key events driving this growth included the arrival of an electric rail system linking Berkeley to Oakland and San Francisco, the mass exodus of San Franciscans to East Bay communities following the Earthquake and Fire of 1906, and the institutional growth of the University of California.

(2) Project Area History. The history of Berkeley’s Southside neighborhood is associated with the establishment of a university in Berkeley. In the late 1850s, land speculators and civic boosters enticed the College of California to move from Oakland to a more bucolic area along Strawberry Creek, a location that was still close enough to Oakland and, thus, San Francisco via ferry service. The move was hindered as the College lacked the funds to finance the relocation. George Blake, however, agreed to sell lands south of the proposed university location to the College so that the trustees could then finance the relocation via parcel sales. To this end, the trustees created the College Homestead Tract Association (Association) to subdivide the tract and sell the parcels to finance relocation of the college. This development created the first residential neighborhood in Berkeley.

The Association marketed the parcels to a well-to-do citizenry interested in living in a small college town. The trustees hired famed landscape architect Frederick Law Olmsted to plan the development but his ideas were deemed unsuitable. Olmsted envisioned a network of

landscaped roads and tree-lined lanes following topographic contours. Instead, the trustees adopted a traditional grid pattern. In a move designed to appeal to educated buyers, the north-south streets were named in alphabetical order after prominent scientists: Audubon (now College Ave.), Bowditch, Choate (now Telegraph), Dana, Ellsworth, Fulton and Guyot (now Shattuck). East-west streets were named after authors: Allston, Bancroft, Channing and Dwight, the last named after academic and theologian Timothy Dwight IV, the eighth president of Yale College.

As the Homestead Tract was gradually developed in the 1880s and 1890s with residences, commercial development along Shattuck Avenue began. Recognizing an opportunity, the Central Pacific Railway built a branch line along Shattuck Avenue that provided a convenient route from Berkeley to Oakland and San Francisco. A horsecar line and later an electric streetcar station stop were located on Dwight Way approximately 350 feet west of the project site at 2134-2140 Dwight Way, also known as the Davis-Byrne Building, built in 1895. The railroad eventually transformed Shattuck Avenue between University Avenue and Dwight Way into a prosperous commercial area.

In 1902, this route was operated by the Oakland Consolidated Street Railway and later became part of the Key System. Streetcar service ended in November 1948. The area began to change again with the end of the Key Route System. The decline was largely due to the post-WW II rise of automobile use, which was facilitated in the East Bay by the opening of the San Francisco - Oakland Bay Bridge in 1936 and construction of an interstate freeway network following World War II. By 1950, the Sanborn Fire Insurance map of this area indicates an increasing concentration of industrial and commercial activity, mostly automobile related, on Dwight Way, one block east of Shattuck Avenue. The property at 2201 Dwight Way is depicted on the 1950 Sanborn as an automobile sales and service facility.

In the years following World War II and through the 1970s, the student population at the University of California campus grew, and the university constructed student housing in the neighborhood. Also during this period, many established families and older residents moved out of the area to the Berkeley/Oakland hills or outlying suburbs. This shift led to a significant change in the nature of the older “single-family” parts of the Southside area. Some single-family homes were converted into apartments or flats; others were leveled to accommodate the construction of larger, multi-story apartment buildings. Today the Homestead Area is known locally as the “Southside” and is mostly residential in nature, with university students forming the majority of the population.

(3) Architectural Context. The existing building at the project site was constructed in 1947 in Streamline Moderne style. This style emerged from the Art Deco movement of the 1920s and 1930s and is characterized by smooth horizontal shapes with curved corners wrapped with horizontal banding conveying a feeling of smooth, fluid motion. Other character-defining features include a flat roof with ledge coping, porthole windows, banded windows or wall segments of glass blocks, and subdued color schemes. Materials such as steel, formed concrete, chrome or plated surfaces, and walls of smooth-textured stucco were favored by architects of this design.
Oakland-based architect Alben R. Froberg designed the building. Froberg had a successful career specializing in commercial and industrial construction in the East Bay and often used Art Deco or Streamline Moderne architectural styles in his designs. Mr. Froberg’s catalog includes bus depots, car dealerships and showrooms, warehouses, office buildings, research facilities, an ordnance plant, a waxed paper plant, and a filter manufactory.¹³ Notable examples of Froberg’s industrial/commercial architecture include the Consolidated Freightways Warehouse built in 1940-41 at 1700 24th Street, Oakland; the Laher Auto Spring Company factory built in 1925, at 2619-25 Magnolia Street, Oakland; a former coffee shop built in 1950 at 1601 San Pablo Avenue, Oakland; the Marshall Steel Company Cleaning Plant built in 1933 at 5427 Telegraph Avenue, Oakland; a two-story Art Deco office building built in 1936 at 2398 Valley Street, Oakland; the Connell GMC Pontiac Cadillac (present-day Bay City Chevrolet) built in 1946 at 3093 Broadway, Oakland; the Challenge Cream and Butter Association Plant built in 1947 at 708 Addison Street, Berkeley; and several office additions in the 1940s and early 1950s to the Kawneer Building, a City Landmark built in 1913 at 2547 Eighth Street.

c. **Regulatory Context.** The following describes CEQA and City regulatory and policy requirements for cultural resources.

 (1) **CEQA Requirements.** CEQA defines a “historical resource” as a resource that is: 1) listed in, or determined eligible for listing, in the California Register of Historical Resources (California Register); 2) listed in a local register of historical resources as defined in PRC Section 5020.1(k); 3) identified as significant in a historical resource survey meeting the requirements of PRC Section 5024.1(g); or 4) determined to be a historical resource by a project’s lead agency (PRC Section 21084.1 and CEQA Guidelines Section 15064.5(a)). A historical resource consists of:

 “Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California… Generally, a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the California Register of Historical Resources” (CEQA Guidelines Section 15064.5(a)(3)).

 In accordance with CEQA Guidelines Section 15064.5(b), a substantial adverse change in the significance of a historical resource is a significant effect on the environment. Significant impacts under CEQA require that specific, feasible mitigation measures be developed to reduce adverse environmental conditions.

 (2) **Public Resources Code: California Register of Historical Resources.** The California Register is established at PRC Section 5024.1. The California Register is a guide to cultural resources that must be considered when a government agency undertakes a discretionary action subject to CEQA. The California Register helps government agencies

identify and evaluate California's historical resources and indicates which properties are to be protected, to the extent prudent and feasible, from a substantial adverse change (PRC Section 5024.1(a)). Any resource listed in, or eligible for listing in, the California Register must be considered during the CEQA process.14

A cultural resource is evaluated under four California Register criteria to determine its historical significance (CEQA Guidelines Section 15064.5(a)(3); PRC 5024.1(c)). To be eligible for listing on the California Register, a resource must be significant at the local, State, or national level in accordance with one or more of the following criteria:

1. Is associated with events that have made a significant contribution to the broad pattern of California's history and cultural heritage;
2. Is associated with the lives of persons important in our past;
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
4. Has yielded, or may be likely to yield, information important in prehistory or history.

In addition, California Register eligibility is based on other considerations, including its integrity, which is “the authenticity of a historical resource’s physical identity evidenced by the survival of characteristics that existed during the resource’s period of significance.” Integrity is evaluated with regard to the retention of seven elements:

- **Location**: the place where the resource was constructed;
- **Design**: the combination of elements that create the form, plans, space, structure, and style of the resource;
- **Setting**: the physical environment of the resource, including the landscape and spatial relationship of the buildings;
- **Materials**: the physical elements that were combined or deposited during a particular period of time and in a particular pattern of configuration to form the resource;
- **Workmanship**: the physical evidence of the crafts of a particular culture or people during any given period of history;
- **Feeling**: the resource’s expression of the aesthetic or historic sense of a particular period of time; and
- **Association**: the direct link between an important historic event or person and a resource.

Resources that are significant and possess integrity will generally be considered eligible for listing in the California Register.

(3) Berkeley General Plan. The General Plan treats the preservation of historical resources as an important part of the City’s development planning. The General Plan includes policies in the Urban Design and Preservation Element to provide for the protection of culturally or historically important resources. The Element contains 39 policies and accompanying actions to achieve its four objectives. To summarize, the Element’s objectives and attendant policies are:

- **Protection of Existing Resources.** This goal is to preserve historically or culturally important structures, sites, and areas, and protect the character of Berkeley’s neighborhoods and districts. The Element contains 11 general policies to achieve this objective. These policies include (by Element reference number): (UD-1) employing a wide array of regulatory, incentive, and outreach techniques; (UD-2) regulating the use of significant properties; (UD-3) regulating the character of neighborhoods; (UD-4) maintaining and expanding an inventory of cultural resources; (UD-5) retaining significant architectural features during building rehabilitation; (UD-6) encouraging adaptive reuse; (UD-7) implementing disaster preparedness; (UD-8) selecting public works projects sympathetic to historical street features; (UD-9) maintaining historic trees and plantings; (UD-10) encouraging the University of California to retain historically significant campus buildings; and (UD-11) urging the Berkeley public school system to maintain and improve its historic buildings.

- **Preservation Incentives.** This goal is to provide incentives for the preservation of historic and cultural resources. The Element contains four general policies to achieve this objective. These policies include: (UD-12) expanding the incentives available for the preservation of historic and cultural resources; (UD-13) revising regulations to provide new incentives and remove disincentives for preservation; (UD-14) providing new funding, tax reduction, and technical assistance incentives to facilitate preservation; (UD-15) establish and improve preservation partnerships with public agencies, nonprofit organizations, and the private sector.

- **New Construction and Alterations.** This goal is to ensure that new construction and alterations are well designed and respect and enhance the existing environment. The Element contains 20 policies to achieve this objective. These policies include: (UD-16) designing new, or remodeling buildings, to respect their architectural context; (UD-17) designing architectural aspects (e.g., the mass, height, materials, color, or detailing) in relation to the surroundings; (UD-18) encouraging an overall experience with a variety of stimulating contrasts; (UD-19) encouraging consonance of new designs with the best designs of an architecturally diverse area; (UD-20) altering a significant building only in ways compatible with its character; (UD-21) redirecting redevelopment to areas that will not require removing historical buildings; (UD-22) ensuring well-designed new construction that enhances its location; (UD-23) ensuring that design review results in designs compatible with the best elements of an area’s character; (UD-24) regulating new construction to reinforce the design character of its location; (UD-25) encouraging stimulating and inviting facades and exterior building features; (UD-26) incorporating pedestrian-friendly choices in site design; (UD-27) relating building entrances to public sidewalks; (UD-28) limiting appreciable setbacks of commercial structures from public sidewalks; (UD-29) requiring aesthetically pleasing signage compatible with
the surroundings; (UD-30) ensuring that new development respects and maintains existing on-site trees; (UD-31) avoiding construction that blocks significant views; (UD-32) requiring new construction that maximizes solar access and minimizes shadows; (UD-33) promoting environmentally-friendly building designs; (UD-34) supporting the presentation of public art; and (UD-35) undertaking public improvement projects that clarify the City’s urban pattern and facilitate a visitor’s ease and comfort therein.

- Outreach. This goal is to promote the awareness, understanding, and preservation of significant examples of the City’s built environment cultural heritage. The Element contains four policies to achieve this objective. These policies include: (UD-36) encouraging citizens’ understanding of the City’s cultural heritage and ways to sensitively preserve it; (UD-37) distributing information on the incentives available for preservation; (UD-38) promoting the City’s cultural and architectural heritage as an economic development strategy; and (UD-39) promoting the understanding of what constitutes a good design and how it respects its architectural context.

(4) Southside Plan. The recently adopted Southside Plan includes several key commercial, residential, and mixed-use areas bounded by Dwight Way on the south, Bancroft Way on the north, Prospect Street on the east, and Fulton Street on the west. The Southside Plan is intended to guide development and preservation decisions in this area until at least 2020 and includes implementing guidelines, goals, objectives, and policies. The Community Character Element and Land Use Element of the Southside Plan, and the proposed zoning for the area, include language relevant to historic architectural resources. Portions of the Southside Plan relevant to the current project are discussed below.

Community Character Element

- Objective CC-D: Preserve and enhance the significant architectural resources of the area. Two policies are associated with this goal. Policy CC-D1 seeks to preserve and maintain architecturally and historically important buildings, including landmarked and non-landmarked structures whenever feasible. Policy CC-D2 seeks to relocate and renovate historic buildings in the Southside area when such buildings are threatened with demolition.

Land Use Element

The Land Use Element includes a discussion of development “opportunity sites” in the Southside Plan area. Development opportunity sites include those parcels that “contain existing one-story, architecturally and historically insignificant buildings. Some sites could receive building additions, could accommodate additional buildings on the lot, or could potentially be demolished and new buildings built in their place.” To this end, the Land Use Element includes the following objective and policy:

- Objective LU-C: Encourage development consistent with the objectives of the Southside Plan on suitable underutilized sites in the Southside. This objective contains one policy (LU-C1), which prioritizes sites for redevelopment and reuse in the Southside Plan area. Underutilized sites with single-story buildings that are not historically significant – including those on Dwight Way – are ranked fifth in order of priority out of five “suitable sites” for development.
Southside Zoning Code

The project site is in the Residential High Density Subarea (R-S) of the Southside Plan area. Section 23D.48.020 of the City’s Zoning Code states that development in this subarea shall:

- Encourage the redevelopment of single-story structures that are not historically significant resources with more dense housing development; and
- Protect and enhance historically significant buildings by ensuring that new development and alteration complement their existing architectural character.

City of Berkeley Landmarks Preservation Ordinance. Chapter 3.24 of the Berkeley Municipal Code contains the Landmarks Preservation Ordinance (LPO). Enacted by the Berkeley City Council in 1974, the LPO was drafted by BAHA as an attempt to prevent or delay the demolition of historically significant architecture while alternatives to the demolition are sought. The LPO authorized the creation of a Landmarks Preservation Commission (LPC) to implement the ordinance; the LPO was tasked with protecting those sites, structures, or areas that are: (1) reminders of past eras, events, and persons important to local, state, or national history; (2) significant examples of architectural styles of the past; or (3) landmarks in the history of architecture, or unique or irreplaceable assets to the City and its neighborhoods. In addition, the LPO seeks to: (1) develop and maintain appropriate architectural settings for identified resources; (2) enhance property values, stabilize neighborhoods, and increase economic benefits to the City; (3) preserve the City’s various architectural styles; and (4) encourage an understanding of the living heritage of the City’s past, as expressed by its historically significant built environment features.

The LPC is authorized to designate Landmarks, Structures of Merit, and Historic Districts. In addition to its designation duties, the LPC reviews applications for the alteration or demolition of Landmarks and Structures of Merit, as well as new construction in Historic Districts. Designation proposals may originate from private individuals, the LPC, the Planning Commission, the Civic Arts Commission, or the City Council.

In considering designation applications for Landmarks and Historic Districts, the LPC uses the following criteria established by the LPO Section 3.24.110:

1. Architectural Merit:
 a. A property is the first, last, only, or most significant architectural property of its type in the region;
 b. A property is the prototype of, or outstanding example of, a period, style, architectural movement, or construction, or is an example of the more notable works of the best surviving work in a region of an architect, designer, or master builder; or
 c. A property is an architectural example worth preserving for the exceptional values it adds as part of the neighborhood fabric.

2. Cultural Value: A structure, site, or area associated with the movement or evolution of religious, cultural, governmental, social, and economic development of the City.

3. Educational Value: A structure worth preserving for its usefulness as an educational force.
4. **Historic Value**: A structure that represents the preservation and enhancement of structures, sites, and areas that embody and express the history of Berkeley/Alameda County/California/United States. History may be social, cultural, economic, political, religious, or military.

5. **Historic Property**: Any property listed in the National Register of Historic Places.

In considering applications for *Structure of Merit* designation, the LPC uses the following criteria:

1. **General Criteria**: A structure shall be judged on its architectural merit and/or cultural, educational, or historic interest or value. If a structure does not meet Landmark criteria, it may be designated a Structure of Merit if it is worthy of preservation as part of a neighborhood, a block or street frontage, or as part of a group of buildings that includes Landmarks.

2. **Specific Criteria**:
 a. The age of the structure is contemporary with: (1) a Landmark within its neighborhood, block, street frontage, or group of buildings; or (2) a historic period or event of significance to Berkeley, or to the structure’s neighborhood, block, street frontage, or group of buildings;
 b. The structure is comparable in size, scale, style, materials, or design with a Landmark structure within its neighborhood, block, street frontage, or group of buildings;
 c. The structure is a good architectural design example;
 d. The structure has historical significance to Berkeley and/or to the structure’s neighborhood, block, street frontage, or group of buildings.

d. Project Area Cultural Resources. The records searches, literature review, and field survey identified no significant cultural resources at 2201 Dwight Way. An architectural historian evaluated the 1947 Streamline Moderne building at the project site and is of the opinion that the building is not eligible for inclusion in the California Register under any of the criteria for listing, nor does it otherwise appear eligible as a City Landmark or Structure of Merit (see Appendix C).

Three City Landmarks are across Fulton Street from the proposed project and are historical resources for purposes of CEQA. In addition, there are five other City Landmarks within one block of the proposed project. These buildings are described below.

(1) **Bertha Bossé Cottages (2424 and 2426 Fulton Street)**. These two cottages were built in 1884 for Mrs. Bertha Bossé and her family by Oakland contractors Veitch & Knowles.¹⁵ These buildings are located approximately 90 and 100 feet northwest of the project site (see Figure III-5b, Photo 4, in Chapter III, Project Description), respectively and

are among the oldest in the former College Homestead Association Tract of Berkeley’s Southside neighborhood. These Victorian-styled buildings were designated Berkeley Landmarks in 2003 and are listed in the Directory of Properties in the Historic Property Data File with a National Register Status Code rating of “3S”, indicating they “Appear eligible for listing in the N[ational] R[egister] as a separate property”. These properties qualify as historical resources under CEQA (CEQA Guidelines Section 15064.5(a)(2)).

(2) John and Emily Kueffer House (2430 Fulton Street). This single-family, Queen Anne cottage was built in 1891 by Swiss-born cabinetmaker John Kueffer. This residence is located approximately 75 feet west of the project site (see Figure III-5b, Photo 4, in Chapter III, Project Description) and is among the oldest in the former College Homestead Association Tract of Berkeley’s Southside neighborhood. This house was designated a Berkeley Landmark in 2003 and was recently renovated, although apparently none of the original interior elements remain. Although this building is not listed in the Directory of Properties in the Historic Property Data File, it clearly qualifies as a historical resource under CEQA (CEQA Guidelines Section 15064.5(a)(2)) and is significant as a good example of a late-19th century cottage in the College Homestead Association Tract area of Berkeley.

(3) Other Area Landmark Structures. Five other City Landmarks, as listed below, are within one block of the proposed project, but more distant from the site than the three structures on Fulton Street. These historical resources contribute to the historic character of the Southside area and consist of commercial and residential properties associated with Dwight Way Station and nearby residences at the corner of Fulton and Blake streets. None of these historical resources are near enough to the project site to be adversely affected by the proposed project.

- Alfred Bartlett Houses (2201 and 2205 Blake Street). Two Victorian Italianate residences constructed in 1877 and 1892;
- Williamson Building (2120, 2122, 2124 Dwight Way). A 1905 Mission Revival apartment and commercial building;
- Williams Building (2126, 2128 Dwight Way). A 1902 Colonial Revival apartment and commercial building; and
- Davis-Byrne Building (2138, 2140 Dwight Way). An 1895 Late Victorian/Colonial Revival apartment and commercial building.

2. Impacts and Mitigation Measures

The following section describes potentially significant impacts to cultural resources that could result from the proposed project. Mitigation measures are identified to reduce such impacts.

a. Criteria of Significance. Implementation of the proposed project would have a significant impact on historical resources if it would:

b. Project Impacts. The following discussion describes the project’s potential adverse impacts to historical resources. Because the two project variants would have the same exterior appearance, except for the presence of driveways rather than landscaping in the garage variant the discussion below does not differentiate between the two. Potential impacts to archaeological resources, paleontological resources, and human remains are addressed in the project’s Initial Study (Appendix B).

For the project to have “a substantial adverse change” on a historical resource, it would have to demolish, destroy, relocate, or alter the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired (CEQA Guidelines Section 15064.5(b)). Generally, for purposes of CEQA, the significance of a historical resource is materially impaired when a project demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for inclusion in, the California Register, or an officially recognized local register of historical resources, or its identification in a historical resources survey meeting the requirements of PRC Section 5024.1(g).

(1) Demolition of Project Site Cultural Resource. The proposed project would demolish the existing one-story 1947 Streamline Moderne commercial building at the project site. This building has been extensively modified over the years, which has resulted in a loss of original workmanship, design, and materials. This loss of integrity is due to renovation of the former automobile showroom and service center into office space in 1983. Alterations included the replacement of all original windows, with additional windows added and set in slanted casements on the south façade; the replacement of all entrance doors, with the addition of new entrances on the north and south facades; conversion of two former service bay doors into large, multi-paned glass walls, simulating a garage door; and the installation of a pergola and pedestrian walkways along the north façade. Collectively, these alterations no longer convey the workmanship or the materials of the original 1947 building and have changed the original unadorned, smooth and unbroken design of a Streamline Moderne façade. Furthermore, although changes in use do not automatically result in a loss of integrity when adaptive reuse occurs, the building’s integrity of association is also somewhat compromised, as it no longer functions as an automobile sales and service center.

The building is not a historical resource for the purposes of CEQA as it has not 1) been listed in, or determined eligible for listing, in the California Register of Historical Resources; 2) been listed in a local register of historical resources as defined in PRC Section 5020.1(k); 3) been identified as significant in a historical resource survey meeting the requirements of PRC Section 5024.1(g); and 4) been determined to be a historical resource by the City (PRC Section 21084.1 and CEQA Guidelines Section 15064.5(a)). The project, therefore,
would not have a substantial adverse change on a historical resource at 2201 Dwight Way, and no mitigation measures are required.

Furthermore, the building at 2201 Dwight Way is not a contributing element to a potential Dwight Station area historic district, and its demolition would not be an adverse impact to such a district. The 1947 building was constructed long after Dwight Station’s period of development between the 1880s and 1910. The Dwight Station area was initially developed in the late 1880s as a speculative commercial venture to compete with downtown and profit from commercial traffic generated by nearby commuter rail lines. The project site building was constructed in response to demand brought about by the spread of the automobile.

The Dwight Station area is clustered at the southeast corner of the intersection of Shattuck Avenue and Dwight Way, and the project site is approximately 500 east of Dwight Station. Today, Dwight Station consists of the 1905 Williamson Building (2122 Dwight Way); the 1902 Williams Building (2128 Dwight Way); and the 1895 Davis Byrne Building (2138-40 Dwight Way). The building at 2201 Dwight Way is a single-story Streamline Moderne-styled building of poured concrete and brick masonry fascia, an architectural style and method of construction altogether different than Dwight Station’s multi-story, wood-framed buildings designed in late Victorian and vernacular commercial styles common in turn of the century commercial construction.

The single-story commercial building located across from the project site at 2170-2180 Dwight Way was built in 1924 and identified on Sanborn maps as a “sheet metal works” and “shop and garage.” Although 2201 and 2170-2180 Dwight Way are historically associated with the mid-century growth of the automobile, automobile-related facilities in this area, including the James Plachek-designed Berkeley Honda building, tend to be clustered along Shattuck Avenue. The project site, therefore, does not appear to contribute to a potential “automobile row” historic district.

(2) Potential Impacts to Adjacent City Landmarks. As discussed above, three City Landmarks on Fulton Street (Bertha Bossé Cottages and the John and Emily Kueffer House) are located across Fulton Street from the proposed project. These City Landmarks are historical resources for purposes of CEQA due to their listing in a local register of historical resources as defined in PRC Section 5020.1(k). Furthermore, these buildings appear eligible for listing in the California Register and National Register of Historic Places.

Assessing a project’s visual effects on these historical resources is necessarily subjective. Published guidelines by the Delaware State Historic Preservation Office, however, describe a qualitative method to determine whether new construction may cause a substantial adverse change to nearby historical resources. Visual simulations of the project demonstrate that it would be visible from the City Landmarks on Fulton Street (see Figure IV.A-3b in Section IV.A, Visual Resources). As noted previously at the criteria of significance discussion for the project, a substantial adverse change to a historical resource would occur if the resource or its immediate surroundings were altered such that the significance of the historical resource would be materially impaired. The Delaware State guidelines for assessing visual effects to historic properties identifies two types of adverse visual effects that can be used to determine whether the “immediate surroundings” of a resource were altered to such a degree that
material impairment to the nearby City Landmarks on Fulton Street would occur. These two types of visual effects are described below.

- **Aesthetic Effects.** A project would have a negative aesthetic effect on a historical resource if it eliminates open space or scenic views that contribute to a resource’s significance or introduces visual elements that are incompatible, greatly out of scale, in great contrast, or out of character with the surrounding area’s character (which includes both the historical resources and later development).

- **Obstructive Effects.** A project would have an obstructive effect if it blocks or intrudes into a scenic view; blocks a significant feature of the scenic view; blocks another historical resource visible from the subject historical resource; or provides visual elements that would detract from a scenic view or historical resource.

To assess the project’s potential aesthetic and/or obstructive effects on the Fulton Street City Landmarks, it is necessary to understand the reasons for these resources’ significance (i.e., their eligibility under appropriate LPO criteria) and the critical aspects of their integrity that convey their historical significance. By way of example, a rural farmstead significant for its association with historical events is particularly susceptible to visual impacts, as new construction may adversely affect critical components of the resource’s integrity that convey its significance, including integrity of setting and feeling. Other resources that are significant for their architecture demonstrate this significance primarily through integrity of design, materials, and workmanship, which are generally less susceptible to visual changes in the surrounding setting.

The City Landmarks on Fulton Street near the project site are significant for their architectural (LPO Section 3.24.110.A.1), historic (LPO Section 3.24.110.A.4), and cultural (LPO Section 3.24.110.A.2) values. These buildings are significant as they represent excellent examples of Stick and Queen Anne style cottages; are associated with the development of south Berkeley, particularly the Dwight Way Station and commercial center neighborhood; and are one of the few reminders that illustrate how working people lived in Berkeley during the late 19th century. The buildings’ architectural significance is conveyed primarily through their design, materials, and workmanship, as demonstrated in several surviving character-defining architectural features. The historic and cultural significance of the Fulton Street City Landmarks are also conveyed through these aspects of integrity as well as integrity of location, association, and, to a lesser degree in this case, setting and feeling.

Aesthetic Effects. Elements of the project’s design, including its height, scale and proportion, and architectural style would not materially impair the features of the nearby Fulton Street Landmarks that convey their architectural significance (i.e., design, materials, and workmanship) since none of these features would be altered. Furthermore, the introduction of a three- to five-story building would not result in a significant impact for the following reasons:

- The project would not demolish a building or eliminate an undeveloped open space or scenic view associated with the late 19th century Dwight Way Station.
neighborhood. The subject building is much later than the period of significance of Dwight Way Station.

- The association between the Fulton Street Landmarks and the commercial buildings near Dwight and Shattuck has already been somewhat altered by the demolition of nearby structures from the same period, namely the Haste Mansion at the project site, and dwellings at the northwest corner of Dwight and Fulton, leaving a significant gap in the original neighborhood fabric.

- The surrounding neighborhood is already characterized by a wide variety of building heights, setbacks, sizes, ages, and architectural styles, which have also altered the original setting of the Fulton Street Landmarks. For example, the three-story apartment buildings north of the project site on the east side of Fulton Street have no setback and are generally taller and bulkier than the Fulton Street Landmarks. The project site is not directly adjacent to the Landmark structures and the scale and bulk of the new building would be similar to other buildings in the neighborhood. Therefore, the new building would further integrate modern construction in an area that already includes both modern and visually significant historic structures, which is consistent with the existing development pattern in the Southside area.

The project, therefore, is not anticipated to have a significant aesthetic effect on nearby City Landmarks, such that the historical integrity of the existing Landmarks would be compromised and no mitigation measures are required. Also refer to Section VI.A, Visual Resources, which also discusses the less-than-significant impact of the project to the visual character of the project site’s surroundings.

Obstructive Effects. The proposed project would not block or intrude on a scenic view or other historical resource as viewed from the Bertha Bossé Cottages and the John and Emily Kueffer House. Views of the Berkeley hills, looking east from these buildings are already largely obstructed by existing development and existing vegetation. The proposed project would not introduce a new obstruction of these Fulton Street City Landmarks as viewed from Dwight Way. The project, therefore, is not anticipated to have a significant obstructive effect on nearby City Landmarks, and no mitigation measures are required.

c. **Cumulative Impacts.** The project would have a cumulatively significant impact on historical resources if it, in conjunction with other identified significant or less-than-significant impacts from nearby projects, would cause a substantial adverse change in the significance of a historical resource, as defined above in the criteria of significance for this project. A list of cumulative projects located within the Southside area and also within ¼-mile of the project site is included in Table IV-1.

Although some of the projects listed in Table IV-1 include on-site or nearby historical resources, none of these would raze a City Landmark or Structure of Merit or result in other significant unavoidable impacts related to demolition or substantial alteration of historic resources. As summarized above and in the *Historical Evaluation* report prepared for 2201 Dwight Way (Appendix C), the project site does not contain a historical resource, and as such, the building’s demolition would have no impact to historical resources.
Furthermore, no significant aesthetic or obstructive effects, as defined above, to historical resources have been identified for the projects listed in Table IV-1. Although the project would have less-than-significant visual effects on the nearby Fulton Street Landmarks, and other less-than-significant visual effects to historical resources have been identified for cumulative projects in Berkeley, these less-than-significant impacts do not reach a level of significance requiring mitigation. Collectively, these projects are consistent with the development patterns in the Southside and Downtown areas, which have an eclectic blend of architectural styles, building ages, and building heights. Also, none of the cumulative projects, including the nearby project at 2107 Dwight Way, would be visible from the City Landmarks located across from the project site on Fulton Street, as identified above. Therefore, the proposed project would not result in cumulatively significant visual effects to historical resources in Berkeley.

When development proposals are received by the City in the future, these will undergo environmental review pursuant to CEQA and, when necessary, mitigation measures will be adopted as appropriate. In most cases, this environmental review and compliance with the City’s LPO and relevant objectives and policies of the General Plan will ensure that significant impacts to historical resources will be avoided or otherwise mitigated to a less-than-significant level. Furthermore, as discussed in the EIRs prepared for the Southside Area Plan and Downtown Area Plan – with the exception of impacts to historical resources that are significant and unavoidable (i.e., substantial alteration, demolition or destruction) – projects that comply with the conditions of these Plans and associated EIR mitigation measures would not contribute considerably to any substantial, adverse cumulative impacts to cultural resources.
C. HAZARDS AND HAZARDOUS MATERIALS

This section describes hazards and hazardous materials related to development of the project site that could potentially pose a significant threat to human health or the environment. The setting section describes existing conditions at the project site and vicinity, as well as the pertinent federal, State, and local agency laws and regulations related to hazards and hazardous materials. Potentially significant adverse impacts that could result from the proposed project are described, and mitigation measures to reduce these impacts to a less-than-significant level are identified, as appropriate.

1. Setting

This section describes the current hazardous materials setting at the project site and summarizes the regulatory framework for hazardous materials and hazardous waste; lead, asbestos, and other hazardous building materials; and applicable worker health and safety requirements.

a. Hazardous Materials Setting. The hazardous material setting is based on Phase I Environmental Site Assessments (ESAs) performed for the project site in 2003\(^1\) and 2011\(^2\) and Phase II soil and water sampling performed in 2003\(^3\) and 2012\(^4\). The locations of soil and groundwater samples collected from the project site are shown on Figure IV-C-1.

 (1) Historical Land Uses. The two Phase I ESAs included review of historical land use records and interviews of persons familiar with the project site to help identify past land uses that would have the potential to use, store, release, or dispose of hazardous materials. A review of historical aerial photographs and fire insurance maps determined that the project site was part of a residential property in 1894. The residence was removed by 1939, leaving the project site vacant until the existing building was constructed in 1947. The project site was used for auto sales and service from 1947 until around 1984. The site was vacant for several years and was later used for offices. An elevator was installed in 1997 and the building was renovated in 2001.

The use of the project site for auto service from 1947 until 1984 represents a potential environmental concern. Two underground storage tanks (USTs), a 1,000-gallon gasoline UST and a 550-gallon waste oil UST, were installed at the site in 1947, as well as a storage shed containing lubricants, solvents, and other chemicals used for vehicle maintenance. The USTs and storage shed were located just north of the existing project site building (near sampling locations B1, B2, and B3 on Figure IV.C-1).

The two USTs at the site were removed around 1986, but no evidence of regulatory oversight of the tank removal was identified during the Phase I ESA investigations. As no details from the tank removal were available, it was unknown if releases from the USTs may have occurred during their operation.

(2) **Soil and Groundwater Contamination.** In 2003, a subsurface investigation was conducted to determine whether releases may have occurred from former USTs or the former storage shed at the site. Five soil samples were collected from three locations near the former USTs and fill pipes (B1 and B2) and the former storage shed (B3) (Figure IV.C-1). Groundwater samples were collected from locations B1 and B3; groundwater was not encountered at location B2 to the depth of exploration (20 feet below ground surface (bgs)). Sample results were compared to the San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs). ESLs are conservative, risk-based screening levels useful for determining if concentrations of chemicals of concern identified in an environmental investigation may warrant additional site-specific health risk assessment or possibly remediation.

Samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPH-g), as diesel (TPH-d), and as motor oil (TPH-mo) and volatile organic compounds (VOCs). Although TPH-d and TPH-mo were identified by the laboratory in a sample from location B2, none of the five soil samples contained concentrations of TPH or VOCs above applicable ESLs.

The groundwater sample from B1 contained TPH-g at a concentration of 5.5 milligrams per liter (mg/L), TPH-d at a concentration of 2.0 mg/L, and VOCs at concentrations ranging from 0.0028 mg/L to 0.15 mg/L. The groundwater sample from B3 contained TPH-d at a concentration of 0.093 mg/L and TPH-mo at 0.28 mg/L. No VOCs were identified in the groundwater sample from B3. The concentrations of TPH-g, TPH-d, and ethylbenzene (a VOC) from B1 exceeded applicable ESLs, suggesting that releases had occurred from the former USTs and further evaluation may be warranted.

In October 2003, the project site owner requested that no further investigation or remediation be required at the site. The request noted that no significant contaminant concentrations were found in soils above 15 feet, that groundwater at the site is not a potential drinking water source, that site soils would limit the migration of any groundwater contaminants, and that the petroleum compounds identified would degrade over time. The City of Berkeley Toxics Management Division, in a letter dated March 8, 2004, stated that due to the depth and extent of the contamination, it would “appear to represent a low to insignificant human health or environmental risk.” However, the letter stated that site development, which could involve disturbance of the contamination and potential exposure to persons and the environment, may require reconsideration of the no further action request and additional regulatory action.

5 RGA Environmental, 2003, op. cit.
FIGURE IV.C-1

2201 Dwight Way Project EIR

Previous Soil and Groundwater Sampling Locations

I:\CBE1205 2201 Dwight Way\figures\Fig_IVC1.ai (11/13/12)
This page intentionally left blank.
In 2012, two soil samples and three groundwater samples were collected during a geotechnical investigation for the proposed project and were analyzed for TPH; benzene, toluene, ethylbenzene, and xylene (BTEX); and methyl tert-butyl ether (MTBE). The soil samples were also analyzed for total metals. The two soil samples (from depths of 4.5 feet and 9.5 feet bgs at location B4 [Figure IV.C-1]) did not contain TPH, BTEX, or MTBE above laboratory reporting limits, and metals did not exceed ESLs with the exception of arsenic and vanadium, which were reported to be consistent with concentrations naturally-occurring in Bay Area soils.

Groundwater samples from locations B5, B6, and B7 (Figure IV.C-1) did not contain TPH, BTEX, or MTBE above laboratory reporting limits. These sites are located north and east of the groundwater sampling locations in the 2003 subsurface investigation. As the 2003 subsurface investigation indicates that groundwater flow is presumed to be to the west (Figure IV.C-1), based on topography, the 2012 groundwater sampling locations would be considered hydraulically upgradient or cross-gradient from the former USTs and fill ports and may not be representative of groundwater near the former USTs. Therefore, the 2012 sampling does not provide further information regarding the contamination identified in the 2003 sampling, but the results suggest that soil and groundwater contamination does not affect the entire project site, but is limited to the area of contamination discovered in the 2003 sampling, near and hydraulically downgradient of the former USTs.

(3) Hazardous Building Materials. The existing building at the project site was built in 1947. Hazardous building materials in structures of this age often contain hazardous materials that do not normally pose a health risk, but may be released during demolition. Building materials such as thermal system insulation, surfacing materials, and asphalt and vinyl flooring materials installed in buildings prior to 1981 may contain asbestos. Lead compounds may be present in interior and exterior paints used for commercial buildings, regardless of construction date. Lead and asbestos are State-recognized carcinogens.

Other common building components may also contain hazardous materials. Examples are fluorescent lighting tubes and ballasts that may contain polychlorinated biphenyls (PCBs) and mercury, thermostats that may contain mercury, transformers that may contain PCBs, and cooling systems that may contain toxic refrigerants.

No investigation of lead, asbestos, or other hazardous materials in buildings is known to be completed for the project site. The 2011 Phase I ESA recommended that a survey be

9 Ibid.
10 California Code of Regulations, Title 8, Section 5208.
conducted to identify hazardous materials at the project site building, and evaluate proper material handling and disposal options prior to demolition.\footnote{13 Geocon Consultants, 2011, op. cit.}

b. Regulatory Framework. The following section provides the federal, State, and local regulatory framework for hazardous materials and hazardous waste, hazardous building materials that could be encountered during building demolition activities, and worker health and safety.

(1) Hazardous Materials and Hazardous Waste. The use, storage, and disposal of hazardous materials, including management of contaminated soils and groundwater, is regulated by numerous local, State, and federal laws and regulations. The United States Environmental Protection Agency (U.S. EPA) is the federal agency that administers hazardous materials and hazardous waste regulations. State and local agencies include the California Environmental Protection Agency (CalEPA), which includes the California Department of Toxic Substances Control (DTSC), the State Water Resources Control Board (SWRCB), the California Air Resources Board (CARB), the Regional Water Quality Control Board (RWQCB), the Bay Area Air Quality Management District (BAAQMD), and the City of Berkeley Toxics Management Division (TMD).

A description of each federal, State, and regional/local agency’s jurisdiction and involvement in the management of hazardous materials and wastes is provided below.

State. Three State agencies, described below, regulate hazardous materials and waste that may occur on or around the project site.

\textit{Department of Toxic Substances Control.} In California, DTSC is authorized by the U.S. EPA to enforce and implement federal hazardous materials laws and regulations. California regulations pertaining to hazardous materials are equal to or exceed the federal regulation requirements. Most State hazardous materials regulations are contained in Title 22 of the California Code of Regulations (CCR). DTSC generally acts as the lead agency for soil and groundwater cleanup projects that affect public health, and establishes cleanup levels for subsurface contamination that are equal to, or more restrictive than, federal levels. DTSC
has also developed land disposal restrictions and treatment standards for hazardous waste disposal in California, as well as guidance on soil vapor concentrations that would be protective of inhalation of indoor air.

State Water Resources Control Board. The SWRCB enforces, among other regulations, those regulations pertaining to implementation of underground storage tank (UST) programs. It also allocates monies to eligible parties who request reimbursement of State funds to clean up soil and groundwater pollution from UST leaks. The SWRCB also enforces the Porter-Cologne Water Quality Act of 1969 through its nine regional boards, including the Regional Water Board, described below.

California Air Resources Board. This agency is responsible for coordination and oversight of State and local air pollution control programs in California, including implementation of the California Clean Air Act of 1988. CARB has developed State air quality standards, and is responsible for monitoring air quality in conjunction with the local air districts.

Regional and Local Agencies. The following regional and local agencies have regulatory authority over the proposed project’s management of hazardous materials and waste.

San Francisco Bay Regional Water Quality Control Board. The RWQCB can act as lead agency to provide oversight of sites where the quality of groundwater or surface waters is threatened, and has the authority to require investigations and remedial actions. The RWQCB has also developed Environmental Screening Levels (ESLs) for residential and commercial land uses to help expedite the assessments of sites where contaminated soil and groundwater have been identified and evaluate the need for remediation. Data collected at a site can be directly compared to ESLs for various chemical compounds and the need for additional work can be evaluated.¹⁵

Bay Area Air Quality Management District. The BAAQMD has primary responsibility for control of air pollution from sources other than motor vehicles and consumer products (which are the responsibility of U.S. EPA and CARB). The BAAQMD is responsible for preparing attainment plans for non-attainment criteria pollutants, control of stationary air pollutant sources, and the issuance of permits for activities including asbestos demolition and renovation activities (District Regulation 11, Rule 2).

City of Berkeley Toxics Management Division. The routine management of hazardous materials in California is administered under the Unified Program, and most of the City of Berkeley’s hazardous materials programs are administered and enforced under the Unified Program.¹⁶ The Cal/EPA has granted responsibilities to the TMD for implementation and enforcement of hazardous material regulations under the Unified Program as a Certified

¹⁶ California Health and Safety Code, Chapter 6.11, Sections 25404-25404.8.
Unified Program Agency (CUPA). The TMD also enforces other local requirements through the Berkeley Hazardous Materials Code (Title 15 of the City Municipal Code). Under authority from the RWQCB, the TMD implements the Local Oversight Program (LOP) to oversee the investigation and remediation of leaking USTs within the City of Berkeley.

(2) Lead, Asbestos, and Other Hazardous Building Materials. Prior to 1978, lead compounds were commonly used in exterior and interior paints. Lead is a suspected human carcinogen (i.e., may cause cancer), a known teratogen (i.e., causes birth defects), and a reproductive toxin (i.e., can cause sterility). Prior to the 1980s, building materials often contained asbestos fibers, also a known human carcinogen. Asbestos, used to provide strength and fire resistance, was frequently incorporated into insulation, roofing, and siding, textured paint and patching compounds used on wall and ceiling joints, vinyl floor tiles and adhesives, and water and steam pipes.

The removal of hazardous building materials prior to demolition and renovation is governed by federal and State regulations. Section 19827.5 of the California Health and Safety Code requires that local agencies not issue demolition or alteration permits until an applicant has demonstrated compliance with notification requirements under applicable federal regulations regarding hazardous air pollutants.

Regulations pertaining to demolition and renovation of structures with ACMs are promulgated by the U.S. EPA, the U.S. Department of Labor Occupational Safety and Health Administration (OSHA), the Division of Occupational Safety and Health (DOSH), DTSC, and CARB. For the City of Berkeley, the BAAQMD, under authority of CARB, would be the lead agency overseeing hazardous air emissions. All friable (crushable by hand) ACMs or non-friable ACMs subject to damage must be abated prior to demolition in accordance with applicable requirements. Friable ACMs must be disposed of as an asbestos waste at an approved facility. Nonfriable ACMs may be disposed of as nonhazardous waste at landfills that will accept such wastes. Workers conducting asbestos abatement must be trained in accordance with State and federal OSHA requirements.

Regulations pertaining to demolition and renovation of structures with lead-based paint are promulgated by the U.S. EPA, the U.S. Department of Housing and Urban Development (HUD), DOSH, and DTSC. Loose and peeling lead-based paint must be disposed of as a State and/or federal hazardous waste if the concentration of lead equals or exceeds applicable waste thresholds. State and federal construction worker health and safety regulations require a supervisor who is certified to identify existing and predictable lead hazards to oversee air monitoring and other protective measures during demolition activities where lead-based paint may be present. Special protective measures and notification to DOSH are required for highly hazardous construction tasks related to lead, such as manual demolition, abrasive blasting, welding, cutting, or torch burning of structures where lead-based paint is present.

PCBs have been used as coolants and lubricants in transformers, capacitors, heating/cooling equipment, and other electrical equipment. PCBs have not been manufactured in the United States since 1977, but may still be found in older electrical equipment and other building materials, like light ballasts. PCBs have been associated with acne-like skin conditions in adults and changes in the nervous and immune system in children. PCBs are
also known to cause cancer in laboratory animals and are probable human carcinogens.17 PCB or PCB-contaminated items require proper off-site transport and disposal at a facility that can accept such wastes.

Fluorescent lighting tubes and ballasts, computer displays, and several other common items containing hazardous materials (including PCBs and mercury, a heavy metal) are regulated as “universal wastes” by the State of California. Universal waste regulations allow common, low-hazard wastes to be managed under less stringent requirements than other hazardous wastes. Management of other hazardous wastes is governed by DTSC hazardous waste rules.

(3) Worker Health and Safety. Worker health and safety is regulated at the federal level by the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA). The Federal Occupational Safety and Health Act of 1970 authorizes states (including California) to establish their own safety and health programs with OSHA approval. Worker health and safety protections in California are regulated by the California Department of Industrial Relations (DIR). The DIR includes the Division of Occupational Safety and Health (DOSH), which acts to protect workers from safety hazards through its California OSHA (Cal-OSHA) program, and provides consultant assistance to employers. California standards for workers dealing with hazardous materials are contained in CCR Title 8 and include practices for all industries (General Industrial Safety Orders), and specific practices for construction, and other industries. Workers at hazardous waste sites (or workers who may be exposed to hazardous wastes that might be encountered during excavation of contaminated soils) must receive specialized training and medical supervision according to the Hazardous Waste Operations and Emergency Response (HAZWOPER) regulations.18 Additional regulations have been developed for construction workers potentially exposed to lead19 and asbestos.20 Cal-OSHA enforcement units conduct on-site evaluations and issue notices of violation to enforce necessary improvements to health and safety practices.

c. City of Berkeley General Plan. The following policy from the Environmental Management Element of the 2003 Berkeley General Plan applies to the proposed project:

- Policy EM-15 Environmental Investigation. When reviewing applications for new development in areas historically used for industrial uses, require environmental investigation as necessary to ensure that soils, groundwater, and buildings affected by hazardous material releases from prior land uses would not have the potential to affect the environment or the health and safety of future property owners, users, or construction workers.

17 Agency for Toxic Substances and Disease Registry, 2001. \textit{Toxic FAQs for Polychlorinated Biphenyls}. February.

18 California Code of Regulations, Title 8, Section 5192.

19 California Code of Regulations, Title 8, Section 1532.1.

20 California Code of Regulations, Title 8, Section 1529.
2. Impacts and Mitigation Measures

The following section presents a discussion of potential impacts to hazards and hazardous materials that could result from the proposed project. This section first lists the criteria by which significance is determined, followed by a discussion of impacts and mitigation measures, as necessary.

a. Significance Criteria. The project would have a significant effect on hazards and hazardous materials if it would:

- Create a significant hazard to the public or environment through reasonable foreseeable upset or accident conditions involving the release of hazardous materials into the environment; or
- Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment.

b. Project Impacts. The following discussion describes the potential impacts of the project related to hazards and hazardous materials according to the significance criteria described above. Potential impacts are differentiated between the two project variants, where applicable. Refer to the Initial Study (Appendix B) for a discussion of impacts related to the routine transport, use, or disposal of hazardous materials; hazardous materials emissions within the vicinity of a school; hazards associated with proximity to an airport or private airstrip; interference with emergency response and evacuation plans; and exposure of people or structures to risks associated with wildland fires.

(1) Release of Hazardous Materials. Operation of the proposed project would not require the use of significant quantities of hazardous materials. Although small quantities of chemicals for janitorial and maintenance purposes would likely be stored and used at the site, the proper use of such materials would not be anticipated to result in any upset or accident conditions. However, development of the project would require the use of significant quantities of hazardous materials and may disturb hazardous materials currently present in soil, groundwater, and building materials. Therefore, development of the proposed project could pose a significant threat to the public or environment.

Impact HAZ-1: With development of the parking garage variant, construction activities may encounter contaminated soil and groundwater which could pose a risk to public health or the environment. (S)

The subsurface sampling and geotechnical investigations prepared for the project site indicate that contaminated soils and groundwater will likely be encountered during construction. The geotechnical investigation for the project, conducted in 2012, indicates that construction for the below-grade parking would require the construction of slopes to a depth of 18 feet bgs. Groundwater was initially encountered during that investigation at
depths ranging from approximately 12 to 15 bgs, and stabilized at about 10 to 17 feet bgs at
sampling locations B5, B6, and B7 (Figure IV.C-1).²¹

The type, general extent, and magnitude of the contamination at the project site have been
defined by previous soil and groundwater sampling. A 2003 investigation identified soil and
groundwater contamination in the vicinity of sampling locations B1, B2, and B3 (Figure IV.C-
1), near former petroleum USTs at the site.²² Although this contamination was evaluated and
determined to present a less-than-significant risk to human health and the environment
when the release case was closed by TMD in March 2004, it could be a concern during
project construction. Construction workers may come into direct contact with contaminated
soil and groundwater, and the nearby public and the environment could be affected if
contaminated materials are discharged through fugitive dust or contaminated runoff.
Improper management of contaminated materials during construction could also spread
contaminants to other parts of the site, potentially creating a health risk to future project
residents and/or nearby members of the general public.

The following mitigation measure would ensure proper management of soil and groundwater
encountered during construction and reduce this potential impact to a less-than-significant
level. Should the no parking garage variant be implemented (which would eliminate the
need for excavation to the depth of contamination (approximately 15 feet bgs)), then no
significant impact would occur, and no mitigation would be required.

Mitigation Measure HAZ-1: If the parking garage variant is implemented, a Soil and
Groundwater Management Plan (SGMP) shall be prepared. The SGMP shall identify
procedures for soil and groundwater management including identification of pollutants
and disposal methods and shall comply with the hazardous materials and waste
management standards required by Berkeley Municipal Code Section 15.12.100, the
San Francisco Bay Regional Water Quality Control Board’s Order No. R2-2009-0074
C3 and C6, California hazardous waste generator regulations (Title 22 California Code
of Regulations (CCR) 66360 et seq.), and the East Bay Municipal Utility District’s
Ordinance 311. The SGMP shall also include:

- A requirement that TMD be notified within 24 hours of the discovery of any
 previously undiscovered contamination;
- Procedures to manage odors, dust and other potential nuisance conditions
 expected during development.
- A requirement that the name and phone number of the individual responsible for
 implementing the SGMP and responding to community questions and complaints
 be posted at the construction site on the same notice required by Mitigation
 Measure NOISE-1 for noise management.

²¹ Geocon Consultants, 2012. Geotechnical Investigation, Garden Village, 2201 Dwight Way,
Berkeley, California. June 12.
²² RGA Environmental, 2003, op. cit.
TMD shall review the SGMP and may require additional information or impose additional conditions as deemed necessary to protect human health and the environment. All requirements of the approved SGMP shall be deemed conditions of approval of this Use Permit. (LTS)

Impact HAZ-2: Hazardous materials transport and use during construction activities could result in adverse effects to public health or the environment. (S)

Hazardous materials (e.g., fuels, lubricants, paints, adhesives) would be transported and used on-site for proposed construction and demolition activities. In addition, construction vehicles used on-site could accidentally release hazardous materials, such as oils, grease, or fuels. It is likely that the construction contractor(s) would store these hazardous materials and vehicles on-site during the duration of construction activities. Accidental releases of hazardous materials could affect soil and/or groundwater quality, or could result in adverse health effects to construction workers, the public, and the environment. The following two-part mitigation measure would reduce this potential impact to a less-than-significant level.

Mitigation Measure HAZ-2a: The construction contractor(s) shall designate storage areas suitable for material delivery, storage, and waste collection. These locations must be as far away from catch basins, gutters, drainage courses, and water bodies as feasible. All hazardous materials and wastes used or generated during project site development activities shall be labeled and stored in accordance with applicable local, State, and federal regulations. In addition, an accurate up-to-date inventory, including Material Safety Data Sheets, shall be maintained on-site to assist emergency response personnel in the event of a hazardous materials incident.

All maintenance and fueling of vehicles and equipment shall be performed in a designated, bermed area, or over a drip pan that will not allow run-off of spills. Vehicles and equipment shall be regularly checked and leaks shall be repaired promptly at an off-site location. Secondary containment shall be used to catch leaks or spills any time that vehicle or equipment fluids are dispensed, changed, or poured.

Mitigation Measure HAZ-2b: Emergency preparedness and response procedures shall be developed by the construction contractor(s) for emergency notification in the event of an accidental spill or other hazardous materials emergency during project site preparation and development activities. These procedures shall include evacuation procedures, spill containment procedures, and required personal protective equipment, as appropriate, in responding to the emergency. The contractor(s) shall submit these procedures to the City’s Toxics Management Division for approval prior to the issuance of demolition or construction permits. (LTS)

Impact HAZ-3: Demolition of the existing project site building may result in the release of lead, asbestos, and/or other hazardous materials which could pose a risk to construction workers, the general public, and the environment. (S)

Lead, asbestos, and/or other hazardous materials may be present in building materials at the project site. The release of hazardous building materials during demolition activities could pose a hazard to construction workers, nearby members of the general public, and the
environment. Implementation of the following mitigation measure would reduce potential impacts associated with hazardous building material releases for the proposed project to a less-than-significant level.

Mitigation Measure HAZ-3: Prior to approving any permit for partial or complete demolition activities, a hazardous materials survey shall be conducted by a qualified professional. The survey shall include, but not be limited to, identification of any lead-based paint, asbestos, PCB containing equipment, treated wood and mercury containing devices. The survey shall include hazardous materials removal and disposal procedures to be implemented that fully comply with hazardous waste generator requirements (22 California Code of Regulations (CCR) 66360 et seq.). If the survey identifies hazardous materials, the removal and disposal procedures included in the survey shall become conditions of any building or demolition permit for the project. Documentation evidencing disposal of hazardous waste in compliance with the survey shall be submitted to TMD within 30 days of the completion of the demolition. (LTS)

(2) **Be Located on and Listed as Hazardous Materials Site.** The most recent review of hazardous materials sites, performed for the 2011 Phase I ESA, identified the project site on lists of sites with reported releases from USTs (pursuant to Government Code Section 65962.5). As discussed in the setting section, sampling in the UST location has identified contaminants in the vicinity of the former USTs. Excavation during development of the proposed project may encounter contaminated soil and/or groundwater, which could pose a risk to the public or the environment. However, implementation of Mitigation Measure HAZ-1, above, would reduce this potential impact to a less-than-significant level. No additional mitigation is required.

c. **Cumulative Impacts.** Implementation of Mitigation Measures HAZ-1, HAZ-2a, HAZ-2b, and HAZ-3 would reduce identified impacts for the project to a less-than-significant level. Hazards and hazardous materials impacts are generally limited to the immediate vicinity of the use, storage, disposal, or release of the hazardous materials. Although the development of other projects in the Southside area or surrounding areas (see Table IV for a list of potential development projects in the vicinity of the site) could result in similar hazardous materials impacts, those impacts would not intensify the potential impacts of the proposed project, and development and operation of the proposed project would not intensify hazardous materials impacts at other locations in the project vicinity. Therefore, the cumulative impact of the project would be less-than-significant.

This page intentionally left blank.
V. ALTERNATIVES

In accordance with CEQA and the CEQA Guidelines (Section 15126.6), an EIR must describe a reasonable range of alternatives to the project, or to the location of the project, that could attain most of the project’s basic objectives, while avoiding or substantially lessening any of the significantly adverse environmental effects of the project. An EIR does not need to consider every conceivable alternative to a project, rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision making and public participation.

As an EIR identifies ways to mitigate or avoid significant effects that a project may have on the environment, the discussion of alternatives should focus on alternatives to the project or its location that are capable of avoiding or substantially lessening significant effects of the project. The EIR needs to include sufficient information about each alternative to allow meaningful evaluation, analysis, and comparison with the proposed project. If an alternative would cause one or more significant effects in addition to those that would be caused by the project, the significant effects of the alternative should be discussed, but in less detail than the significant effects of the project. The range of alternatives required in an EIR is governed by a “rule of reason” that requires the EIR to set forth only those alternatives necessary to permit a reasoned choice. CEQA states that an EIR should not consider alternatives “whose effect cannot be ascertained and whose implementation is remote and speculative.”

The proposed project involves the redevelopment of the existing site, as described in detail in Chapter III, Project Description. The following project objectives were initially listed in Chapter III, Project Description of this EIR and are repeated here to help inform this evaluation of project alternatives. The applicant’s project objectives are as follows:

- Redevelop the project site with an 81-unit student-oriented\(^1\) apartment project.
- Improve the community and support the Southside Area Plan’s policies by replacing an existing legal, non-conforming commercial building located in a residential zone with high-density student-oriented apartments.
- Encourage the use of public transportation, bicycling and walking by constructing a high-density housing project in a location with excellent access to these transportation modes.
- Increase the affordable housing stock in the City of Berkeley by designating 8 units (13.3 percent of the project’s total) for very low-income households.

\(^1\) The term “student-oriented” reflects the applicant’s desire to market the proposed dwelling units primarily to UC Berkeley students. The units would be relatively small and would have less common space than units designed for non-student households, consistent with the large amount of time many students spend studying outside of their residences.
- Create a building with unique design and massing compatible with the surrounding neighborhood that provides residents with abundant air and light.
- Implement contemporary (rather than historicist) architectural design that does not detract from the significance of surrounding historic structures.
- Create significant new revenue streams for the City of Berkeley through increased property taxes.

The potential environmental effects of implementing the proposed project are analyzed in Chapter IV, Setting, Impacts and Mitigation Measures. The proposed project has been described and analyzed in the previous chapters and in the Initial Study (included as Appendix B), with an emphasis on evaluating significant impacts resulting from the project and identifying mitigation measures to avoid or reduce these impacts to a less-than-significant level. It should be noted that all of the impacts identified for the proposed project can be mitigated to a less-than-significant level with implementation of the recommended mitigation measures.

The following discussion is intended to provide a comparison and discussion of three potential alternatives to the proposed project, and to relate how the alternatives compare to the objectives, impacts and mitigations identified for the proposed project. The three alternatives to the proposed project that are discussed and evaluated in this chapter are the following:

- **No Project Alternative.** Under the No Project alternative, the existing project site would remain in essentially its current condition and use.
- **Zoning Compliant Alternative.** Under the Zoning Compliant alternative, the project site would be redeveloped with 60 residential units within a three-story building that would fully comply with the applicable development standards of the R-S Zoning District.
- **Single-Volume Density Bonus Alternative.** The Single-Volume Density Bonus alternative would have the same number of units, floor area, and height as the proposed project, but would have a single large volume rather than the 18 smaller volumes of the proposed project. The alternative would also more closely comply with the setback requirements of the City’s Zoning Ordinance, but would require waivers/modifications under State Density Bonus Law to reduce the rear setback on the fourth and fifth stories, and to exceed three stories in height.

An alternative location was not considered for analysis because the applicant does not own or would not otherwise be able to gain control of a suitable vacant site within the City. In addition, none of the impacts identified for the proposed project would likely be substantially reduced or avoided by location of the project at an alternative site as all of the identified impacts are related to construction and are not location specific.

A change in use of the existing building from office to another commercial use (e.g., restaurant, retail) was also not considered because such a use would not be consistent with the overall vision of the Southside Plan, which identifies this site as appropriate for residential development. The project site is designated High Density Residential in the City’s General Plan Land Use Diagram and is within the Residential Southside (R-S) District.
Conversion of the existing nonconforming commercial building to another commercial use would also require a Use Permit. Such an alternative is not further considered in this EIR because it would likely result in similar effects as the No Project alternative, which is thoroughly evaluated below.

A. NO PROJECT ALTERNATIVE

1. Principal Characteristics

The No Project alternative assumes that the project site would not be subject to redevelopment and the building on the site would generally remain in its existing condition. Although the building is currently fully occupied, the site would continue to be underutilized and the existing commercial structure would continue to age and deteriorate over time.

2. Analysis of the No Project Alternative

The project site would not be redeveloped under the No Project alternative. The No Project alternative would not achieve any of the objectives of the proposed project. Specifically, it would not develop housing on the site and thus would not support the policies of the Southside Plan or contribute to the City’s student-oriented or affordable housing stock.

a. Visual Resources. Under the No Project alternative, the site would generally remain as it is today and no exterior alterations to the site would occur. Views looking east towards the Berkeley Hills would not be affected. This alternative would not result in any impacts to existing scenic vistas or adverse effects to the visual quality or character of the site. Similar to the proposed project, the No Project alternative would not result in any significant impacts to visual resources.

b. Cultural Resources. Under the No Project alternative, the existing building on the project site, which is not a historical resource under CEQA, would not be demolished and would remain in its current condition. Changes to the existing aesthetic context within the vicinity of the three City Landmarks located on Fulton Street would not occur. Similar to the proposed project, the No Project alternative would not result in any significant impacts to cultural resources within or in the vicinity of the site.

c. Hazards and Hazardous Materials. Under the No Project alternative, no demolition or construction activities would occur and commercial land uses would continue at the site. Potential exposure of construction workers and the general public to potentially contaminated soil and groundwater and hazardous building materials and accidental upset of hazardous materials would not occur. Unlike the proposed project, implementation of Mitigation Measures HAZ-1, HAZ-2, and HAZ-3 would not be required.

B. ZONING COMPLIANT ALTERNATIVE

1. Principal Characteristics

The Zoning Compliant alternative assumes that the project site would be developed at the maximum residential density allowed by the City’s Zoning Ordinance, without any additional discretionary permits under the Zoning Ordinance or waivers/modifications under State
Density Bonus Law. The Use Permits, waivers/modifications, or concessions requested to allow additional building height, reduced setbacks, and reduced parking would not be required. This alternative would be identical to the “base project” that the City uses to determine the project’s eligibility for a density bonus under Government Code Section 65915.

Based on the average unit size of the proposed project, the Residential Southside (R-S) District would permit development of a three-story apartment building with 60 dwelling units and about 55,000 square feet of floor area at the project site, subject to issuance of a Use Permit for the basic project. These units would provide student-oriented housing at the site, but none of the units would be affordable, because the project would not need a density bonus, which is typically the only reason affordable units would be provided in a for-profit development project.

The maximum building height would be three stories (35 feet) and setbacks from the property line would range from 6 to 10 feet (depending on the story), as allowed by the R-S District Development Standards (BMC Section 23D.48.070). Consistent with BMC Section 23D.040.080, parking would be provided on-site within a one-level sub-surface garage at a rate of one space per 1,000 gross square feet (approximately 53 spaces required, based on a total residential area of 52,650 square feet).

To accommodate the residential units within three stories, the new building would consist of a single volume oriented around an internal courtyard. At least 3,000 square feet of usable open space would be provided on the site, in an interior courtyard and within the required setbacks. The five existing street trees at the perimeter of the site would be removed and replaced with a minimum of five new trees and as many additional new trees as space permits, subject to the approval of the City Forester.

Figure V-1 depicts the site plan for the Zoning Compliant alternative. Figure V-2 shows a conceptual rendering of the building.

2. Analysis of the Zoning Compliant Alternative

The Zoning Compliant alternative would redevelop the project site with residential uses but at a lower density than the project, and would be consistent with the Development Standards outlined in the City’s Zoning Ordinance. Implementation of this alternative would further reduce some of the less-than-significant impacts of the proposed project as described below, and the alternative would meet most of the project objectives, albeit to a lesser degree than the proposed project in many instances. In particular, this alternative would not benefit affordable housing production to the same degree as the proposed project, because it would pay an affordable housing mitigation fee but would not actually construct any affordable units.2 In addition, the “unique design and massing” called for in the fifth objective would be more difficult to achieve with a more conventional single-volume massing scheme.

2 A 60-unit project would pay a housing mitigation fee of $1,680,000. Based on construction costs for a typical affordable housing project in the Bay Area, this would likely fund four or five units, versus the eight units that would be provided by the project.
a. **Visual Resources.** The Zoning Compliant alternative would result in redevelopment of the site but with reduced building heights and increased setbacks as compared to the proposed project. Although there are several buildings that are taller than three stories in the neighborhood, the predominant urban form is characterized by two- and three-story buildings. This alternative would therefore be more consistent with the existing urban form than the proposed project. However, under this alternative, the building would be composed of a single volume with a continuous façade, which could increase the perceived bulk and massing of development at the site. This could likely be alleviated by increasing upper floor setbacks or articulating the façade (e.g., with bays and/or recessed areas). Similar to the proposed project, significant public views in the vicinity would not be obstructed or otherwise substantially altered. However, under this alternative, views within the vicinity would be more open and the streetscape would feel more spacious due to the decreased building heights and increased setbacks. This alternative would not result in any impacts to existing scenic vistas or adverse effects to the visual quality or character of the site. Similar to the proposed project, the Zoning Compliant alternative would not result in any significant impacts to visual resources.

b. **Cultural Resources.** The Zoning Compliant alternative would result in demolition of the existing building on the site and redevelopment of the site with a three-story residential structure. Changes to the existing aesthetic context within the vicinity of the three City Landmarks located on Fulton Street would occur with development of this alternative, but to a lesser degree than the proposed project due to the decreased scale. While the project’s impacts to the three Landmark structures would be less than significant, under this alternative, the impact would be even less given that setbacks from the street frontage would be similar to those at the Landmark building sites. Similar to the proposed project, the Zoning Compliant alternative would not result in any significant impacts to cultural resources within or in the vicinity of the site.

c. **Hazards and Hazardous Materials.** Demolition and construction activities associated with redevelopment of the site would occur under the Zoning Compliant alternative. Unlike the no parking garage variant of the proposed project, excavation of a one-level parking garage would be required under this alternative in order to provide the required number of parking spaces on the site. Similar to the parking garage variant of the proposed project, potential exposure of construction workers and the general public to potentially contaminated soil and groundwater and hazardous building materials as well as accidental upset of hazardous materials could occur. Similar to the proposed project, implementation of Mitigation Measures HAZ-1, HAZ-2, and HAZ-3 would be required to reduce these impacts to a less-than-significant level.

C. **SINGLE-VOLUME DENSITY BONUS ALTERNATIVE**

1. **Principal Characteristics**

The Single-Volume Density Bonus alternative assumes that the project site would be developed with the same number of dwelling units and the same overall building height as the proposed project, but with increased setbacks largely consistent with the City’s Zoning Ordinance. In order to achieve the increased setbacks, the building would be designed as a single large volume with a central courtyard, rather than 18 separate volumes. The
Administrative Use Permit to reduce the front setback and the waivers/modifications to reduce the street side and rear setbacks (except at the fourth and fifth stories) would not be required. The Use Permits under the Zoning Ordinance and waivers/modifications and concessions under the State Density Bonus Law requested for the proposed project to allow additional building height and reduced parking (either to 49 or 0 spaces) would still be required.

As with the proposed project, dwelling units would be student-oriented, 8 units would be affordable to very-low-income households and the project would qualify for a density bonus of 21 units. A 1,500 square-foot resident services area would be located within the building.

Similar to the proposed project, the maximum building height would be five stories (50 feet). Unlike the proposed project, setbacks from the property line would range from 6 to 10 feet (depending on the story), as allowed by the R-S District Development Standards (BMC Section 23D.48.070). Parking would either be provided on site within a 49-stall sub-surface parking garage or, similar to the no parking garage variant of the project, there would be no on-site parking.

At least 3,000 square feet of useable open space would be provided on the site, in an interior courtyard and within the required setbacks. The five existing street trees at the perimeter of the site would be removed and replaced with a minimum of five new trees and as many additional new trees as space permits, subject to the approval of the City Forester.

Figure V-3 depicts the site plan for the Single-Volume Density Bonus alternative. Figure V-4 shows a conceptual rendering of the building.

2. **Analysis of the Single-Volume Density Bonus Alternative**

The Single-Volume Density Bonus alternative would redevelop the project site with residential uses at the same density as the proposed project but in compliance with the setback requirements of the City’s Zoning Ordinance. Implementation of this alternative would achieve all of the project objectives and, as discussed below, would reduce impacts related to hazardous materials if the no parking garage variant of this alternative is selected.

a. **Visual Resources.** The Single-Volume Density Bonus alternative would result in redevelopment of the site with similar building heights as the proposed project (although there would be no three-story components) but with increased setbacks as compared to the proposed project. Building heights along the Fulton Street would be reduced from five to four stories and the setback from the street frontage would be increased from 0 to 10 feet.

The building would have a partial fifth story, extending along the east and north sides of the courtyard and step back approximately 25 feet from the Fulton Street and Dwight Way façades. The setback from the Dwight Way street frontage would also be increased from 0 to 10 feet. The setback from the eastern property line would be decreased from 10 feet to 6 feet and the setback from the northern property line would be 10 feet (the same as the proposed project).
Single-Volume Density Bonus Alternative Site Plan

SOURCE: STANLEY SAITOWITZ/NATOMA ARCHITECTS, INC., DECEMBER 2012.
CBE1205 2201 Dwight Way\figures\EIR\Fig_V3.ai (1/23/13)
Similar to the proposed project, building heights would be similar to existing three-story residential uses north of the site and would be compatible with the overall scale and intensity of development in the area. Under this alternative, the building would be composed of a single volume with a continuous façade which, even though building heights along street frontages and along some portions of the northern property line would be reduced, could increase the perceived bulk and massing of development at the site. This could likely be alleviated by articulating the façade (e.g., with bays and/or recessed areas). Similar to the proposed project, significant public views in the vicinity would not be obstructed or otherwise substantially altered. However, under this alternative, views within the vicinity would be slightly more open and the streetscape would feel more spacious due to the increased setbacks. Due to the additional stepping back of the fifth story, the building would be perceived as a four-story building from nearby locations. This alternative would not result in any impacts to existing scenic vistas or adverse effects to the visual quality or character of the site. Similar to the proposed project, the Single-Volume Density Bonus alternative would not result in any significant impacts to visual resources.

b. Cultural Resources. The Single-Volume Density Bonus alternative would result in demolition of the existing building on the site and redevelopment of the site with a four- to five-story residential structure. Changes to the existing aesthetic context within the vicinity of the three City Landmarks located on Fulton Street would occur with development of this alternative, but to a slightly lesser degree than the proposed project due to the decreased scale of the building along Fulton Street and increase in setbacks from the street frontage. While the project’s impacts to the three Landmark structures would be less than significant, under this alternative, the impact would be slightly less given that setbacks from the street frontage would be similar to those at the Landmark building sites. Similar to the proposed project, the Single-Volume Density Bonus alternative would not result in any significant impacts to cultural resources within or in the vicinity of the site.

c. Hazards and Hazardous Materials. Demolition and construction activities associated with redevelopment of the site would occur under the Single-Volume Density Bonus alternative. Similar to the parking garage variant of the proposed project, potential exposure of construction workers and the general public to potentially contaminated soil and groundwater and hazardous building materials as well as accidental upset of hazardous materials could occur. Similar to the proposed project, implementation of Mitigation Measures HAZ-1, HAZ-2, and HAZ-3 would be required to reduce these impacts to a less-than-significant level. If no parking garage is constructed under this alternative, similar to the no parking garage variant of the project, implementation of Mitigation Measure HAZ-1 would not be required.

D. ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Based on the above analysis, the No Project alternative would have the least number of impacts and would be the environmentally superior alternative. While the No Project alternative would be environmentally superior in the technical sense that contribution to the afore-mentioned impacts would not occur, the No Project alternative would also fail to achieve all of the project’s objectives. Under CEQA, if the No Project alternative is the
environmentally superior alternative, the EIR must identify an environmentally superior alternative from among the other alternatives (CEQA Guidelines Section 15126.6(e)(2)).

With the exception of the no parking garage variant of each alternative, which eliminates the need to implement Mitigation Measure HAZ-1, neither of the other two alternatives discussed above would eliminate any of the significant impacts of the proposed project and, all of the remaining mitigation measures recommended in this Draft EIR would be required to reduce identified impacts to a less-than-significant level. Both the Zoning Compliant and Single-Volume Density Bonus alternatives could slightly reduce the already less-than-significant visual and cultural resource impacts of the project because building heights would be reduced and setbacks would be increased, although the Single-Volume Density Bonus alternative would do so to a lesser degree due to its 5-story height. Under the Zoning Compliant alternative, views within the vicinity would be more open and the streetscape would feel more spacious due to the decreased buildings heights and increased setbacks. Overall, when compared to the proposed project, the Zoning Compliant alternative would be the most consistent with the existing urban form in the area and is therefore considered to be the environmentally superior alternative.

As noted earlier, however, the Zoning Compliant alternative would only partially meet the project objectives.
VI. CEQA-REQUIRED ASSESSMENT CONCLUSIONS

As required by the California Environmental Quality Act (CEQA), this chapter discusses the following types of impacts that could result from implementation of the proposed project: growth-inducing impacts; significant irreversible changes; effects found not to be significant; and significant unavoidable environmental impacts. In most cases, impacts associated with each of the two project variants would be the same, unless otherwise specifically noted where appropriate.

A. GROWTH INDUCING IMPACTS

This section summarizes the project’s potential growth-inducing impacts on the surrounding community. A project is typically considered growth-inducing if it would foster economic or population growth or the construction of additional housing; if it would remove obstacles to population growth or tax community services to the extent that the construction of new facilities would be necessary; or if it would encourage or facilitate other activities that cause significant environmental effects.1 Examples of projects likely to have significant growth-inducing impacts include extensions or expansions of infrastructure systems beyond what is needed to serve project-specific demand, and development of new residential subdivisions or industrial parks in areas that are currently only sparsely developed or are undeveloped.

Development of the proposed project would result in direct population growth within the City of Berkeley through the construction of 81 student-oriented dwelling units. As discussed in Section XIII, Population and Housing, in the Initial Study (Appendix B), the proposed project could increase the local population by up to 266 persons. This growth would account for less than 1 percent (0.25 percent) of the City’s 2015 projected population (109,400) and the City’s projected 2035 population (120,500).2 This level of population growth is included within the anticipated growth identified by the City and the Association of Bay Area Governments (ABAG), and would be considered a less-than-significant impact. As such, the proposed project would neither directly nor indirectly lead to substantial or unforeseen economic or population growth, but would instead contribute to the City’s housing supply.

Additionally, the project site consists of infill development within an existing urbanized area and would not require the extension of utilities or roads into undeveloped areas or directly or indirectly lead to the development of greenfield sites. Due to the location of the project site, presence of existing uses on and in the vicinity of the site, and consistency with the Southside Plan, construction of the proposed project would not induce unplanned growth in

1 CEQA Guidelines, 2012. §15126.2(d).
the area. Therefore, the growth that would occur as a result of the proposed project would not be considered substantial or adverse.

B. SIGNIFICANT IRREVERSIBLE CHANGES

An EIR must identify any significant irreversible environmental changes that could result from implementation of a proposed project. These may include current or future uses of non-renewable resources, and secondary growth-inducing impacts that commit future generations to similar uses. CEQA suggests that irretrievable commitments of resources should be evaluated to assure that such current consumption is justified.3 The CEQA Guidelines describe three categories of significant irreversible changes that should be considered, as further detailed below.

1. Changes in Land Use Which Commit Future Generations

The project site is located in the Southside area of the City of Berkeley and is primarily surrounded by multi-family residential uses. The approximately 0.62-acre project site is currently developed with a commercial office building and a surface parking lot. Development associated with the proposed project would occur on a site that has been developed with urban uses for at least the last 100 years. While the proposed project would result in an increase in the density of development at the project site through the introduction of new housing units, it would be compatible with the existing uses already occurring within the immediate vicinity of the site and within the Southside area of Berkeley. The proposed project would not commit future generations to more intense development and there would be nothing to preclude the location or redevelopment of some other type of use on the project site in the future.

2. Irreversible Damage from Environmental Accidents

No significant environmental damage, such as accidental spills or explosion of a hazardous material, is anticipated with implementation of the proposed project. Compliance with federal, State and local regulations, and implementation of Mitigation Measures HAZ-1 and HAZ-2, would ensure this potential impact would be reduced to a less-than-significant level. As such, no irreversible changes – such as those that might result from construction of a large-scale mining project, a hydroelectric dam project, or other industrial project – would result from development of the proposed project.

3. Consumption of Nonrenewable Resources

Consumption of nonrenewable resources includes increased energy consumption, conversion of agricultural lands, and lost access to mining reserves. As discussed in the Initial Study, the State Department of Conservation designates the site as “Urban and Built-Up Land,” and the site is located in an urbanized area of Berkeley. Therefore, no existing agricultural lands would be converted to non-agricultural uses. In addition, the project site

3 CEQA Guidelines, 2012. §15126.2(c).
does not contain known mineral resources and does not serve as a mining reserve; thus, development of the proposed project would not result in the loss of access to mining reserves. Please refer to the Initial Study included in Appendix B for a more detailed discussion of impacts related to agricultural and mining resources.

Construction of the proposed project would require the use of energy, including energy produced from non-renewable resources. Energy consumption would also occur during the operational period of the proposed project. The proposed project would be required to incorporate green building features consistent with the City’s applicable "Build It Green" checklist that are anticipated to result in additional reductions in greenhouse gas (GHG) emissions. As discussed in the Section VII, Greenhouse Gas Emissions of the Initial Study, the proposed project would not result in any significant impacts associated with an increase in greenhouse gas emissions or conflict with measures adopted for the purpose of reducing such emissions. Additionally, the proposed project would not require the construction of major new lines to deliver energy or natural gas as these services are already provided in the area. Therefore, the proposed project would not result in a significant impact associated with the consumption of nonrenewable resources.

C. EFFECTS FOUND NOT TO BE SIGNIFICANT

Based on the analysis provided in the Initial Study, included in Appendix B, the proposed project would not result in significant impacts related to the following topics, which are not further evaluated in the EIR. Some topics considered in the Initial Study would require implementation of standard mitigation measures to be implemented prior to or during the construction period to reduce impacts to a less-than-significant level. These measures would likely apply to any redevelopment or construction activities that could occur within the City of Berkeley and are summarized below. Table II-1 in Chapter II, Summary, of this EIR also contains a summary of the environmental significant impacts and mitigation measures identified in the Initial Study.

As previously described, the Initial Study considered the potential effects of the proposed project with construction of the 49-space subterranean parking garage; the no parking garage project variant was not contemplated at the time that the Initial Study was prepared. Therefore, an analysis of potential effects specific to a lack of off-street parking is provided in the discussion below as a supplement to the summary of the Initial Study findings. In no case does the no parking garage variant result in any new significant impacts related to any of the issue topics identified as "no impact" or "less-than-significant" impact in the Initial Study. Similarly, for impacts that were identified as "less-than-significant with mitigation incorporated," the same mitigation measures would apply to the no parking garage variant.

As described in the Initial Study, the lack of off-street parking may have secondary effects (e.g., on air quality, noise and congestion) caused by drivers circling the neighborhood as they look for a parking space. Given that the no parking garage variant would not provide any parking on-site, and it cannot be guaranteed that parking demand for the project would
be reduced, these potential secondary effects are discussed in this section. It should be noted, however, that increased competition for on-street parking, apart from these potential physical effects, is not considered an environmental impact under CEQA.⁴

1. Agricultural and Forestry Resources

The project site and vicinity are located within an urban area in the City of Berkeley. The site is currently zoned as Residential Southside District (R-S) on the City’s Zoning Map and is classified as “Urban and Built-Up Land” by the State Department of Conservation.⁵ The project site is not used for agricultural production nor does it support forestry resources. Therefore, there would be no impact to agricultural and forestry resources.

2. Air Quality

The proposed project would not exceed the Bay Area Air Quality Management District’s (BAAQMD) significance criteria for air pollutants and would not hinder the region from attaining the goals outlined in the 2010 Bay Area Clean Air Plan. In addition, the proposed project would not conflict with the identified transportation and mobile source control measures, the Land Use and Local Impacts Measures (LUMs), and the energy measures in the Clean Air Plan. Short-term degradation of air quality may occur in the site vicinity due to the release of particulate emissions generated from site preparation and project construction (i.e., demolition of the existing structure, clearing, excavation, grading, and building activities). Implementation of Mitigation Measure AIR-1, which requires implementation of the BAAQMD’s Best Management Practices, would reduce diesel particulate matter (PM) exhaust emissions and construction dust PM₁₀ and PM₂.₅ to a less-than-significant level. The proposed project would not conflict with the Alameda Transportation Commission’s Congestion Management Program and would not result in localized carbon dioxide (CO) concentrations that exceed State or federal standards. The proposed project would generate long-term operational emissions that would not have a significant effect on regional air quality. Implementation of Mitigation Measure AIR-1 would also ensure that the project would not make a cumulatively considerable contribution to regional air quality impacts.

A screening level health risk assessment (Refer to Table 3 in Initial Study in Appendix B), determined that a significant health risk impact is not anticipated with construction of the project. With implementation of Mitigation Measure AIR-1, health risks from construction emissions of diesel particulate would be less than significant. Therefore, project construction would not expose sensitive receptors residing close to the project site to substantial pollution concentrations. A stationary source analysis indicated that risk levels from all stationary air pollution sources in the project vicinity would be below the established significance criteria at the individual and cumulative level. Therefore, the proposed project would not expose future residents of the project site to substantial pollutant concentrations. The proposed project

⁴ San Franciscans Upholding the Downtown Plan v. the City and County of San Francisco (2002) 102 Cal App. 4th 656.
does not include any activities or operations that would generate objectionable odors affecting a substantial number of people.

No Parking Garage Variant. Air quality impacts associated with the no parking garage variant would be similar to those identified in the Initial Study and implementation of Mitigation Measure AIR-1 would be required. However, construction of the parking garage would require extensive excavation which is associated with haul truck trip emissions. Therefore, overall construction emissions would be reduced when compared to the parking garage variant as the construction duration and intensity would be similarly reduced. Operational emissions would also be similar to those identified in the Initial Study. Development of the proposed project with no on-site parking could reduce the operational emissions of the project (shown in Table 2 of the Initial Study), as it is probable that such a development would mostly attract residents that do not own vehicles. However, there is no guarantee that project residents would not own vehicles and, for the purposes of this analysis, it is assumed that the no parking garage variant would generate the same or similar number of vehicle trips as those identified for the project evaluated in the Initial Study.

As such, when compared to the project analyzed in the Initial Study, the no parking garage variant could result in an overall increase in total vehicle miles traveled due to additional travel time that may be required to locate a parking space. As described in Chapter III, Project Description, Residential Parking Permits (RPPs) would not be issued to project residents and, as discussed in Section XVI, Transportation/Traffic in the Initial Study, available parking within the vicinity of the site is limited. As shown in Initial Study Table 2, the project’s operational emissions would be well below the BAAQMD’s significance thresholds. Any increase in operational emissions due to the driving associated with parking searches would be only a very small portion of the overall mobile source emissions and therefore, operational emissions associated with the no parking garage variant would remain less than significant. Refer to subsection 13, Transportation/Traffic, below for a more detailed discussion of potential traffic congestion impacts that would result from a lack of on-site parking.

3. Biological Resources

No special-status plant or animal species are expected to occur on or in the vicinity of the site due to its completely urbanized condition and lack of suitable habitats. The project would not interfere with local wildlife movement or corridors. Common wildlife species that are adapted to urban environments would continue to use the site after redevelopment. Because the site is located in a busy urban area and only five street trees and a few small shrubs would be removed from the project vicinity, potential impacts to nesting birds would be less than significant. No riparian vegetation, other sensitive natural communities, federally protected wetlands, or other aquatic features are present on the site. No trees are currently located on the project site; however, the five existing street trees that border the site on Dwight Way and Fulton Street would be removed and replaced with a minimum of five new trees as well as any additional trees that may be required by the City Forester. The site is not subject to a local, regional, or State habitat conservation or natural community plan.
4. **Archaeological and Paleontological Resources**

Due to the general sensitivity of the area for prehistoric archaeological sites and historic-period deposits, the potential for encountering sub-surface prehistoric artifacts and historic-period artifacts and features cannot be discounted. Project demolition and construction activities, including excavation activities, could cause a substantial adverse change in the significance of previously unidentified archaeological resources. Implementation of the Mitigation Measure CULT-1, which requires inclusion of procedures to follow in the event that archaeological deposits are identified in project building plans, would reduce this impact to a less-than-significant level.

Although there are no known paleontological resources (fossils) in the project site, a previously-completed fossil locality search which included the current project site identified a recorded sloth fossil near the site. This fossil was identified in a similar geological formation that underlies the current project site at an unknown depth. Demolition, site preparation, and construction activities associated with the proposed project could adversely affect previously unidentified fossils. Implementation of Mitigation Measure CULT-2, which requires that all ground-disturbing activities within 25 feet of any apparent fossil encountered to be halted until a qualified paleontologist makes recommendations for the fossil’s treatment, would reduce this impact to a less-than-significant level.

Native American human remains have been unearthed at some locations in downtown Berkeley. Although no such remains have been reported at the project site, the potential to encounter such remains cannot be discounted. Implementation of Mitigation Measure CULT-3, which requires the inclusion of procedures to follow in the event that human remains are uncovered during ground-disturbing activities in appropriate contract documents and compliance with the California Health and Safety Code 7050.5, would reduce this impact to a less-than-significant level.

5. **Geology and Soils**

No portion of the project site is within the established Alquist-Priolo Earthquake Fault Zone (A-PEFZ), and no active faults are known to pass directly beneath the site. Therefore, impacts associated with fault rupture are low and would be less than significant. The preliminary *Geotechnical Investigation* prepared for the project site concludes that the potential for lateral spreading, liquefaction, or landslides to occur is low. Therefore, persons or structures at the project site would not be adversely affected by ground failure or liquefaction occurring during a seismic event. Additionally, because there are no known landslides near the site and the project does not include substantial mounding of earth or other substantive grade changes that would create slope instability hazards, persons or structures would not be adversely affected by landslides at the project site.

As required by the City’s standard conditions of approval, project design and construction would be required to be in conformance with, or exceed, current best standards for

earthquake resistant construction in accordance with State and city building codes and standards. In addition, project design would be required to follow the recommendations of a site-specific design level geotechnical investigation report to be prepared by a Certified Engineering Geologist or Geotechnical Engineer. The City Engineer would approve all final design and engineering plans, including recommendations for grading, foundation support, placement and compaction of fill materials, treatment of unstable and expansive soils, and avoidance, prior to issuance of a grading permit. Compliance with these standards would reduce potential seismic hazards and potential impacts associated with unstable and expansive soils at the site to a less-than-significant level.

The proposed project does not propose any changes to site conditions that would cause soil erosion or the loss of topsoil. The proposed project would connect to the City of Berkeley’s water utilities and would not utilize groundwater resources; therefore, subsidence or collapse of site soils is not likely. Excavation for the sub-surface garage, if constructed, would occur below the depth of groundwater encountered at the site; however, implementation of the recommendations set forth in the design level geotechnical investigation would ensure that potential impacts associated with unstable soils would be less than significant.

Wastewater conveyance and treatment for the proposed project would be provided by the City of Berkeley and the development of the project would not involve the use of septic tanks or alternative wastewater disposal systems.

During construction of the project, greenhouse gas emissions (GHGs) would be emitted through the operation of construction equipment and from worker and builder supply vendor vehicles, each of which typically uses fossil-based fuels to operate. It is estimated that the project would generate approximately 482 metric tons of CO₂e during construction of the project. The BAAQMD does not have a threshold for construction emissions. However, implementation of Mitigation Measure AIR-1 would reduce construction GHG emissions by limiting construction idling emissions. Therefore, construction emissions would not be considered significant.

Long-term operation of the proposed project would generate GHG emissions from area and mobile sources, and indirect emissions from sources associated with energy consumption. The calculated GHG emissions for the proposed project (Refer to Table 5 of the Initial Study) indicate motor vehicle emissions as the largest source at approximately 75 percent of the total. Model results indicate the project would generate approximately 736.78 metric tons per year CO₂e, and the GHG emissions would not exceed the BAAQMD significance criteria of 1,100 metric tons CO₂e per year. Therefore, long-term operation of the project would not generate greenhouse gas emissions that would have a significant effect on the environment.

The project is an urban in-fill redevelopment project that would replace an office building and develop a new high density residential building. The project is located within walking distance of a variety of uses and has easy access to public transportation. The project would be required to incorporate green building features consistent with the applicable “Build It Green” checklist features that are anticipated to result in additional reductions in GHG emissions. The project would be subject to all applicable permit and planning requirements in place or
adopted by the City. Therefore, the proposed project would not conflict with the City of Berkeley’s Climate Action Plan. The proposed project would not exceed the project level significance criteria established by the BAAQMD and, therefore, the proposed project would not conflict with plans adopted for the purpose of reducing GHG emissions.

No Parking Garage Variant. Similar to the project evaluated in the Initial Study, greenhouse gas emissions generated by the no parking garage variant of the project would be less than significant. Due to the shortened duration of the construction period, construction emissions could be less with development of the no parking garage variant; however, implementation of Mitigation Measure AIR-1 would still be required. Similar to the discussion of air quality impacts provided earlier in this chapter, operational emissions associated with mobile sources could however slightly increase due to additional travel time that may be required to locate a parking space. As shown in Initial Study Table 5, the project’s operational emissions would be well below the BAAQMD’s significance threshold for long-term GHG emissions; any increase in operational emissions due to the driving associated with parking would be only a very small portion of the overall mobile source emissions. Therefore, similar to the parking garage variant, operational GHG emissions associated with the no parking garage variant would be less than significant.

7. Hydrology and Water Quality

Construction activities associated with the proposed project would cause disturbance of soil during excavation work, which could adversely impact water quality. Contaminants from construction vehicles and equipment and sediment from soil erosion could increase the pollutant load in runoff being transported to receiving waters during development. The amount of permeable surfaces on the site would increase from 400 to 2,000 square feet with development of the parking garage variant analyzed in the Initial Study. Although surface runoff from the site would likely decrease with the proposed project, runoff from the proposed landscaped areas may contain residual pesticides and nutrients and sediment and trace metals during operation of the project. Long-term degradation of runoff water quality from project operation could adversely affect water quality in the receiving waters and San Francisco Bay. However, implementation of Mitigation Measures HYD-1 and HYD-2 would ensure that the proposed project complies with the Water Board’s water quality standards by reducing the potential construction- and operation-period impacts to water quality and impact to a less-than-significant level. Mitigation Measures HYD-1 and HYD-2 would require the project applicant to 1) prepare and implement a Stormwater Pollution Prevention Plan (SWPPP) for the project; 2) fully comply with the Water Board stormwater permit requirements, including Provision C.3 of the MRP; and 3) prepare and implement a Stormwater Control Plan (SCP) for the project.

The proposed project would connect to the EBMUD water system and would not use groundwater at the site. The project would not place housing or other structures within a 100-year flood hazard zone; would not pose a significant risk to people or structures as a result of levee or dam failure; and would not be subject to inundation by a seiche, tsunami, or mudflows.

No Parking Garage Variant. As discussed in Chapter III, Project Description, under the no parking garage variant, permeable surface coverage would increase to approximately 10,900
square feet as all ground level open space and planting areas would be permeable. This would effectively increase groundwater infiltration at the site, reducing the rate and amount of surface runoff when compared to the parking garage variant of the project. In addition, dewatering may not be required with development of the no parking garage variant as excavation would not extend to the depth of groundwater underlying the site. However, implementation of Mitigation Measure HYD-2 would still be required to reduce potential operational water quality impacts to a less-than-significant level.

8. Land Use and Planning

Redevelopment of the existing commercial site with residential uses would represent a general continuation of multi-family residential uses within the project vicinity and would be consistent with the residential zoning and General Plan designations for the site. The addition of 81 residential units would be consistent with the type and intensity of other residential development in the area, and the configuration of the existing city block that the site occupies would not be altered. Therefore, the proposed project would not result in the physical division of an established community or adversely affect the continuity of land uses in the vicinity.

The proposed project would generally be consistent with the overall vision and intent as well as the goals and policies of the General Plan, Southside Plan, and Zoning Ordinance (refer to the Initial Study for a discussion of the project’s consistency with General Plan and Southside Plan policies). The project site is within the Residential Southside Zoning District (R-S) and the development standards outlined in the zoning district provisions are applicable to redevelopment of the project site. Because the proposed project includes affordable housing units and is therefore entitled to a density bonus, the project applicant is also requesting waivers/modifications and two additional concessions pursuant to the Density Bonus Law. Under Government Code Section 65915(f), the project’s density bonus would be granted “over the [City’s] otherwise maximum allowable residential density,” and under Section 65915(j), “the granting of a concession or incentive, in and of itself, shall not be interpreted to require a general plan amendment…zoning change, or other discretionary approval.” Therefore, the proposed project would be consistent with the City’s Zoning Ordinance and General Plan.

9. Mineral Resources

The project site is located within an urban area on a developed site. Additionally, the Berkeley General Plan does not identify known mineral resources or mineral recovery sites within or adjacent to the project site. Therefore, the proposed project would not result in the loss of availability of a known mineral resource of value to the region or residents of the State or the loss of availability of a locally-important mineral resource recovery site.

10. Noise

Demolition, site preparation, and construction would require the use of heavy construction equipment including bulldozers, scrapers, loaders, excavators, cranes, and trucks. Assuming each piece of construction equipment operates at some distance apart from the other equipment, the worst-case combined noise level during construction would be 91 dBA L_{max} at a distance of 50 feet from an active construction area. At the closest point, proposed
construction activities would occur within 10 feet of residential uses immediately bordering the site. At this distance, construction noise levels at the exterior facade of these buildings would be expected to range up to 105 dBA L_{max} if multiple pieces of equipment operated simultaneously near the project border adjacent these properties.

Implementation of Mitigation Measure NOISE-1, which requires the applicant to develop a noise reduction program prepared by a qualified acoustical consultant to reduce construction noise impacts to the maximum extent feasible, would ensure that construction-period noise impacts are reduced to a less-than-significant level. Depending on the specific construction operations, implementation of these measures would be expected to conservatively achieve a reduction of 8 dBA to 12 dBA at receiving properties.

The proposed project could generate noise from motor vehicle trips as well as from stationary sources (i.e., HVAC equipment, etc.) that could adversely affect nearby noise-sensitive land uses. The results of the FHWA highway traffic noise prediction model (Refer to Tables 6 through 8 of the Initial Study) indicate that the addition of project-related traffic would result in a less-than-significant increase in ambient noise levels on roadway segments in the project vicinity.

Traffic noise levels from Dwight Way (64.1 dBA L_{dn}) and along Fulton Street (60.9 dBA L_{dn}) would be within the City’s conditionally acceptable range for new multi-family residential development.

With windows open, interior noise levels of the proposed residential units on both parcels would not meet the interior noise goal of 45 dBA L_{dn}. However, with windows closed, noise levels in rooms exposed to even the loudest traffic noise would be reduced to meet the interior noise goal of 45 dBA L_{dn}. Implementation of Mitigation Measure NOISE-2, which requires certain residential units to include an alternative form of ventilation that would allow windows to remain closed for long periods, would ensure that the proposed project complies with the California Building Code requirements for multi-family housing development and therefore meets the City’s standards for reducing on-site project traffic noise impacts to a less-than-significant level.

No permanent noise sources that would expose persons to excessive groundborne vibration or noise levels would be located within the project site and vicinity. However, construction activities associated with development of the proposed project could generate excessive groundborne vibration levels. Implementation of Mitigation Measures NOISE-3a and 3b, which incorporates standard and project-specific conditions of approval and a noise reduction program, would ensure potential construction-related groundborne vibration impacts on adjacent structures would be less-than-significant and would ensure compliance with Section 13.40.070 of the City’s Municipal Code.

No substantial permanent increases in traffic or stationary noise levels are expected as a result of project implementation. In addition, the project does not located within the noise contours of any airport or within the vicinity of a private airstrip.
No Parking Garage Variant. Implementation of the no parking garage variant would likely result in reduced noise impacts over those identified in the Initial Study, as extensive excavation of the sub-surface garage would not occur. The construction period would also be substantially reduced under this variant, resulting in fewer days of increased noise exposure to nearby residents. As discussed earlier in this chapter the no parking garage variant could result in additional project-related vehicle pass-by trips associated with residents looking for parking spaces; however, this slight increase in trips would not be substantial enough to significantly increase the operational noise associated with the project as shown in Tables 6 through 8 of the Initial Study. Similar to the parking garage variant, the no project variant would require implementation of Mitigation Measures NOISE-1, NOISE-2, and NOISE-3 to reduce construction and operation period noise impacts to a less-than-significant level.

11. Population and Housing
The proposed project could increase the local population by up to 266 persons. This growth would account for less than 1 percent of the City’s 2015 projected population (109,400) and the City’s projected 2035 population (120,500). The projected population growth is included within the anticipated growth identified by the Association of Bay Area Governments. The proposed project would neither directly nor indirectly lead to substantial or unforeseen economic or population growth in Berkeley beyond that planned for by the City, nor displace housing or people necessitating the construction of replacement housing elsewhere.

12. Public Services and Recreation
The proposed project would be adequately served by existing public services, such as police and fire protection and school services. Compliance with SB 50 would ensure that any impact to schools that could result from the proposed project would be offset by development fees, and in effect, reduce potential impacts to schools to a less-than-significant level. Although the project would incrementally increase use of area parks and community and regional recreational facilities, this increase is not expected to result in substantial physical deterioration of local parks and recreational facilities. Therefore, the proposed project would not result in an adverse effect on police, fire, school, or recreational services and would not require the construction of new facilities.

13. Transportation/Traffic
The Traffic Impact and Parking Study prepared for the proposed project shows that all three study intersections (Fulton Street and Dwight Way, Fulton Street and Haste Street, and Telegraph Avenue and Dwight Way) would continue to operate at acceptable levels of service under Existing Plus Project and Short-Term Plus Project conditions.

Based on the project trip generation and distribution, the project would not cause Ashby Avenue (SR-13) and Shattuck Avenue (at the intersections at Dwight Way and Haste Street)

to exceed any standard established by the Alameda County Congestion Management Agency.

The proposed project would not affect air traffic patterns; would be required to meet the City’s design requirements for on- and off-site circulation; and emergency vehicle access to the site would continue to be available from existing surrounding roadways.

Although the proposed parking garage variant of the project would provide only 49 parking spaces where 70 are required per the Zoning Ordinance, a parking survey determined that excess parking spaces are available in the area. The applicant is requesting a concession to allow the provision of fewer parking spaces. The proposed project would not conflict with any of the City’s transit, bicycle, pedestrian, or parking policies, particularly the City’s Transit First Policy.

No Parking Garage Variant. Traffic impacts associated with the no parking garage variant would be similar to those identified in the Initial Study and would be less than significant. As previously discussed, there is no guarantee that project residents would not own vehicles and therefore, this Draft EIR conservatively assumes that the no parking garage variant would generate the same or similar number of vehicle trips as those identified for the parking garage variant evaluated in the Initial Study. Due to the lack of on-site parking, additional traffic congestion could result from vehicles circling the neighborhood in search of on-street parking. However, based on conversations with the City’s Traffic Engineer, and the fact that the study area intersections are projected to operate at a level of service (LOS) A or B for the parking garage variant, the additional congestion from “parking search” would not cause the project to exceed the City’s thresholds for significant congestion impacts.

As described in Chapter III, Project Description, Residential Parking Permits (RPPs) would not be issued to project residents and, as discussed in Section XVI, Transportation/Traffic in the Initial Study, available parking within the vicinity of the site is limited. Furthermore, the site is located approximately 0.4 miles from the nearest non-RPP area, at Shattuck Avenue and Carleton Street, and project residents who own cars would therefore have to move their cars every two hours during daytime hours, or park at least ½ mile from the site. Therefore, it is possible that relatively few project residents would own cars, in which case the project’s overall trip generation (and congestion impacts) would be reduced. The applicant intends to submit a more focused study of this issue to determine how the lack of off-street parking would influence residents’ car ownership; this study would be presented to the Zoning Adjustments Board and considered during the Use Permit process. It would have no effect on the analysis and findings of this EIR.

14. Utilities and Service Systems

The proposed project is an infill development project located in an urban area already served by existing utility systems. The proposed project would need to install and/or upgrade the following utility connections to the satisfaction of the applicable utility providers: water, wastewater, stormwater drainage, power, and telecommunications services. The proposed project would increase water demand, wastewater generated, and solid waste; however, these increases could be met by existing service providers.
D. UNAVOIDABLE SIGNIFICANT ENVIRONMENTAL IMPACTS

As discussed in Chapter IV of this EIR, the proposed project would not result in any significant unavoidable impacts.
VII. REPORT PREPARATION

A. REPORT PREPARERS

City of Berkeley
2120 Milvia Street
Berkeley, CA 94704
Aaron Sage, AICP, Senior Planner

LSA Associates, Inc.: Project Management and Report Production; Visual Resources; Alternatives; CEQA-Required Assessment Conclusions
2215 Fifth Street
Berkeley, CA 94710
David Clore, AICP, Principal-in-Charge
Theresa Wallace, Senior Planner/Project Manager
Caroline Park, Assistant Planner
Patty Linder, Graphics Manager
Charis Hanshaw, Word Processor

Cultural Resources
157 Park Place
Point Richmond, CA 94801
Andrew Pulcheon, AICP, CEP, Principal/Cultural Resources Manager
Tim Jones, Senior Cultural Resources Manager
Michael Hibma, Cultural Resources Manager/Architectural Historian

Baseline Environmental Consulting: Hazards and Hazardous Materials
5900 Hollis Street, Suite D
Emeryville, CA 94608
Bruce Abelli-Amen, Principal, Senior Hydrogeologist
Todd Taylor, Environmental Associate

B. REFERENCES

California Code of Regulations, Title 8.

California Health and Safety Code.

Public Resources Code 21068.

San Franciscans Upholding the Downtown Plan v. the City and County of San Francisco (2002) 102 Cal App. 4th 656.

