California Environmental Quality Act (CEQA)
Initial Study and Environmental Review Checklist

1885 University Avenue
June 2006

Planning and Development Department
Land Use Planning Division

Rendering of Northwest corner of University Avenue and Martin Luther King Jr. Way.

Vicinity Map
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>Project Summary Information</td>
<td>4</td>
</tr>
<tr>
<td>Project Description</td>
<td>6</td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td>16</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>16</td>
</tr>
<tr>
<td>Agricultural Resources</td>
<td>24</td>
</tr>
<tr>
<td>Air Quality</td>
<td>25</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>30</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>32</td>
</tr>
<tr>
<td>Geology & Soils</td>
<td>36</td>
</tr>
<tr>
<td>Hazards & Hazardous Materials</td>
<td>40</td>
</tr>
<tr>
<td>Hydrology & Water Quality</td>
<td>48</td>
</tr>
<tr>
<td>Land Use & Planning</td>
<td>52</td>
</tr>
<tr>
<td>Mineral Resources</td>
<td>54</td>
</tr>
<tr>
<td>Noise</td>
<td>55</td>
</tr>
<tr>
<td>Population and Housing</td>
<td>62</td>
</tr>
<tr>
<td>Public Services</td>
<td>64</td>
</tr>
<tr>
<td>Recreation</td>
<td>68</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>68</td>
</tr>
<tr>
<td>Utilities and Service Systems</td>
<td>79</td>
</tr>
<tr>
<td>Mandatory Findings of Significance</td>
<td>83</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vicinity Map</td>
<td>8</td>
</tr>
<tr>
<td>2. Site Plan / Ground Floor Plan</td>
<td>11</td>
</tr>
<tr>
<td>3. Building Elevations</td>
<td>12</td>
</tr>
<tr>
<td>4a. –4d. Existing Area and Site Conditions (Photos 1-8)</td>
<td>18-21</td>
</tr>
<tr>
<td>5. Existing and Proposed Street Improvements</td>
<td>73</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Proposed Residential Unit Mix</td>
<td>10</td>
</tr>
<tr>
<td>2. Estimated Carbon Monoxide Concentrations at Nearby Intersections</td>
<td>29</td>
</tr>
<tr>
<td>3. City of Berkeley Landmarks in the Vicinity</td>
<td>32</td>
</tr>
<tr>
<td>4. Potential Historic Resources, Surveyed by not Designated</td>
<td>34</td>
</tr>
<tr>
<td>5. Listed Regulatory Sites in the Vicinity</td>
<td>45</td>
</tr>
<tr>
<td>6. Typical Commercial Construction Noise Levels</td>
<td>58</td>
</tr>
<tr>
<td>7. Estimated Population Increases, 1990-2020</td>
<td>64</td>
</tr>
<tr>
<td>8. Net Trip Generation</td>
<td>71</td>
</tr>
<tr>
<td>9. Intersection Level of Service Analysis</td>
<td>71</td>
</tr>
</tbody>
</table>
PROJECT SUMMARY INFORMATION

1. Project Title: 1885 University Avenue

2. Lead Agency Name and Address: Planning and Development Department
City of Berkeley
2120 Milvia Street
Berkeley, CA 94704

3. Contact Person and Phone Number: Steven D. Ross, AICP, Senior Planner
(510) 981-7430

4. Project Location: 1885 University Avenue
Berkeley, CA 94703
Assessor’s Parcel No. 057-2060-001

5. Project Sponsor’s Name and Address: 1950 MLK, LLC
c/o Christopher Hudson & Evan McDonald
2140 Shattuck Avenue, Suite 302
Berkeley, CA 94704

6. General Plan Designation: Avenue Commercial

7. Zoning: C-1 (General Commercial) Zoning District

8. Description of Project:

156 unit mixed-use development (detailed description follows)

9. Surrounding Land Uses and Setting:

The project site is developed with an existing commercial building and parking lot. Existing uses include commercial, mixed-use, and multi-family residential. (detailed description follows)

10. Other public agencies whose approval is required:

None.
Environmental Factors Potentially Affected:
The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a potentially significant impact requiring mitigation, as indicated by the checklist on the following pages.

☐ Aesthetics ☐ Agriculture Resources ☐ Air Quality
☐ Biological Resources ☐ Cultural Resources ☐ Geology / Soils
☒ Hazards & Hazardous Materials ☒ Hydrology / Water Quality ☐ Land Use / Planning
☐ Mineral Resources ☐ Noise ☐ Population / Housing
☐ Public Services ☐ Recreation ☒ Transportation / Traffic
☐ Utilities / Service Systems ☒ Mandatory Findings of Significance

DETERMINATION: (To be completed by Lead Agency)
On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature: [Signature]
Printed Name: MARK A. RHOADES
Date: June 20, 2006
For: [For]
PROJECT DESCRIPTION

PROJECT SUMMARY

The project applicant, 1950 MLK, LLC, proposes to construct a residential apartment complex with ground floor commercial uses on an approximately 43,750 square-foot site located at 1885 University Avenue in the City of Berkeley. The L-shaped project site is bounded by University Avenue to the south, Martin Luther King, Jr. Way (MLK Jr. Way) to the east, and Berkeley Way to the north. The site contains an existing 20,375 square foot single-story commercial building and approximately 45 parking spaces. A Kragen Auto Parts store occupies 10,100 sq.ft. in the southern portion commercial building. The remainder of the commercial space is vacant. The existing building and parking lot would be demolished as part of the project.

The vicinity of the project site is highly urbanized and built-out with uses that include long-established residential, retail, and commercial buildings. The project site is designated Avenue Commercial by the Berkeley General Plan and C-1 General Commercial by the Berkeley Zoning Ordinance. Both the Avenue Commercial and the C-1 General Commercial zoning district and land use designations encourage pedestrian-oriented, mixed-use development, including multi-family residential with commercial uses.

PROJECT LOCATION AND SURROUNDING USES

Figure 1 shows the project location. The site is located on the northwest edge of the downtown area (just outside the Downtown Plan boundary). The western perimeter of the University of California, Berkeley, is located approximately three blocks east, uphill from the project site; the Downtown Berkeley BART Station is approximately three blocks southeast. The project site is easily accessed by public transit, including AC Transit lines 15, 51, 52L, FS, and 67, which include stops immediately adjacent to the site at Martin Luther King, Jr. Way and University Avenue.

The project site is located within the block bounded by Berkeley Way to the north, Martin Luther King, Jr. Way to the east, University Avenue to the south and Grant Street to the west, and includes frontage along Berkeley Way, Martin Luther King, Jr. Way and University Avenue. Berkeley Way forms the northern perimeter of the project site. Adjacent to the site, to the north and northeast across Berkeley Way, are primarily low- and medium-density residences, as well as some commercial uses located along Martin Luther King, Jr. Way. Both to the east across Martin Luther King, Jr. Way, and to the south across University Avenue, are several retail and commercial establishments; multiple-family residential neighborhoods are located further south along Addison Street and further east along Berkeley Way. To the west, within the block, are retail uses, including a vacated tire store immediately adjacent to the site along University Avenue, and multiple family homes along Berkeley Way.

1 Also known as 1950 Martin Luther King, Jr. Way.
EXISTING SETTING OF PROJECT SITE

The project site is located just west of Downtown Berkeley, on the full block bounded by Berkeley Way to the north, Martin Luther King, Jr. Way to the east, University Avenue to the south, and Grant Street to the west. Refer to Figure 1, Vicinity Map. Generally flat, the project site slopes approximately 8 feet from the corner of Berkeley Way and Martin Luther King Jr. Way to the southwest corner of the site on University Avenue. The site is currently occupied by an approximately 20,375 square foot single-story commercial and approximately 45 surface parking spaces located along Martin Luther King Jr. Way. The building is partially occupied by a Kragen Auto Parts store. The remainder of the building is currently unoccupied. Two-way driveways to the accessing the parking lot are located on both Berkeley Way and University Avenue. Berkeley Way is a two-lane street, and University Avenue is a four-lane thoroughfare with a landscaped median; both intersect Martin Luther King, Jr. Way. The sidewalks fronting the existing building and surface parking lot are lined with several street trees. A large pole sign is located on the corner of Martin Luther King, Jr. Way and University Avenue.

EXISTING OWNERSHIP AND HISTORICAL BACKGROUND

The project site is currently owned and operated by 1950 MLK, LLC.

Since at least 1930, the project site has supported various commercial businesses. According to City of Berkeley Sanborn Fire Insurance Maps and aerial photographs, the current building was constructed in 1953. Prior to 1953, a gasoline service station, an auto repair and an auto laundry occupied the site. Since 1953, the site has contained several businesses including a produce market, an electronics store, a discount store, a photo shop, and automotive supply shops.
Figure 1, Vicinity Map
DESCRIPTION OF PROJECT

The project would demolish the existing building, parking lot, and other improvements on the property and replace them with a new mixed-use project that would span the entire parcel. The project proposes a total of 156 rental dwelling units and approximately 14,390 square feet of retail floor area in one mixed-use structure comprised of two separate residential buildings built on a common basement and ground floor podium containing commercial uses and two separate parking garages with a total of 157 parking spaces.

DEMOLITION

The proposed project would demolish the existing 20,375 square-foot building at 1950 Martin Luther King, Jr. Way and would remove the existing surface parking lot and landscaping. Street trees abutting the site would also be removed and replaced, as recommended by the City Forester. The project applicant estimates that demolition, site clearance and grading would take approximately 6 weeks.

PROPOSED BUILDING COMPONENTS

Ground Floor. The project’s ground floor includes 14,390 sq.ft of commercial space. The applicant intends to lease the large 13,515 sq.ft. space at the corner of University and Martin Luther King Jr. Way to Trader Joe’s, a specialty grocery store. An 875 sq.ft. retail space is also proposed at the northeast corner of the building. The ground floor would also house separate lobbies (with elevators and stairways) for the two residential structures, as well as support facilities for the residential and commercial uses (refuse storage areas, mechanical equipment, emergency ingress and egress areas, loading dock, wheelchair/shopping cart ramp from parking area into larger retail space, etc.). The Trader Joe’s space is designed with an entrance at the corner of University Avenue and Martin Luther King Jr. Way as well as an entrance from the ground floor parking garage. The store’s stockroom, food preparation area, and bathrooms would be located in the western-most portion of the lease space. Refer to Figure 2, Site Plan / Ground Floor Plan.

Parking and Vehicle Access. The plan for the ground floor calls for 48 parking spaces within a garage on the north side of the building, with driveway access via Berkeley Way. The applicant intends that this parking would be for the exclusive use of the commercial tenants. The project includes a basement level with 109 residential parking spaces that would be accessed via a driveway on University Avenue. Some of the residential parking would be located in parking lifts, as the basement plan can only accommodate 89 at-grade parking spaces. The basement parking area is also designed to accommodate additional parking lifts in the future, should there be sufficient demand. The required truck loading space and loading dock for the large commercial space would be located on the western side of the building, adjacent to the driveway leading down to the residential garage. In addition, an on-street loading zone would be designated in front of the store on University Avenue for large trucks.

Architecture. The project is designed to appear as two separate buildings above a unified ground floor. Building “A,” with frontage on both University Avenue and Martin Luther King Jr. Way, would be addressed as 1885 University Avenue, and Building “B” would have an address of 1840 Berkeley Way due to its primary frontage on that street. The latter building would be located on the northern portion of the lot. Both buildings would be of roughly equal size, five stories and fifty-four feet in average height.
The buildings would generally abut the sidewalks, with the exception of the western portion of the Berkeley Way frontage, where a 10-15 foot landscaped setback is proposed. A large central courtyard is planned on the second floor level between the two buildings. This courtyard would serve as the primary open space for the complex, in addition to the two roof decks that are proposed atop the southwest corners of each building. Viewed from the adjacent streets, the two buildings would present a substantial unified vertical block. Above the ground floor, Building A contains a 16 foot wide breezeway between the east and west sides of the building that serve to break up the University Avenue façade. Along the Martin Luther King Junior Way elevation, there is a 10 foot wide separation between Building A and B that serves to break up the building mass, in addition to the differences in the architectural styles. Building A is proposed with a neoclassical architectural style, while Building B has more of a shingled craftsman style. Refer to Figure 3, Building Elevations.

Residential Unit Mix. Building A would house 84 units, while Building B would house 72 units. The two residential buildings would have a mixture of studio, one bedroom, and two bedroom units, as shown in Table 1 below. There would be a total of four studio apartments (Building A only), 104 one bedroom units, and 48 two bedroom units. The apartments would range in size from 407 sq.ft. (studio) to 577-688 sq.ft. (one bedroom) to 670-1,094 (two bedroom).

Table 1: Proposed Residential Unit Mix

<table>
<thead>
<tr>
<th>Building and Unit Type</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1 bedroom</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>2 bedroom</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Total Units/Floor</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>84</td>
</tr>
<tr>
<td>BUILDING B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 bedroom</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>2 bedroom</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Total Units/Floor</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>72</td>
</tr>
<tr>
<td>Total Units per Floor</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>156</td>
</tr>
</tbody>
</table>
Figure 2, Site Plan / Ground Floor Plan
Figure 3, Building Elevations
STREET IMPROVEMENTS

The project will be required to implement street improvements adjacent to the project site, in order to improve traffic circulation and bicycle and pedestrian safety, and to mitigate potentially significant impacts. The planned improvements are summarized below, and are described in more detail in Section XV, Transportation/Traffic.

- Signalize the MLK Jr. Way/Berkeley Way intersection
- Restripe MLK Jr. Way to provide a northbound left turn lane for the new traffic signal
- Prohibit on-street parking on the west side of MLK Jr. Way between University Avenue and Berkeley Way
- Prohibit on-street parking on the east side of MLK Jr. Way between University Avenue and Berkeley Way between 3 p.m. and 7 p.m. Monday – Saturday.
- Remove on-street parking on the east side of MLK Jr. Way between Berkeley Way and Hearst Avenue (parking currently prohibited 4-6 p.m.)
- Move northbound “merge lane” north of Hearst Avenue
- Restripe the eastbound approach to the MLK Jr. Way/Berkeley Way intersection to identify two separate lanes.

REQUIRED PERMITS

Use Permits are required for the proposed project under the following sections of the Zoning Ordinance:

A. Zoning Permits Required:

- Use Permit, to demolish an existing commercial structure, under Section 23C.08.050, Demolitions of Buildings
- Use Permit, to create 5,000 sq. ft. or more of gross floor area under Section 23E.36.050, Construction of New Floor Area, Conversions of Existing Buildings -- Requirements for Use Permits.
- Use Permit, to create a mixed use development with residential and commercial uses, under Section 23E.36.030, Uses Permitted.
- Use Permit to allow a fourth story and building height more than 40 feet and up to 50 feet under Section 23E.36.070.B, Development Standards.
- Use Permit to allow mechanical and architectural projections (e.g. domes, mechanical penthouses) to exceed the height limit under BMC Section 23E.04.020.C, Heights.
- Use Permit to reduce required Off-Street Parking and required Useable Open Space, under BMC Section 23E.36.070.D, Development Standards, where, for the residential use, 128 parking spaces are required and only 109 are proposed; and where 31,200 square feet of Useable Open Space is required and 14,102 square feet is proposed.
- Use Permit for Alcoholic Beverage Sales in conjunction with a general food product store, under BMC Section 23E.36.030.
B. Density bonus related development standard modifications, waivers, or use permits necessary to allow the project to incorporate the density bonus, per Government Code Section 65915(d)(3):

Under Government Code 65915(e), the applicant proposes a waiver or reduction of the City’s development standards in order to provide the density bonus units granted under 65915(d)(3). The waivers or modifications requested in order to allow the project, as proposed, include the following:

- Use Permit to reduce the required front yard to less than 15 feet (zero is proposed along Berkeley Way) under BMC Section 23E.04.050, Special Yard Requirements for C- Lots Abutting Residential Zones.
- Variance to allow a building of more than four stories (five stories are proposed), under BMC Section 23B.44.010, Variances.
- Variance to allow a Floor Area Ratio of more than 3.0 (3.3 is proposed), under BMC Section 23B.44.010, Variances.
- Variance to allow a building taller than 50-feet (54-feet is proposed), under BMC Section 23B.44.010, Variances.

Other administrative permits and approvals would be required from a variety of City departments. However, no discretionary permits are anticipated to be required by other jurisdictions or agencies.

CONSTRUCTION

Construction of the proposed project is anticipated to begin in 2007 and would extend over a period of approximately two years.

Construction of the proposed project would probably require the closure of the sidewalks on Berkeley Way and Martin Luther King Jr. Way adjacent to the site. During construction, a covered five-foot wide walkway would be maintained along University Avenue adjacent to the site to provide protection for pedestrians throughout the construction period. It may be necessary to route the walkway on the street adjacent to the curb. Parking would be prohibited on the streets adjacent to the site during the construction period. The north side of Berkeley Way adjacent to the project site parking may also need to be closed to parking during construction in order to keep the street open to traffic in both directions.

Demolition, site clearance and grading activities would take approximately 6 weeks. Excavation of the site would require approximately four weeks (20 working days) to export approximately 19,000 cubic yards of soil to a qualified off-site location. Concrete pouring of the garage and first floor podium levels would occur over a six-month period and require a total of approximately 16 working days involving around the clock deliveries of concrete and gravel. It is during the excavation and concrete pouring phases that greatest numbers of trucks would enter and exit the site. Large construction trucks would primarily access the site by traveling east on University Avenue, turning left on Grant Street, and turning right (eastbound) on Berkeley Way. Excavation trucks would most likely exit the site via University Avenue, while concrete trucks would depart by turning right on to Martin Luther King Jr. Way and right (westbound) on University Avenue.

A crane would be located at the project site for a period of approximately 12 months, within the courtyard area between the proposed site of Building A and Building B.
MITIGATION MEASURES

The project applicant has agreed to incorporate into the project all of the mitigation measures described in this Initial Study. The City will require that all of the adopted mitigation measures be implemented as conditions of project approval.
ENVIRONMENTAL IMPACTS:

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

I. AESTHETICS – Would the project:

a) Have a substantial adverse effect on a scenic vista? [] [] [X] []

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway? [] [] [] [X]

c) Substantially degrade the existing visual character or quality of the site and its surroundings? [] [] [X] []

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area? [] [] [X] []

Discussion

a) Although the City has not formally adopted a definition of “substantial adverse effect on a scenic vista” for the purposes of environmental review, the General Plan, and Zoning Ordinance provide some guidance on this issue. General Plan Policy UD-31 states that “construction should avoid blocking significant views, especially ones toward the Bay, hills, and significant landmarks such as the Campanile, Golden Gate Bridge, and Alcatraz Island. Whenever possible, new buildings should enhance a vista or punctuate or clarify the urban pattern.” Section 23F.04.010 of the Zoning Ordinance defines “view corridor” as “a significant view of the Berkeley Hills, San Francisco Bay, Mt. Tamalpais, or a significant landmark such as the Campanile, Golden Gate Bridge, and Alcatraz Island or any other significant vista that substantially enhances the value and enjoyment of real property.”

Views of the Berkeley hills, the Campanile and significant tree groves on the UC campus are available from several points in the vicinity looking east along the east-west running streets, particularly along University Avenue. These views provide people in the downtown area with a sense of connection to nature and to the University, as well as a pleasant visual juxtaposition that signals the edge of the city. A project that substantially affected such views would have the potential to cause a significant impact.

The project would replace the existing single-story commercial building and surface parking lot with a new mixed-use project. The proposed building would front on Berkeley Way, Martin Luther King Jr. Way, and University Avenue and would be five stories (approximately 54 feet in average height). A landscaped setback would be provided on the west side of the site as well as the western frontage along Berkeley Way where the project abuts a residential district. See Figure 3 for the proposed building elevations.
The project would alter views of the site from nearby areas, including the adjacent multiple family homes to the north and west of the site, and the primarily commercial uses to the south, west, and east of the site. Existing views of the site and surroundings are shown in Figures 4a through 4d. However, as the proposed development would consist of two structures with massing comparable to other development in the nearby Downtown area and along major retail corridors including University Avenue, the change in visual character would generally only appear as an increase in development within the immediate vicinity of the project site. Additionally, street trees would be incorporated at the perimeter of the project site, adding greenery, shade, and visual interest at the pedestrian level to University Avenue, Martin Luther King, Jr. Way, and Berkeley Way.

From long-range distances of one-half mile or more, including from the foothill areas to the east, the project would blend in with the urban landscape and would not be substantially visible by pedestrians one-half mile or more from the project site.

According to the City of Berkeley Draft General Plan Environmental Impact Report, public views of San Francisco Bay are available from the streets and sidewalks of University Avenue. The project would be similar in height as some buildings in nearby Downtown Berkeley and would not extend beyond the site perimeter. The proposed project would also add street trees to University Avenue, along the perimeter of the site in accordance with City specifications. As they mature, these trees would screen pedestrians’ view of the Bay near the project site. However, because University Avenue slopes toward the Bay, longer range views along University would be unaffected. The project would therefore not block views of San Francisco Bay from the hills nor block existing long-range views along streets and sidewalks.

From medium-range views of between one-half and one mile, the project would not be visible from nearby City streets east of the project site (within the Downtown). The project would be blocked by some surrounding buildings, many of which, particularly in the Downtown Berkeley area, extend to five-stories. From the west, the building would be visible, but would blend in with the Downtown buildings in the background or towards the east.

The project would be most visible from short-range views, along Berkeley Way, Martin Luther King, Jr. Way, and University Avenue, and would change short-range views in the vicinity of the project site. From Berkeley Way, pedestrians currently see the project site and its existing one-story commercial building and parking lot and have limited views through to University Avenue. From University Avenue, pedestrians currently see the project site and have limited views through to Berkeley Way. From Martin Luther King, Jr. Way, pedestrians currently see the front of the existing commercial building and its parking lot spanning the length of the block from University Avenue to Berkeley Way. The proposed project would shift short-range views of the project site to proposed retail activities at the site along University Avenue, and MLK, to street trees and a landscaping setback along the western portion of Berkeley Way, and to the architectural features of the proposed new buildings.
Figure 4a, Existing Area and Site Conditions

Photo 1, Existing Kragen Auto Parts store

Photo 2, Commercial development north of project site
Figure 4b, Existing Area and Site Conditions

Photo 3, Homes on north side of Berkeley Way

Photo 4, Home at 1830 Berkeley Way, west of project site.
Figure 4c: Existing Area and Site Conditions

Photo 5, Northeast corner of Berkeley Way and Martin Luther King Jr. Boulevard

Photo 6, Northeast corner of Martin Luther King Jr. Way and University Avenue
Figure 4d: Existing Area and Site Conditions

Photo 7, Southeast corner of Martin Luther King Jr. Way and University Avenue

Photo 8, Former Berkeley Tire Company building west of site along University Avenue
Because the project site is part of an urbanized area in close proximity to Downtown and because the project proposes to include sidewalk trees for screening purposes and would not block long-range views of San Francisco Bay, the Berkeley Hills, or significant landmarks on the UC Berkeley Campus, the project would have a less than significant impact on publicly accessible scenic vistas.

b) California’s Scenic Highway Program was established in 1963 to “add to the pleasure of the residents of this State,” and to encourage “the growth of the recreation and tourist industries upon which the economy of many areas of this State depend” (California Department of Transportation, 2001). In Alameda County, segments of I-580 are designated by the State Department of Transportation (Caltrans) as California Scenic Highways, which requires the protection of scenic resources visible from the roadway. The project site is located approximately 2.25 miles east of Interstate 580, and is not located within a designated scenic highway or within a protected visual corridor. The City of Berkeley’s General Plan does not designate any scenic roadways. Because the site is not within or visible from a scenic corridor, there is no impact related to this issue.

c) The proposed project would result in a visual change to the project site because it would entail the construction of five story mixed-use building on a site that is currently occupied by a single-story commercial building and a surface parking lot. In its current state, with a large surface parking lot along MLK Jr. Way, empty storefronts, and deteriorated building façade and signage, the project site appears somewhat blighted. The proposed project draws on architectural elements of nearby buildings and would incorporate both neoclassical (Building A) and craftsman-style (Building B) architectural styles with features that include peaked roofs and gables, stained cedar shingles, wood-sash windows, cement plaster exterior with board and batten siding, as well as wrought iron gate entrances and ground-level window guards. Along the street frontages, the project would primarily be built up to the property line and would be similar to other new mixed-use buildings constructed along University Avenue and in the nearby downtown Berkeley area. The project would demolish a structure that is neither a prototype nor an outstanding example of periods, styles, architectural movements, or construction. The City’s Landmarks Preservation Commission concurred with this conclusion when it reviewed the project in October 2002. Landscaping along the Berkeley Way frontage would consist of a variety of native and non-native decorative plants.

The proposed project would further represent a change in the character of the immediate project vicinity as it would introduce a new five-story, mixed-use structure that would include fully enclosed parking, landscaped courtyards, housing, and street level retail uses along University Avenue and MLK Jr. Way. The project would be located in an area that is currently developed with low- and medium-density commercial and residential uses. Along University Avenue, a busy retail corridor, the proposed project would introduce new commercial and residential uses within a five-story building immediately adjacent to a single-story commercial building. Along Berkeley Way, the proposed project would introduce a five-story building (Building B) to a multi-family residential street and immediately adjacent to a 2.5-story Stick-Eastlake style home constructed in 1890 (see Photo 4, above). Although the proposed project would construct a structure with greater bulk and height than currently at the site, the proposed building would incorporate architectural details that are similar to or that complement architectural styles present in the vicinity. The
proposed project would also incorporate street trees around the perimeter of the project site and a landscaped setback along the western frontage of Berkeley Way.

Because the project site is currently developed with an existing 20,375 square foot commercial building and a surface parking lot on a somewhat blighted property, replacement with a mixed use building that would enhance the streetscape would not substantially degrade the visual character or quality of the site or the vicinity.

d) **Lighting.** The project site located in near downtown Berkeley, along Martin Luther King, Jr. Way between University Avenue and Berkeley Way. Commercial businesses exist on the site as well as on all adjacent corners of the University/MLK intersection. Lighting proposed for the project would be similar to other recent mixed-use projects constructed along University Avenue. Additional lighting would be generated by the commercial storefront as well as from residential windows at night, plus perimeter security lighting. The project would comply with the City of Berkeley Zoning Ordinance regulations for C-1 lots abutting residential zones. Specifically, the BMC Section 23E.04.060.C requires that “exterior lighting shall be shielded in a manner which avoids direct glare onto abutting lots in a residential district.”

Glare. The project would add windows along the west side of the building and in other locations where presently there are none. The additional windows proposed by the project would produce more glare than is currently generated by the existing one story commercial building. However, the building does not propose substantial walls of glass that would result in significant amounts of glare; less than 25% of the total building façade would be windows. Therefore, the project would therefore not result in substantial new sources of light and glare at the project site, nor light spilling from the site onto nearby buildings.

Shading. The building is five stories and 54 feet in average height, with a maximum height over 66 feet to the top of the elevator tower closest to Berkeley Way. The proposed change in building height at the site is similar to what has occurred at other properties in downtown Berkeley or along University Avenue where mixed use buildings have been recently been constructed or approved. The new building represents a substantial increase in building mass, height, and shading, when compared to the one or two story structures that are being replaced. Such increases in building height, and the resulting increase in shadows, are to be expected in a downtown area and are not considered significant environmental impacts. The proposed project will cast shadows across the width of Berkeley Way with the most significant shadows occurring in winter, when the sun is at a lower angle to the horizon. This will result in some shading of the residences on the North side of Berkeley Way. If the project’s height were reduced, particularly at the Southwest project corner, this shading could be significantly reduced or eliminated.
Issues (and Supporting Information Sources):

II. **AGRICULTURE RESOURCES:** In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. **Would the project:**

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? □ □ □ ★

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? □ □ □ ★

c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use? □ □ □ ★

Discussion

a,b,c) The project site and vicinity are designated by the California Department of Conservation’s *Alameda County Important Farmland 1998* map as *Urban and Built-Up Land*. The Department defines *Urban and Built-Up Land* as primarily residential land with a density of at least six units per ten-acre parcel. The definition encompasses land used to support residential uses, as well as industrial and commercial uses, golf courses, landfills, airports, water control and sewage treatment. The project site is not subject to the Williamson Act or the California Conservation Act of 1965, which provides a reduction in property taxes in return for agreeing to protect open space or agricultural values. According to the City of Berkeley General Plan: “Agriculture in Berkeley is limited to personal and community gardens.”

The project site is therefore not considered farmland nor is it in the vicinity of any designated or *de facto* farmland. The proposed project would have no impact on farmlands designated by the State of California as Unique or Prime Farmland, or Farmland of Statewide Importance. Additionally, the proposed project would not conflict with existing zoning, nor would it result in the conversion of farmland to non-agricultural uses.
Issues (and Supporting Information Sources):

III. AIR QUALITY: Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

Would the project:

a) Conflict with or obstruct implementation of the applicable Air Quality Attainment Plan? [] [] ☒ []

b) Violate any air quality standard or contribute to an existing or projected air quality violation? [] [] ☒ []

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)? [] [] ☒ []

d) Expose sensitive receptors to substantial pollutant concentrations? [] [] ☒ []

e) Create objectionable odors affecting a substantial number of people? [] [] ☒ []

Discussion

a) **Setting.** The project site is located within the San Francisco Bay Area (Bay Area) which is currently designated as “nonattainment” for the State 1-hour ozone standard, the State 24-hour and annual PM-10 standard, and the State annual PM-2.5 standard (Bay Area Air Quality Management District [BAAQMD], 2005). The 2001 Bay Area Ozone Attainment Plan and the 2000 Bay Area Clean Air Plan have been prepared to address ozone nonattainment issues. No PM plans have been prepared or are required under state air quality planning law.

In April 2004, the EPA made a finding that the Bay Area has attained the national 1-hour ozone standard. However, a formal redesignation to “attainment” is pending till the BAAQMD prepares and submits to EPA a redesignation request and a maintenance plan to show that the region will continue to meet the 1-hour ozone standard. The Bay Area was also recently designated as nonattainment for the federal 8-hour ozone standard that now triggers the need for an attainment plan. The Bay Area is designated “unclassified” for the 24-hour national PM-10 standard. It is designated “attainment” with respect to all other State and national ambient air quality standards.

In cooperation with MTC and ABAG, the District is currently developing the Bay Area 2005 Ozone Strategy, which will address national and state air quality planning requirements. It will also
include a redesignation request and a maintenance plan for the national 1-hour ozone standard, an attainment plan for the national 8-hour standard and 24-hour PM-2.5 standard, and a triennial revision to the Bay Area strategy to attain the California State 1-hour ozone standard (2003 CAP).

The project would involve demolition of the existing single-story retail center and the construction of a new 156-unit apartment complex, a 13,515 s.f. grocery store, 875 s.f. of commercial retail space, and a total of 157 parking spaces. Project construction would involve use of equipment and materials that would emit ozone precursors (i.e., reactive organic gases, or ROG, and nitrogen oxides, or NOx).

The regional agency primarily responsible for developing the regional ozone plans is the Bay Area Air Quality Management District. BAAQMD is also the agency with permit authority over most types of stationary sources in Bay Area. The District exercises permit authority through its Rules and Regulations. Both federal and state ozone plans rely heavily upon stationary source control measures set forth in BAAQMD’s Rules and Regulations. The overall stationary source control program that is embodied by the BAAQMD Rules and Regulations has been developed such that new stationary sources can be allowed to operate in the Bay Area without obstructing the goals of the regional air quality plans.

Construction Impacts. With respect to the construction phase of the project, applicable BAAQMD regulations would relate to portable equipment (e.g., Portland concrete batch plants, and gasoline- or diesel-powered engines used for power generation, pumps, compressors, pile drivers, and cranes), architectural coatings, and paving materials. Project construction would be subject to the requirements of BAAQMD Regulation 2 (Permits), Rule 1 (General Requirements) with respect to portable equipment unless exempt under Rule 2-1-105 (Exemption, Registered Statewide Portable Equipment); BAAQMD Regulation 8 (Organic Compounds), Rule 3 (Architectural Coatings); and BAAQMD Regulation 8 (Organic Compounds), Rule 15 (Emulsified and Liquid Asphalts).

Operation Phase. With respect to the operational-phase of the project, emissions would be generated primarily from motor vehicle trips to the project site and from stationary equipment, to a lesser extent. However, as discussed in the traffic section of this document, the proposed project is expected to generate 1,304 net new vehicular trips per day over the existing land uses. According to the BAAQMD CEQA Guidelines, a project that would generate less than 2,000 new vehicular trips per day could not be expected to approach or exceed the significance threshold of 80 pounds per day for ROG, NOx and PM-10 and therefore detailed quantification is not required. Since the proposed project would generate less than 2,000 net new vehicular trips per day, the operational impact of the project would be less than significant and the project would not affect air quality in the region or conflict with or obstruct implementation of the applicable Air Quality Attainment Plans. Any stationary sources on site would be subject to the BAAQMD Rules and Regulations. Compliance with BAAQMD Rules and Regulations would ensure that the project would not conflict with or obstruct implementation of the applicable air quality plans.

b) The project would be located in a region that experiences occasional violations of ozone, PM-10, and PM-2.5 standards. Though the regional monitoring network no longer records violations of the
carbon monoxide standard, congestion on busy roadways and intersections could lead to local carbon monoxide hotspots, particularly during peak traffic hours.

The project would affect local pollutant concentrations in two ways. First, during project construction, the project would affect local particulate concentrations by generating dust. Over the long term, the project would result in an increase in emissions due to related motor vehicle trips associated with the residential and retail uses proposed by the project, and the increase in motor vehicle trips would affect carbon monoxide concentrations along the local road network. In addition, any on-site stationary and area sources associated with the project may also affect local pollutant concentrations, but since they would likely be subject to BAAQMD permit requirements, they can be presumed to have a less-than-significant effect on local pollutant concentrations.

Construction Phase. The project would involve demolition of existing structures, site clearance and grading and construction of new buildings. Construction is estimated to extend over a period of about 24 months. The project applicant estimates that demolition, site clearance, grading and laying of foundations would take approximately 6 weeks. During these 6 weeks large numbers of construction vehicles would be entering and exiting the project site. The project would be staged from Berkeley Way.

Site clearance and grading activities would generate substantial amounts of dust (including PM-10) from “fugitive” sources, such as earthmoving activities and vehicle travel over unpaved surfaces, and lesser amounts of other criteria pollutants from the operation of heavy equipment construction machinery (primarily diesel operated) and construction worker automobile trips (primarily gasoline operated). Construction-related dust emissions would vary from day to day, depending on the level and type of activity, silt content of the soil, and the weather. Construction activities may result in significant quantities of dust, and as a result, local visibility and PM-10 concentrations may be adversely affected on a temporary basis during the construction period. In addition, larger dust particles would settle out of the atmosphere close to the construction site resulting in a potential soiling nuisance for adjacent uses.

For the evaluation of construction-phase impacts, BAAQMD does not require a detailed quantification of construction emissions. Instead, it recommends that evaluation of the significance of impacts be based on a consideration of the control measures to be implemented (BAAQMD, 1999). Generally, if appropriate measures are implemented to reduce fugitive dust, then the residual impact can be presumed to be less than significant. Without these measures, the impact would generally be considered significant, particularly if sensitive land uses (e.g., residential) are located in the project vicinity. In this instance, low- and medium-density residences are located adjacent to the site to the west, to the north and northeast across Berkeley Way, and across Martin Luther King Junior Way. Thus, without appropriate dust controls, the impact could be significant. However, as a standard condition of approval the City requires that all large construction projects comply with the BAAQMD’s Basic Control Measures for reducing construction emissions of PM$_{10}$. Compliance with these measures reduces impacts from dust to a less-than-significant level. Elements of the “basic” dust control program include, but are not necessarily be limited to the following:
• Water all active construction areas at least twice daily. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible.

• Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).

• Pave, apply water three times daily, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.

• Sweep streets (with water sweepers using reclaimed water if possible) at the end of each day if visible soil material is carried onto adjacent paved roads.

With implementation of these measures, project construction would not be expected to violate any air quality standard or contribute to an existing or projected air quality violation in the project vicinity.

Construction activities would also result in the emission of other criteria pollutants from equipment exhaust, construction-related vehicular activity and construction worker automobile trips. Emission levels for construction activities would vary depending on the number and type of equipment, duration of use, operation schedules, and the number of construction workers. Criteria pollutant emissions of ROG and NOx from these emission sources would incrementally add to the regional atmospheric loading of ozone precursors during project construction. BAAQMD CEQA Guidelines recognize that construction equipment emit ozone precursors, but indicate that such emissions are included in the emission inventory that is the basis for regional air quality plans. Therefore construction emissions are not expected to impede attainment or maintenance of ozone standards in the Bay Area (BAAQMD, 1999). The impact would therefore be less than significant.

If asbestos were found to be present in building materials to be removed, demolition and disposal would be required to be conducted in accordance with the procedures specified by Regulation 11, Rule 2 (Asbestos Demolition, Renovation and Manufacturing) of BAAQMD’s regulations. Therefore, required compliance with existing regulation would reduce the potential for public health hazards associated with airborne asbestos fibers or lead dust to a less than significant level.

Operational Phase. For long-term, traffic-related effects on local carbon monoxide concentrations, the analysis was conducted using the methodology recommended in the BAAQMD CEQA Guidelines Six intersections in the vicinity of the project site were analyzed as part of the traffic study conducted by Korve Engineering. Table 2 below shows the estimated carbon monoxide concentrations at the six intersections for existing, existing plus project, cumulative (2020) and cumulative plus project scenarios. The estimated concentrations at all six intersections are well below the carbon monoxide ambient air quality standards. Therefore, the project would lead to a less than significant impact on local carbon monoxide concentrations in the vicinity.
Table 2: Estimated Carbon Monoxide Concentrations at Nearby Intersections

<table>
<thead>
<tr>
<th>INTERSECTION</th>
<th>AVERAGING TIME (HOURS)</th>
<th>EXISTING (2005)</th>
<th>EXISTING PLUS PROJECT</th>
<th>CUMULATIVE (2020)</th>
<th>CUMULATIVE PLUS PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLK Way / Hearst Ave</td>
<td>1</td>
<td>4.5</td>
<td>4.5</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>MLK Way / Berkeley Way</td>
<td>1</td>
<td>4.4</td>
<td>4.4</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>MLK Way / University Ave</td>
<td>1</td>
<td>4.7</td>
<td>4.7</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.2</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Milvia St / University Ave</td>
<td>1</td>
<td>4.4</td>
<td>4.4</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>MLK Way / Allston Way</td>
<td>1</td>
<td>4.4</td>
<td>4.5</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Grant St / University Ave</td>
<td>1</td>
<td>4.5</td>
<td>4.5</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

a Concentrations relate to a location 25 feet from the edge of the roadways that form the intersection. The carbon monoxide analysis focuses on the weekday afternoon (p.m.) peak-hour because of greater traffic congestion and related carbon monoxide concentrations during that period than during the morning (a.m.) peak hour. Carbon monoxide estimates shown above include background concentrations of 3.8 ppm, one-hour average, and 2.5 ppm, eight-hour average for 2005 and 3.2 ppm, one-hour average and 2.2 ppm, eight-hour average for 2020. 2010 concentrations have been used for 2020 to provide a conservative estimate, as 2020 emission factors were not available.

b The California ambient air quality standard for carbon monoxide is 20 ppm, one-hour average and 9 ppm, eight-hour average.

c Once occupied, the project would result in ROG, NOx and PM-10 emissions well below the BAAQMD significance threshold. This includes emissions generated from project traffic as well as emissions from stationary sources at the site (such as natural gas combustion for space and water heating, landscaping, use of consumer products, etc.). Therefore, the project’s contribution to the cumulative air quality of the region would be less than significant.

d Construction activities could expose sensitive receptors (located adjacent to and to the north and northeast of the project site) to substantial pollutant concentrations, principally PM-10, from fugitive dust sources. However, with implementation of the BAAQMD’s Basic Dust Control Measures described above, under item III.b, this impact would be reduced to less than significant.
Lastly, based on carbon monoxide modeling results described above under item III.b, project-related motor vehicle traffic would not expose sensitive receptors along the local road network to substantial pollutant concentrations.

e) As a general matter, the types of land use development that pose potential odor problems include wastewater treatment plants, refineries, landfills, composting facilities and transfer stations and sometimes restaurants. No such uses would occupy the project site. Therefore the project would not create objectionable odors that would affect a substantial number of people. Also, there are no existing odor sources in the vicinity of the project site that would significantly affect the project occupants.

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. BIOLOGICAL RESOURCES – Would the project:</td>
</tr>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
</tr>
</tbody>
</table>
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Discussion

a-d,f) The proposed project site is currently occupied by an existing building, which currently provides 20,375 sq. ft. of retail space and approximately 45 surface parking spaces, located in an urbanized area in the City of Berkeley. The site is subject to motor vehicle traffic on a 24-hour basis, seven days a week. The existing structure and paved parking and service areas cover most of the site. There are no known plants or animals of importance on the project site. Because the site is fully developed, the site is not part of a riparian habitat or other natural community, nor is it part of a federally protected wetland. Further, the site is not identified as being within 30 feet of a creek on the City’s Creeks Map. The project would therefore not interfere with the movement of any species or conflict with an adopted Habitat Conservation Plan, Natural Community Plan or other approved habitat conservation plan.

e) There are currently a total of approximately ten trees located in the parking areas of the site and on the sidewalk along three sides of the site. According to Policy EM-31, new development should contribute to the urban forest through preservation of existing on-site trees, wherever feasible; replacement of trees on-site; and the addition of trees in the public right of way. Additionally, Policy UA-7 of the University Avenue Strategic Plan states that new developments should “use streetscape enhancements to help improve the safety, economic vitality, and pedestrian activity of the avenue.” Although the project would remove all on-site trees, the project would result in the addition of approximately eight trees and other plants within the at-grade landscaped areas along Berkeley Way and the west side of the property abutting the residential district. In addition, the conceptual landscape plans call for over sixty trees within planters within the open space areas of the second floor courtyard and the rooftop decks of the project. According to the City Forester, the existing street trees (approximately eight trees) located within the public right-of-way would be removed and replaced, due to their poor condition. The project would replace street trees with approximately 14 new street trees around the perimeter of the site. Further, Coast Live Oaks are the only trees protected by City ordinance. Because the project would not remove any Coast Live Oak trees, the project’s impact would be considered less-than-significant.
Issues (and Supporting Information Sources):

V. CULTURAL RESOURCES -- Would the project:

a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?
 ![Impact](Less Than Significant Mitigation Incorporation Less Than Significant No Impact)

b) Cause a substantial adverse change in the significance of a unique archaeological resource pursuant to §15064.5?
 ![Impact](Less Than Significant Mitigation Incorporation Less Than Significant No Impact)

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?
 ![Impact](Less Than Significant Mitigation Incorporation Less Than Significant No Impact)

d) Disturb any human remains, including those interred outside of formal cemeteries?
 ![Impact](Less Than Significant Mitigation Incorporation Less Than Significant No Impact)

Discussion

a) The existing building on the project site, constructed in approximately 1953, is not identified by the City of Berkeley as a designated landmark, nor is it identified as a historic resource in the California Historical Resources Information System’s Northwest Information Center (Northwest Information Center). The City’s Landmarks Preservation Commission reviewed the proposed demolition of the existing building on October 7, 2002 and voted not to initiate the property as a landmark.

The project site is located within one mile of several buildings designated as landmarks by the City of Berkeley, as well as structures listed on the National Register of Historic Places, as listed in Table 3, below. The nearest designated City Landmark, the Bonita Apartments, is located at 1940-1944 University Avenue, approximately one block east of the site, across Martin Luther King, Jr. Way. Due to the distance between these historic resources and the subject property, the proposed project would not change the historic character of any of these buildings.

Table 3: City of Berkeley Historic Landmarks in the Vicinity

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Location</th>
<th>Proximity to Project Site</th>
<th>Historic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley Bay Commons</td>
<td>1917 Berkeley Way</td>
<td>One block east of the project site (approximate)</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Bonita Apartments</td>
<td>1940-1944 University Avenue</td>
<td>One block east of project site.</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Old City Hall</td>
<td>2134 Martin Luther King Jr. Way</td>
<td>Two blocks south</td>
<td>City of Berkeley Landmark; National Register of Historic Places</td>
</tr>
<tr>
<td>Old City Hall Annex</td>
<td>1835 Allston Way</td>
<td>Two blocks south</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Building Name</td>
<td>Location</td>
<td>Proximity to Project Site</td>
<td>Historic Status</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Civic Center Building</td>
<td>2180 Milvia Street</td>
<td>Two blocks south</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Berkeley High School complex (portion) and Berkeley Community Theater</td>
<td>Block bounded by Allston Way and Channing Way, Milvia Street and Martin Luther King, Jr. Way</td>
<td>Three blocks southeast of the project site.</td>
<td>City of Berkeley Landmarks</td>
</tr>
<tr>
<td>Armstrong College (now known as the U.C. Extension/International Center)</td>
<td>2222 Harold Way</td>
<td>Four blocks southeast from the project site.</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Berkeley Downtown YMCA</td>
<td>2001 Allston Way</td>
<td>Four blocks southeast of the project site.</td>
<td>City of Berkeley Landmark; National Register of Historic Places</td>
</tr>
<tr>
<td>Berkeley Main Post Office</td>
<td>2004 Allston Way</td>
<td>Four blocks southeast of the project site facing Kittredge Street</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Elks Club Building</td>
<td>2018 Allston Way</td>
<td>Five blocks southeast of site.</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Boone’s University School</td>
<td>2029 Durant Avenue</td>
<td>Five blocks southeast of the project site facing Durant Avenue</td>
<td>City of Berkeley Landmark; National Register of Historic Places</td>
</tr>
<tr>
<td>Wells Fargo Building/American Trust Building</td>
<td>2140-2144 Shattuck Avenue</td>
<td>Four blocks southeast of site.</td>
<td>City of Berkeley Landmark; National Register of Historic Places; Conservation Easement held by California Preservation Foundation</td>
</tr>
<tr>
<td>Hotel Shattuck/Hinks Building</td>
<td>2200-2240 Shattuck Avenue; 2060-2070 Allston Way; 2065 Kittredge Street</td>
<td>Five blocks southeast of site.</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Tupper & Reed Building</td>
<td>2271-2275 Shattuck Avenue</td>
<td>Five blocks southeast of site.</td>
<td>City of Berkeley Landmark; National Register of Historic Places</td>
</tr>
<tr>
<td>Morse Block (also known as McDonogh Arms/Pasand Hotel)</td>
<td>2276-2286 Shattuck Avenue</td>
<td>Five blocks southeast of site.</td>
<td>City of Berkeley Landmark</td>
</tr>
<tr>
<td>Shattuck Apartments</td>
<td>2300-2350 Shattuck Avenue; 2048 Bancroft Way; 2047 Durant Avenue</td>
<td>Six blocks southeast of site.</td>
<td>City of Berkeley Landmark; National Register of Historic Places</td>
</tr>
</tbody>
</table>

Several other properties in the vicinity were identified in the State Historic Resources Inventory (SHRI) prepared by the Berkeley Architectural Heritage Association in 1979. These properties, listed in Table 4, below, do not have an official historic status, but are considered potential historic resources.
Table 4: Potential Historic Resources, Surveyed by not Designated

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Location</th>
<th>Proximity to Project Site</th>
<th>Historic Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna Casey / John Lynch House</td>
<td>1830 Berkeley Way</td>
<td>Borders the property on the west</td>
<td>SHRI</td>
</tr>
<tr>
<td>Flinn House</td>
<td>1732 Berkeley Way</td>
<td>One block west of project site.</td>
<td>SHRI</td>
</tr>
<tr>
<td>MacFarlanes Building</td>
<td>2101 University Avenue</td>
<td>Three blocks east of the project site.</td>
<td>SHRI</td>
</tr>
<tr>
<td>Spear House</td>
<td>1905 Martin Luther King Jr. Way</td>
<td>Two blocks north</td>
<td>SHRI</td>
</tr>
</tbody>
</table>

The California Historical Resources Information System identified one building which abuts the subject property to the west (1830 Berkeley Way) as “3S”, meaning, “appears eligible for listing in the National Register as an individual property.” As this structure appears eligible for the National Register, it would be automatically eligible for listing on the California Register, and therefore would be considered a historic resource for CEQA purposes. The Berkeley Architectural Heritage Association (BAHA) prepared a historic resources inventory form for this property in 1979, According to the form, the property was identified as the John Lynch House, a Stick-Eastlake style residence built in 1890, and was one of the few examples of the Stick-Eastlake style homes left in Berkeley (BAHA, 1979). An ESA architectural historian completed a reconnaissance-level survey the project site and vicinity on May 17, 2006 to photograph the property and confirm the existence and condition of the property (ESA, 2006). The surveyor noted that the house remains in good condition, and determined that it would likely remain eligible for listing in the National and California Register. The house is currently undergoing a long-term restoration of its exterior paint scheme, as indicated by the weathered scaffolding which encircles the house. A single-story, rear-yard addition appears to have been constructed since the building was evaluated in 1979, and the rear yard sheds are in dilapidated condition. The Lynch house has an approximate 5-foot setback from its side (eastern) property boundary, where it abuts the project site.

The proposed project would be substantially larger than the building it would replace and clearly evident from the historic property. With a setback of 10 feet from the West property line that would include a landscaped walkway, there would be a total building-to-building setback of 15 feet between the two properties. The proposed project would also be setback from Berkeley way by about 13 feet. The proposed project would be five stories in height, or about 10-15 feet taller than the adjacent two and a half-story Lynch House, which is about 40 feet tall to the roof peak, and about 45 feet tall to the top of the corner tower. Although the proposed project would be both larger and taller than the adjacent Lynch House, it would be residential in character as evidenced by its hipped roof forms, articulated façade, and contemporary Craftsman Style design generally in keeping with the residential character of the neighborhood. Similar to the Lynch House and other older homes in the neighborhood, the proposed project would have a three-part vocabulary of a raised base and tall shaft, terminating in a gable or hip roof form. The proposed project could be seen as a positive visual and architectural change for the neighborhood, considering the relatively incompatible commercial building it would replace. Given the
setbacks, the landscaped buffer strip, the residential character of the proposed project, and the replacement of a non-compatible commercial building with a more architecturally compatible residential/mixed use building, the proposed building would not adversely impact the historic setting of the resource at 1830 Berkeley Way to the extent that it would no longer remain eligible for listing on either the federal or state registers, or as a potential City of Berkeley Landmark, where such a designation to be pursued in the future. As such, the proposed project would have a less-than-significant impact to the historic architectural resource at 1830 Berkeley Way, or other more distant historical resources.

b-d) The California Historical Resources Information System’s Northwest Information Center (Northwest Information Center) states that it has no record of Native American cultural resources at the project site or in the vicinity. In addition, review of historical literature and maps on file in the Northwest Information Center office gave no indication of historic archaeological sites or historic structures in the project area. Native American archaeological sites in this portion of Alameda County tend to be situated on terraces adjacent to former and present creek channels, and along the margins of the Bay. The project vicinity encompasses portions of a broad alluvial plain a fair distance from any freshwater source. In addition, the project site and vicinity have been heavily disturbed due to past development. Therefore, there is a low potential for Native American sites on the project site. Although the Northwest Information Center has no record of an archaeological study of the project vicinity, it states that no historic properties within the project vicinity are listed on State or federal inventories. Therefore, there is a low possibility of identifying historic cultural resources on the project site.

Although the potential for uncovering an unknown archaeological or paleontological resource at the site is low, the project would require substantial excavation. Portions of the site may have never been excavated in the past. The following mitigation measures would reduce any potential for accidentally uncovering unknown archaeological or paleontological resources to a less than significant level.

Mitigation Measure V.1: If an archaeological resource is accidentally uncovered during demolition or construction activities for the proposed project, the project applicant shall be required to notify the City of Berkeley immediately and all excavation work within ten feet of the find shall cease immediately. A qualified archaeologist shall be consulted to determine the necessity for monitoring the remaining excavation and to evaluate any cultural resource exposed during construction. Construction activity shall resume upon consultation with the City of Berkeley and upon implementation of the recommendations of the archaeologist. Cultural resources include, but are not limited to, railroad ties, foundations, privies, shell and bone artifacts, ash and charcoal. Identified cultural resources shall be recorded on DPR 523 (historic properties) forms.

Mitigation Measure V.2: If a paleontological resource is accidentally uncovered during demolition or construction activities for the proposed project, the project applicant shall be required to notify the City of Berkeley immediately and all excavation work within ten feet of the find shall cease immediately. A qualified paleontologist or archaeologist shall be consulted to determine the necessity for monitoring any excavation and to evaluate any paleontological resource exposed
during construction. Construction activity shall resume upon consultation with the City of Berkeley and upon implementation of the recommendations of the paleontologist or archaeologist.

Mitigation Measure V.3: In the event that human skeletal remains are encountered during demolition or construction activities for the proposed project, the project applicant shall immediately notify the County Coroner and the City of Berkeley. If the County Coroner determines that the remains are Native American, the Coroner shall contact the California Native Heritage Commission, pursuant to subdivision (c) of Section 7050.5 of the Health and Safety Code. In addition, all excavation work within ten feet of the find shall cease immediately.

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

VI. GEOLOGY AND SOILS -- Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

| ☐ | ☐ | ☒ | ☐ |

ii) Strong seismic ground shaking?

| ☐ | ☐ | ☒ | ☐ |

iii) Seismic-related ground failure, including liquefaction?

| ☐ | ☐ | ☒ | ☐ |

iv) Landslides?

| ☐ | ☐ | ☒ | ☐ |

b) Result in substantial soil erosion or the loss of topsoil?

| ☐ | ☒ | ☐ | ☐ |

c) Be located on geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

| ☐ | ☐ | ☒ | ☐ |

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code
(1994), creating substantial risks to life or property? ☒ ☐ ☒ ☐

e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater? ☐ ☒ ☐ ☒

Discussion

a.i,ii,iii) Fault Rupture. The project site is not located in an Alquist-Priolo Earthquake Fault Zone, as defined by the California Department of Conservation, California Geological Survey (CGS, formerly California Division of Mines and Geology), and no active or potentially active faults exist on or in the immediate vicinity of the site. The nearest active faults are the Hayward fault, located 1 mile east of the site; the Calaveras fault, located 14 miles southeast; the Concord fault, located 17 miles northeast, and the San Andreas fault, located 19 miles southwest. Because the site is not located on an active or potentially active fault, the potential for surface fault rupture is low and the impact is considered less than significant.

Ground Shaking. The proposed project is located in the San Francisco Bay Area, a region of intense seismic activity. Recent studies by the United States Geological Survey (USGS) indicate there is a 62 percent likelihood of a Richter magnitude 6.7 or higher earthquake occurring in the Bay Area in the next 30 years, and a 80 percent likelihood of a Richter magnitude 6.0 to 6.6 earthquake occurring within this 30 year timeframe. The project site could experience a range of ground shaking effects during an earthquake on one of the aforementioned Bay Area faults. This ground shaking could cause secondary ground failure such as localized liquefaction, or differential settlement. Secondary ground failures could cause structural damage to buildings, placing people in risk of injury. Ground shaking intensities from a major seismic event on the Hayward fault could reach ground movement intensities characterized as violent (MMI-IX) (ABAG, 2003). According to CGS probabilistic seismic hazard maps, peak ground accelerations in the Berkeley area during an earthquake on a Bay Area fault could reach 0.7g (Peterson, et.al, 1999), similar to those recorded

2 Alquist-Priolo Zones designate areas most likely to experience fault rupture, although surface fault rupture is not necessarily restricted those specifically zoned areas.

3 An active fault is defined by the State of California as a fault that has had surface displacement within Holocene time (approximately the last 10,000 years). A potentially active fault is defined as a fault that has shown evidence of surface displacement during the Quaternary (last 1.6 million years), unless direct geologic evidence demonstrates inactivity for all of the Holocene or longer. This definition does not, of course, mean that faults lacking evidence of surface displacement are necessarily inactive. Sufficiently active is also used to describe a fault if there is some evidence that Holocene displacement occurred on one or more of its segments or branches (Hart, 1997).

4 A probabilistic seismic hazard map is a map that shows the hazard from earthquakes that geologists and seismologists agree could occur in California. It is probabilistic in the sense that the analysis takes into consideration the uncertainties in the size and location of earthquakes and the resulting ground motions that can affect a particular site. The maps are typically expressed in terms of probability of exceeding a certain ground motion. For example, maps illustrating the 10 percent probability of exceedance in 50 years depict an annual probability of 1 in 475 of being exceeded each year. This level of ground shaking has been used for designing buildings in high seismic areas. The maps for 10 percent probability of exceedance in 50 years show ground motions that seismologists do not think will be exceeded in the next 50 years. In fact, there is a 90 percent chance that these ground motions will NOT be exceeded. This probability level allows engineers to design buildings for larger ground motions than seismologists think will occur during a 50-year interval, which will make buildings safer than if they were only designed for the ground motions that are expected to occur in the next 50 years.
in Santa Cruz (0.64g) near the epicenter of the Loma Prieta earthquake.\(^5\) It is likely that the most significant ground shaking would be generated by a characteristic earthquake on the Hayward fault, due to its close proximity to the project site.

Liquefaction. Seismic shaking can also trigger ground-failures caused by liquefaction.\(^6\) Liquefaction and associated failures could damage foundations, disrupt utility service, and cause damage to roadways. Liquefaction potential is highest in areas underlain by Bay fills, Bay mud, and unconsolidated alluvium with earthquake intensities greater than MM VI or equivalently, peak ground accelerations of 0.07g or greater.\(^7\) The depth to groundwater also controls the potential for liquefaction in this area; the shallower the groundwater, the higher potential for liquefaction. The project area has not been evaluated by the CGS for potential designation as a liquefaction Seismic Hazard Zone.

Geotechnical analyses performed at the project site indicate liquefaction potential is relatively low. The soil material underlying the proposed project site and the groundwater depths in this area are not characteristic of conditions susceptible to liquefaction as described above. The project site is underlain by alluvial fan deposits. On-site soil borings encountered surficial fill material 2 to 4 feet thick consisting of aggregate base rock and stiff to hard clays containing silts and sands. Fill materials were underlain by similar materials of stiff to hard silty and sandy clay, with varying amounts of gravel. Groundwater is estimated to occur approximately 6 to 20 feet below ground surface (bgs). The liquefaction hazard posed by subsurface conditions was judged by geotechnical review to be low.

In accordance with City of Berkeley grading and construction ordinances, the project applicant is required to prepare a geotechnical report for the project that includes generally accepted and appropriate engineering techniques for determining the susceptibility of the project site to various geologic and seismic hazards. The geotechnical report must include an analysis of ground shaking effects, liquefaction potential, and provide recommendations to reduce these hazards. Geotechnical and seismic design criteria must also conform to engineering recommendations in accordance with the seismic requirements of Zone 4 of the 1994 or 1997 Uniform Building Code (UBC) and the California Building Code (Title 24) additions. A geotechnical report which complies with City of Berkeley requirements has been prepared for the project site (Kropp, 2002). Required compliance

Seismic shaking maps are prepared using consensus information on historical earthquakes and faults. These levels of ground shaking are used primarily for estimating potential economic losses and preparing emergency response (Peterson, 1996).

\(^5\) Peak acceleration, peak velocity, and peak displacement values were measured by strong-motion detectors during the Loma Prieta earthquake in several ground and structure strong-motion stations in the Bay Area. Peak ground acceleration is the maximum horizontal ground movement expressed as acceleration due to gravity, or approximately 980 centimeters per second.

\(^6\) Liquefaction is the process by which saturated, loose, fine-grained, granular, soil, like sand, behaves like a dense fluid when subjected to prolonged shaking during an earthquake.

\(^7\) While the magnitude is a measure of the energy released in an earthquake, intensity is a measure of the groundshaking effects at a particular location. Shaking intensity can vary depending on the overall magnitude, distance to the fault, focus of earthquake energy, and type of geologic material. The Modified Mercalli (MM) intensity scale is commonly used to measure earthquake effects due to groundshaking. The MM values for intensity range from I (earthquake not felt) to XII (damage nearly total). MM intensities ranging from IV to X could cause moderate to significant structural damage. Acceleration is scaled against a value that everyone is familiar with, that is, acceleration due to gravity or the acceleration with which a ball falls if released at rest in a vacuum (1.0g). Acceleration of 1.0g is equivalent to a car traveling 100 meters (328 feet) from rest in 4.5 seconds. Acceleration is expressed by a “g” which is gravity = 980 centimeters per second squared.
with applicable City ordinances and Title 24 would ensure that potential impacts associated with ground shaking and liquefaction remains less-than-significant.

a.iv) Landslides. The project site is located on relatively level topography in an urbanized area. The potential for landslides is therefore considered less-than-significant.

b) Soil Erosion. See Response to VIII.1, below. Soils at the project site are classified as Urban Land-Tierra Complex by the U.S. Department of Agriculture, Natural Resources Soil Conservation Service (USDA NRCS). Urban Land-Tierra Complex soils are not designated as prime or unique farmland or farmland of statewide importance by the USDA NRCS. The project site is presently a strip mall located in a heavily urbanized area; the surface soils at these sites are heavily disturbed from past construction and do not represent a valued resource. The potential loss of topsoil associated with project construction is considered less-than-significant.

Although Tierra Complex soils are not highly susceptible to erosion, urban land soils are highly variable in composition. Borings advanced on the project site encountered artificial fill extending 2 to 4 feet bgs consisting of aggregate base rock and clays containing silts and sands. These fill materials were underlain by similar materials of stiff to hard silty and sandy clay, with varying amounts of gravel. Soil exposed by demolition, excavation, grading and construction activities could be subject to erosion if exposed to heavy winds or rain. Compliance with federal and local permitting requirements, which include the National Pollutant Discharge Elimination System (NPDES) permit (per Mitigation Measure VIII.1) would minimize soil erosion during grading and construction activities and ensure that impacts would remain less than significant.

c) Geologic Unit. The proposed project would be sited on deep consolidated alluvium, which is stable under static conditions and would resist seismic ground shaking. The City of Berkeley requires a geotechnical preparation of a geotechnical report, as well as compliance with and implementation of the geotechnical report recommendations prior to issuance of construction permits. Compliance with the geotechnical report recommendations would ensure that impacts associated with ground failure or unstable geologic structures remain less than significant. A geotechnical report, which complies with City of Berkeley requirements, has been prepared for the project site (Kropp, 2002).

d) Expansive Soils. Soil borings installed at the project site indicate that subsurface materials exhibit strong expansive (shrink-swell) properties. As earlier discussed in VI.b and VI.c, above, the geotechnical report required by the City of Berkeley includes an assessment of soil properties and recommendations to reduce adverse effects associated with expansive soils to a less than significant level. The geotechnical report would be reviewed by the City of Berkeley Engineering Department, to verify its competency in assessing geologic site hazards and assure that appropriate structural design measures are included, thereby reducing the potential for risk to life or property and ensuring that potential impacts remain less-than-significant.

e) Septic. The project would not include the installation of septic tanks or alternative wastewater disposal systems. For further discussion of the impact of the project on the City of Berkeley’s wastewater disposal system, see Section XVI., Utilities and Service Systems.
Issues (and Supporting Information Sources):

VII. HAZARDS AND HAZARDOUS MATERIALS -- Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? □ □ ☒ □

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? □ ☒ □ □

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? □ □ □ ☒

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? □ □ □ ☒

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? □ □ □ ☒

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? □ □ □ ☒

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? □ □ □ ☒

h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? □ □ □ ☒
SETTING

Commercial businesses have occupied the project site for over 70 years. Two gasoline stations, an “auto laundry”, and a grocery store occupied the property prior to the construction of the current commercial building. Historic maps and aerial photographs indicate that a residence occupied the site from at least 1894 to 1911. By 1929, automobile service and fueling stations replaced the residence. The current building was constructed in about 1953.

Several sources, consisting of past environmental reports, provided information regarding the project site history and environmental conditions of the project site. Listed below are the primary environmental assessments and actions completed to date at the subject property.

- Tetra Tech performed a Phase I environmental assessment in October 1997, which included subsurface soil sampling near the hydraulic lifts used by the former Grand Auto store (currently Kragen Auto Parts).
- GeoTek Insite, Inc. conducted a Phase I environmental assessment in March 2000, for the former Grand Auto Supply Store.
- GeoTek Insite, Inc. conducted a Phase II investigation in February 2000, which included soil sampling at the hydraulic lifts.
- Kennedy/Jenks Consultants removed the hydraulic lifts from the site in April 2002.
- Environmental Science Associates (ESA) completed Phase I and Phase II related work in April 2002, which included drilling and sampling six exploratory test holes. The assessment identified an abandoned 500-gallon underground petroleum storage tank in the northeast portion of the project site.
- Based on the findings of ESA’s April 2002 assessment, Ceres Associates removed the 500-gallon underground petroleum storage tank and residual contaminated soil from the project property in September 2002.

The City of Berkeley Toxics Management Division (TMD) conducted oversight and review for the underground storage tank removal work. TMD informed the applicant in a letter dated January 23, 2002, that it required no further investigative or remedial action with regard to the removed tank.

Discussion

a) The proposed project includes the demolition of a single-story commercial building and the construction of a five-story mixed-use building with 156 residential units and approximately 14,390 square feet of commercial uses.
Construction Phase. The proposed project is a mixed-use development that would not involve the routine use and transport of hazardous materials or petroleum products. In the short-term, construction activities would require the use of certain materials such as fuels, oils, solvents, and glues that in large quantities could pose a potential hazard to the public or environment if improperly used or inadvertently released. Inadvertent release of large quantities of these materials into the environment could also adversely impact soil, surface waters, or groundwater quality. However, the on-site storage, or disposal of large (exceeding the reportable quantity, which is typically 25 gallons or more) quantities of potentially hazardous materials is not required for a construction project of the proposed size and type. Considering the quantities of hazardous materials required for such a project, release to the environment would only impact a relatively small and localized area for a short period of time and therefore, the impact would remain less than significant. The applicant or the applicant’s subcontractor would be responsible for adequate clean-up and disposal of affected media. If large spills of hazardous materials occurred on the project site, the applicant or its subcontractor would be responsible under State law to report such a spill to the appropriate agencies and clean-up the spill to acceptable levels. The use of best management practices typically implemented as part of construction would minimize the potential negative effects to groundwater and soils. These could include the following:

- Follow manufacturer’s recommendations on use, storage, and disposal of chemical products used in construction;
- Avoid overtopping construction equipment fuel gas tanks;
- During routine maintenance of construction equipment, properly contain and remove grease and oils.
- Properly dispose of discarded containers of fuels and other chemicals.

Operational Impacts. The proposed residential units and commercial uses would use small quantities of household and commercial quantities of substances that, if not properly stored or used, could be considered hazardous to human health or the environment. These chemicals would include familiar materials such as toners, paints and thinners, lubricants, kitchen and restroom cleaners, and other maintenance materials. These common consumer products would be used for the same purposes as in any residential or neighborhood commercial use. Residential and commercial residents would dispose these substances and the spent containers through household hazardous waste centers or through standard refuse collection. Considering the types, quantities, and use of commercially available household chemicals, the proposed project would not result in an adverse effect on the environment with respect to the use, storage, or disposal of hazardous substances and therefore the impact would remain less than significant.

b) A gasoline fueling station that used an underground fuel tank operated at the northeast portion of project site prior to the construction of the existing commercial building. A soil investigation in 2002 identified and removed the UST and identified residual soil contamination near the UST. The investigation determined that the soil impacted from petroleum did not reach groundwater, which is greater than 20 feet deep. Hydraulic lifts with remote fluid tanks were also used at the
site. Observation of the soil during the removal of the hydraulic lifts in 2002 identified some localized, shallow soil impacted with hydraulic fluid. The areas of potential subsurface soil contamination are the former hydraulic lifts at the Kragen Auto Parts store and the area around a former underground fuel storage tank. These areas are discussed in further detail below.

Hydraulic Lifts. Shallow soils near the former hydraulic lifts were contaminated with low levels of hydraulic fluid that apparently leaked from the remote fluid tanks. In one area, it appeared that the hydraulic lift piston leaked small quantities of hydraulic fluid into the soil at a depth of about nine feet. Hydraulic fluid is thick oil and does not readily migrate beyond the source. The affected area of a hydraulic leak, therefore is typically limited to a localized area. CSK Auto (Kragen Auto Parts) removed the hydraulic lifts and excavated contaminated soil from the site in April 2002 under the oversight of the Berkeley TMD. The hydraulic lift removal included segregating potentially contaminated soil for off-site disposal and collecting soil samples to ensure that the site owner adequately removed the contaminated soil. Once the soil samples indicated the absence of contaminated soil, the City of Berkeley approved backfilling the hydraulic lift excavations and the old lifts, fluid tanks, piping and affected soil were removed from the site.

As part of the April 2002 Phase I/II site assessment, the applicant contracted with ESA to conduct soil sampling at six locations on the project site to determine the presence or absence of contamination beneath the project site. Sampling of soil and groundwater detected concentrations of total petroleum hydrocarbons (TPH) in the front parking lot of the project site near the former service stations and what was referred to on historic maps as an “auto laundry.” Soil samples collected at the northeast corner of the project site contained high TPH concentration while concentrations in other representative locations were either not detected or contained low concentrations of weathered TPH. These findings indicated the possibility that a fresh source of gasoline, such as an underground storage vessel, remained in the ground beneath the site. To determine the presence or verify the absence of an underground fuel storage tank, a ground penetrating radar (GPR)/magneto meter survey was conducted in the northern portion of the existing parking lot. The survey identified a metal anomaly that was consistent with the GPR signature of a 500-gallon UST. Excavation in the area of the anomaly uncovered an underground fuel storage tank, which the former gasoline station used between about 1930 and 1950.

On September 18, 2002, ICMS Incorporated (ICMS), under the direction of Ceres Associates and observation of a City of Berkeley Fire Department inspector, removed the 500-gallon underground fuel storage tank and auxiliary tank from the northern portion of the existing parking lot. Inspection of the tank (that included a 20-gallon auxiliary tank) indicated that it had apparently leaked gasoline through small holes formed from corrosion of the steel. The age of the leak is unknown but is estimated to have occurred sometime during operation period of the tank system. The soil impacted by gasoline released from the tank was localized around within the tank pit. Following tank removal and under oversight by the City of Berkeley TMD, verification soil samples were collected in the excavations to confirm adequate removal of the contaminated soil. Soil samples, analyzed by an on-site mobile laboratory, indicated that only minor concentrations of TPH as gasoline remained in the soil. Ceres Associates did not recommend further assessment and recommended case closure (Ceres Associates, 2002).
On January 23, 2003, the City of Berkeley TMD reviewed Ceres Associates’ “Underground Storage Tank Removal Report” associated with the closure of the 500-gallon underground gasoline storage tank and appurtenant piping. TMD stated that it was satisfied that the source of contamination had been removed and that the residual soil contamination represents a low to insignificant potential to impact human health or the environment (TMD, 2003). TMD required no further investigative or remedial action with regard to the removed tanks (TMD, 2003). However, the City’s standard practice, TMD has placed a “flag” in their parcel management database, which will consist of a requirement to refer construction plans to the TMD for review. Projects with underground work may be subject to management and reporting requirements related to the proper management of soil and groundwater, stormwater runoff management, and community health protections (TMD, 2003).

Potential Contamination from Nearby Sites. As part of the environmental assessment work completed for the site in April 2002, ESA completed a review of off-site contamination sources that could potentially impact the project site. The review of regulatory databases identified five Cortese sites within approximately one mile of the project site. Additionally, nearby sites were identified in the RCRA Database, the Leaking Underground Storage Tank List, the Underground Storage Tank List, the Historical UST Registered Database, the California Facility Inventory Database, the HAZNET database and the CERCLIS database. Table 5, below, provides a list of nearby Cortese, LUST, UST, and CA FID listed sites within 1/4 mile of the project site.

Most of these sites are a sufficient distance away, are located down- or cross-gradient to the project site, have identified responsible parties, and/or are actively monitored, and therefore do not represent recognized, adverse environmental conditions on the project site. However, the Kayo Property (currently Number One Gas station), located at 1900 Martin Luther King, Jr. Way, (one block north of the project site, at Hearst Avenue) does represent a concern for the subject site due its proximity and location. Sometime prior to November 1998, four leaking USTs were removed from the Kayo Property, and new USTs were installed in their place along with leak detection and monitoring systems. The leaking USTs had released petroleum constituents to the soil and groundwater underlyng the Kayo site. The level of petroleum contamination caused the City of Berkeley to require an investigation to assess the degree of subsurface soil and groundwater degradation. The investigation at the Kayo Property included installation of groundwater monitoring wells on-site and also off-site in the down-gradient groundwater flow direction. The data obtained from one down-gradient well (MW-8) indicated that the groundwater contained gasoline, MTBE, and benzene concentrations elevated above regulatory limits. This groundwater data also provides evidence that petroleum contaminants are likely migrating off the Kayo Site. The project site is located about 300 feet in the down-gradient, groundwater flow direction from the Kayo Property and could be impacted from contaminated groundwater if the plume from the Kayo Property extends a sufficient distance off-site. There was no information in City of Berkeley files regarding the off-site limits of the plume originating from the Kayo Property. The leaking UST at the Kayo Property could impact soil and groundwater as far down-gradient as the project site but this has not been positively determined. This leaking underground tank case remains open with the City of Berkeley due to active, ongoing groundwater monitoring. Because of the uncertainty regarding the impact of the Kayo Property on the subject property, and because the Kayo Property...
remains on the State LUST list as an open case, this site is considered a recognized environmental concern for the project site.

Table 5: Listed Regulatory Sites in the Vicinity

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Site Location</th>
<th>Direction from Site</th>
<th>Regulatory List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Reported</td>
<td>2009-2015 Addison St</td>
<td>SE</td>
<td>Cal-Sites</td>
</tr>
<tr>
<td>Not Reported</td>
<td>2140 Durant Ave</td>
<td>SE</td>
<td>Cal-Sites</td>
</tr>
<tr>
<td>Exxon</td>
<td>1894 University Ave</td>
<td>S</td>
<td>Cortese<sup>c</sup>, LUST<sup>d</sup>, CA FID<sup>e</sup></td>
</tr>
<tr>
<td>Kayo/Berkeley Beacon</td>
<td>1900 Martin Luther King, Jr. Wy</td>
<td>N</td>
<td>Cortese, CA FID</td>
</tr>
<tr>
<td>Don & Reinhard Inc.</td>
<td>1917 Addison St</td>
<td>SSE</td>
<td>Cortese, LUST, UST, CA FID</td>
</tr>
<tr>
<td>Germany’s Best Inc.</td>
<td>1931 Addison St</td>
<td>SSE</td>
<td>Cortese, LUST</td>
</tr>
<tr>
<td>UC Berkeley Corp Yard</td>
<td>2000 Milvia St</td>
<td>E</td>
<td>Cortese, LUST</td>
</tr>
<tr>
<td>Berkeley Glass</td>
<td>2011 Addison St</td>
<td>ESE</td>
<td>Cortese, LUST</td>
</tr>
<tr>
<td>Addison Street Property</td>
<td>2040 Addison St</td>
<td>ESE</td>
<td>Cortese, LUST</td>
</tr>
<tr>
<td>CA School Prof Psychology</td>
<td>1900 Addison St</td>
<td>S</td>
<td>LUST</td>
</tr>
<tr>
<td>Firestone Service Center</td>
<td>1974 University Ave</td>
<td>E</td>
<td>LUST, UST, CA FID</td>
</tr>
<tr>
<td>Stead Building</td>
<td>1960 Addison St</td>
<td>SE</td>
<td>LUST</td>
</tr>
<tr>
<td>Automotive Unlimited</td>
<td>2020 Addison St</td>
<td>ESE</td>
<td>LUST</td>
</tr>
<tr>
<td>Berkeley YMCA</td>
<td>2001 Allston Wy</td>
<td>SE</td>
<td>LUST</td>
</tr>
<tr>
<td>Goodyear Service Center</td>
<td>2099 Martin Luther King, Jr. Wy</td>
<td>S</td>
<td>UST<sup>f</sup>, CA FID</td>
</tr>
<tr>
<td>Berkeley Fire Station #2</td>
<td>2029 Berkeley Wy</td>
<td>ENE</td>
<td>UST, CA FID</td>
</tr>
<tr>
<td>Main Post Office</td>
<td>2000 Allston Wy</td>
<td>SE</td>
<td>UST, CA FID</td>
</tr>
</tbody>
</table>

^a As provided by EDR.
^b Cal-Sites is a database that contains both known and potential hazardous substance sites. The source is the California Department of Toxic Substances Control.
^c The Cortese database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with USTs having a reportable release and all solid waste disposal facilities from which there is known migration. The source is the California Environmental Protection Agency/Office of Emergency Information.
^d Leaking Underground Storage Tank List. This database contains an inventory of reported leaking underground storage tank incidents. The data comes from the State Water Resources Control Board.
^e The California Facility Inventory Database contains active and inactive UST locations.
^f Underground Storage Tank List contains registered underground storage tanks. The data come from the State Water Resources Control Board.

SOURCE: Environmental Data Resources, 2002
CONCLUSION

Based on the historical site assessment and reconnaissance, the applicant was able to identify areas of on-site soil contamination. Clean-up of petroleum-contaminated areas included removal of the hydraulic lifts, removal of the underground fuel storage tank (and piping), and excavation and off-site disposal of petroleum-impacted soil. Soil samples were collected to confirm that the soil was adequately removed in both locations. The City of Berkeley TMD observed and reviewed the hydraulic lift and underground fuel UST removal, soil excavation, and sampling to ensure that the property owner had adequately remediated the contaminated areas. Considering these efforts to remediate the site, contamination resulting from past uses would not pose a potential hazard during construction or occupancy of the proposed residential development.

With any development in urban settings, the possibility exists that residual soil contamination could be discovered during construction of the proposed project. The residual soil contamination could be a result of an undiscovered on-site source or contamination that migrated to the site from adjacent properties. These sources are typically discovered during excavation of basements and grading work. Based on past site uses and previous assessments, the most likely residual contamination that would exist at the project site would be petroleum-based, such as gasoline or motor oil. Considering the amount of time that has passed since the project site dispensed petroleum, residual petroleum contamination would likely be degraded and at low concentrations. Contamination from off-site sources would also likely be degraded. In a degraded state, residual petroleum in soil would not constitute a hazard to humans or the environment, but concentrations could be high enough to require non-hazardous waste profiling and special disposal.

To ensure that residual soil contamination identified during project development is adequately managed to avoid potential health hazards, the applicant shall implement Mitigation Measure VII.1, described below. Please refer to Section VIII. Hydrology and Water Quality, regarding potential issues associated with dewatering, if deemed necessary, during construction.

Mitigation Measure VII.1: Obvious soil contamination discovered during demolition, grading, or excavation shall be removed, segregated, and covered. The soil shall be profiled for off-site disposal and be removed from the site within 48-hours. The applicant shall contract with a competent professional to collect verification soil samples to ensure complete soil removal, and the City of Berkeley Toxics Management Division shall be notified of all soil contamination requiring removal.

c) Schools within the immediate vicinity of the project site include Washington Elementary School located at 2300 Martin Luther King, Jr. Way, approximately 0.3 miles to the south of the project site, and Willard Middle School located at 2425 Stuart Street, approximately 1.5 miles to the southeast of the project site. Berkeley Arts Magnet at Whittier School is located at 1645 Milvia Way, approximately 0.4 miles to the north. Berkeley High School is located approximately 0.5 miles south of the project site at 2246 Milvia Street. Private schools within the vicinity of the project site include Berkwood Hedge School at 1809 Bancroft Way, Berkeley Montessori School at 2030 Francisco Street, and St. Joseph the Worker School at 2125 Jefferson Avenue. In addition, the University of California at Berkeley is located approximately 0.4 miles to the east. These
public and private schools are not located within one-quarter mile of the project site. Further, the project would not emit or handle any hazardous materials in sufficiently large quantities to pose a significant hazard to schools in the vicinity. Therefore, the construction or operation of the proposed project would not emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of a school.

d) A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR) in 1999 and by VISTA Information Solutions, Inc. in 2002. The reports met the government records search radius requirements of the American Society for Testing Materials (ASTM) “Standard Practice for Environmental Site Assessments, E 1527-00.” A summary of the database search for the project site as well as for nearby surrounding sites is provided in Table 5, above. The databases searched included, among others, the State of California Hazardous Waste and Substances List (Cortese List) and the Comprehensive Environmental Response, Compensation, and Liability System (CERCLIS). The Cortese List is a compilation of information from various sources listing potential and confirmed hazardous waste and hazardous substance sites in California and is maintained by DTSC. CERCLIS contains general information on contaminated sites, including location, status, contaminants, and actions taken. Information in the CERCLIS database can be found on sites being assessed under the Superfund Program, hazardous waste sites, and potential hazardous waste sites.

The EDR and VISTA records searches did not identify the project site as a Cortese or CERCLIS site. As discussed above, with the exception of the “flag” placed by the City of Berkeley in its parcel management database regarding the former UST, the proposed project site is not listed as a contaminated site and does not represent a significant hazard to the public or the environment. See also VII.b, above, for a discussion of localized soil contamination from the hydraulic lifts and the UST. As such, there would be no impacts associated with listed sites as a result of short-term development projects.

e,f) The project site is not located within an airport land use plan and is not within two miles of a public airport or public-use airport. Additionally, the project site is not within the vicinity of a private airstrip.

g) The project site is located on Martin Luther King, Jr. Way between University Avenue and Berkeley Way. According to Figure 14 of the Berkeley General Plan, Martin Luther King, Jr. Way and University Avenue are designated as Emergency Access and Evacuation Routes. Additionally, Berkeley Way from Martin Luther King, Jr. Way to Oxford Street is also designated as an Emergency Access and Evacuation Route. The proposed project would not obstruct or interfere with these established emergency access and evacuation routes nor would it interfere with other adopted emergency response plans during construction or during project operations.

h) For a discussion of fire protection services, see Section XIII. Public Services, below. According to the Berkeley General Plan, Berkeley “faces a significant wildland fire danger along its hillsides where the wildland and residential areas interface.” According to Figure 14, Hazardous Hill Area, Fire Station Locations and Evacuation Routes in the Berkeley General Plan, the project site is not
located within a Hill Fire Hazard Area. Therefore, there is would be no risk of loss, injury, or death involving wildland fires at the proposed project.

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>VIII. HYDROLOGY AND WATER QUALITY -- Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion of siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam? [☐] [☐] [☐] [☒]

j) Inundation of seiche, tsunami, or mudflow? [☐] [☐] [☐] [☒]

Discussion

a) Construction of the proposed project would involve demolition, excavation, soil stockpiling, and grading, potentially resulting in soil erosion. Approximately 19,000 cubic yards of soil would be excavated and removed in order to accommodate the proposed subsurface parking structure. Soil erosion can cause various environmental impacts, which could eventually impact water quality in San Francisco Bay. As discussed in Section VII. Hazards and Hazardous Materials, areas of sediment underlying the project site have been affected by petroleum hydrocarbons. Proposed excavation activities would include exposure and partial removal of these soils, potentially resulting in petroleum-impacted soils eroding and combining with stormwater run-off. Sediment from project-induced on-site erosion could also accumulate in downstream drainage facilities and interfere with flow, thereby aggravating downstream flooding conditions. Because the project site is over one acre in size, it qualifies as a Group 1 project and must comply with the City’s National Pollution Discharge Elimination System (NPDES) permit as described in Berkeley Municipal Code Section 17.20.

The following mitigation measure shall be implemented:

Mitigation Measure VIII.1: Prior to issuance of a building permit, the project shall demonstrate compliance with the requirements of the City’s National Pollution Discharge Elimination System (NPDES) permit as described in Berkeley Municipal Code Section 17.20. The project qualifies as a Group 1 project having 1 acre or more of impervious surfaces, and such projects area required to design and install stormwater treatment systems to the maximum extent practical, in addition to controlling construction-related drainage and erosion. The following conditions apply:

- The project plans shall identify site-specific Best Management Practices (BMPs) appropriate to activities conducted on-site to limit to the maximum extent practicable the discharge of pollutants into the City’s storm drainage system, regardless of season or weather conditions.
- The project plans shall include erosion control measures to prevent soil, dirt, and debris from entering the storm drain system, in accordance with BMC Chapter 17.20.
- Trash enclosures and/or recycling areas shall be covered; no other area shall drain onto these areas. Drains in any wash or process area shall not discharge to the storm drain system; these drains should connect to the sanitary sewer. The applicant shall contact the City and East Bay Municipal Utility District (EBMUD) for specific connection and discharge requirements prior to building permit issuance. Discharges to the sanitary sewer are subject to the review, approval, and conditions of the City and EBMUD.
- Landscaping shall be designed with efficient irrigation to reduce runoff and promote surface infiltration and minimize the use of fertilizers and pesticides that contribute to stormwater pollution. Where feasible, landscaping should be designed and operated to treat runoff. When and were feasible, xeriscape and drought tolerant plants shall be incorporated into new development plans.
Excavation depths are estimated to extend 18 to 20 feet below ground surface (bgs), and depth to groundwater is estimated at or greater than 20 feet bgs. In some areas, excavation may intersect perched subsurface water-bearing sediments. Depending on the construction activities, these perched zones of subsurface water may flow into the excavation. A common practice employed to facilitate construction is dewatering, in which water is pumped to the surface and then discharged. Water extracted during dewatering may contain contaminants (either from pre-existing MTBE and petroleum hydrocarbon sources or from equipment) or may become sediment-laden from construction activities. If water containing sediment or contaminants is discharged directly to the storm or sanitary sewer, it could ultimately contribute to the degradation of surface waters (i.e. San Francisco Bay) or generate sediment and contaminant levels that are in excess of those permitted by sewage treatment plants. In order to minimize potential hazards associated with discharge of potentially contaminated groundwater, the following mitigation measure shall be required:

Mitigation Measure VIII.2: If dewatering is required as part of project excavation, the applicant shall obtain a permit from the Berkeley Department of Public Works and RWQCB for discharge of groundwater generated by construction dewatering into the storm drain system and East Bay Municipal Utility District for discharge into the sewer system. Permit regulations may require treatment of groundwater generated by construction dewatering activities prior to discharge into the storm drain system or sewer system.

Compliance with the City NPDES requirements would reduce the impact of erosion during construction to a less than significant level. Compliance with Mitigation Measure VIII.2, above, would reduce potential hazards associated with discharge of MTBE and petroleum-impacted groundwater (generated by construction dewatering activities) to sewer or storm drain systems to a less than significant level. Hazards associated with erosion of petroleum-impacted soils are reduced to less-than-significant levels through implementation of Mitigation Measure VII.1. Compliance with regulations and procedures discussed above would minimize or eliminate potential erosion impacts to surface water runoff and therefore, this impact would be less-than-significant after mitigation.

b) The East Bay Plain (DWR Groundwater Basin No. 2-9.01) is an important and beneficial groundwater basin underlying the East Bay, and extending from Richmond to Hayward. The basin is identified for use as a municipal, industrial, and agricultural water supply. Depth to groundwater varies but is generally more than ten feet below ground surface. The East Bay Municipal Utility District (EBMUD) provides municipal water supply in the City of Berkeley. Because groundwater would not be used to supply water for the project, nor would it change groundwater infiltration rates at the site, the project would have no impact on the aquifer volume or groundwater table level.

c) See Response to VIII.a., above. The existing drainage pattern would temporarily be altered during construction. Following completion of the project, drainage patterns would be similar to the existing setting. Compliance with NPDES permit requirements, as discussed above, would lessen the impact of project construction on the existing drainage pattern of the site to a less-than-significant impact.
d,e,f) Surface water runoff volumes and rates generated from undeveloped, unpaved areas can increase significantly when that site is paved, and the capability of surface water infiltration is reduced or eliminated. The project site is currently almost entirely paved, with the exception of some landscaping along Martin Luther King, Jr. Way. The proposed project would also include paving the majority of the site, thereby resulting in a negligible change in stormwater run-off volume following completion of construction.

Changes to the land use at the project site could change the amount of non-point source pollutants generated. The existing site includes a paved parking area and strip mall with an auto parts store. Although the proposed project would create additional parking, this increase would not create a significant adverse impact to stormwater run-off water quality and pollutant loads as removal of the auto parts store would decrease vehicle servicing at the site and the adjacent streets, thereby reducing the potential for automotive fluid spills and leaks. In addition, all on-site parking would be covered and protected from the elements and would therefore not generate runoff to the stormwater system. Therefore, the project would decrease the amount of non-point source pollutants generated at the site, including oil and grease, petroleum hydrocarbons, and metals would likely occur. Potential impacts are therefore considered less than significant.

g,h) The project site does not lie within the 100-year or 500-year flood plain as determined by the Federal Emergency Management Agency (FEMA) flood hazard mapping. Within the City of Berkeley, the FEMA 100-year flood plain establishes the base flood elevation for new construction. The City of Berkeley only requires site planning and drainage design for new construction proposed to be located within the 100-year flood plain.

i) There are no impounded water bodies upstream from the project site that would subject the site to significant flooding in the event of rupture. Therefore, no loss resulting from failure of a dam is expected as a potential outcome of this project. In addition, this project is located above sea level and is not subject to loss from failure of a levee.

j) Inundation of seiche or tsunami is unlikely within the project site. The elevation of the project site is approximately 165 feet above sea level. Wave run-up from tsunami in the San Francisco Bay is expected to range between 0 and 20 feet. The project site is located about 1.75 miles from the San Francisco Bay. There are no water bodies upstream from the project site (e.g., reservoirs, ponds, canals, etc.) that might experience flood waves.
IX. LAND USE AND PLANNING -- Would the project:

a) Physically divide an established community? ☐ ☐ ☐ ☒

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? ☐ ☐ ☒ ☐

c) Conflict with any applicable habitat conservation plan or natural community conservation plan? ☐ ☐ ☐ ☒

Discussion

a) The project would be located in a commercial area within the planning boundary of the University Avenue Strategic Plan, surrounded by commercial and residential uses that include one- and two-story residential units to the north and west; a gas station and two- and three-story commercial uses to the southeast; and a two-story mixed use residential and commercial buildings to the east. The project site contains an existing single-story commercial building with a large surface parking lot along Martin Luther King Jr. Way.

The proposed mixed-use development would encompass the one-acre project site bounded by University Avenue, Martin Luther King, Jr. Way, and Berkeley Way. The five-story building would include four levels of housing above one level of ground floor parking and retail commercial uses. Parking would also be provided in a separate basement level. The proposed ground floor commercial uses along University Avenue, Martin Luther King, Jr. Way, and across Berkeley Way would complement uses along University Avenue and Martin Luther King, Jr. Way. The residential uses would complement the adjacent multifamily residential uses along University Avenue and Berkeley Way. The proposed project would therefore not physically divide an established community.

b) The proposed project represents a modification (at the request of the City of Berkeley Zoning Adjustments Board) of an affordable housing project that is subject to a density bonus under Government Code Section 65915. The original project consists of 186 dwelling units and was deemed complete by the City in 2004. As such the project is entitled to a density bonus.

The floor-to-area Ratio (FAR) of the proposed project is approximately 3.3, which exceeds the maximum permitted FAR for structures within the C-1 zone of the Berkeley Zoning Ordinance (23E.36.070). In addition, the proposed project would be 5 stories and approximately 54 feet in
average height. Current zoning regulations for mixed-use developments within the C-1 zone allow for a maximum of 3 stories, or 4 stories subject to obtaining a Use Permit. State law (Government Code Section 658915(d)(3) requires development incentives be given to developers who include a certain amount of affordable housing in their projects. The applicant is requesting modifications, waivers, or Use Permits (including an additional density bonus of 25 dwelling units) to the development standards to allow the project to incorporate a density bonus permitted by State law, and to make financially feasible the modifications that have been suggested by the Zoning Adjustments Board. The project’s inconsistencies with the City’s Zoning Ordinance result from the required density bonus. The provision of affordable housing is consistent with Policy H-1, Low and Moderate Income Housing, of the Berkeley Draft General Plan, which looks to “increase the number of housing units affordable to low and moderate income Berkeley residents.”

Providing higher density mixed-use development along the University Avenue corridor adjacent to downtown Berkeley is also identified by several General Plan policies. However, the project would conflict with several of the policies in the General Plan’s Land Use and Urban Design Elements that discuss the need for new development to be sensitive to the scale and context of its surroundings.

The University Avenue Strategic Plan (UASP), adopted in 1996, created a framework for the redevelopment of the University Avenue corridor, and contained many goals and policies to guide future infill redevelopment projects, such as the proposed project. However, the project’s application was determined complete before the effective date (January 2005) of the revisions to the C-1 District regulations that incorporated the UASP requirements. As such, the project is not subject to the zoning district’s recently revised zoning provisions to implement the UASP. Plans and policies that guide development in the University Avenue corridor area range from revitalizing the corridor through appropriate economic development and housing, to the encouragement of more pedestrian-oriented development and an appropriate mix of uses to improve neighborhood identity. The project would complement and achieve these goals and policies by providing housing in a mixed-use area near the Downtown area as well as providing ground floor retail uses along University Avenue and Martin Luther King, Jr. Way. However, the project, as designed, would also conflict with several guidelines that in-fill development transition to adjacent lower-scale residential properties.

The UASP designates the project site as “Avenue Residential.” The University Avenue Strategic Plan “General Design Guidelines” contains design-related policies that encourage infill development projects to be sensitive to the neighboring lower-scale residential uses. The purposes of some of these policies are to maintain privacy, respect solar access, and improve the design of new developments by stepping down to lower-intensity residential neighbors, thereby creating a more harmonious streetscape and minimizing land use conflicts. The five-story project, as proposed, is out of scale with the adjacent residential uses along Berkeley Way, which are primarily populated by two story buildings housing multifamily residential units. However, achieving the relationships suggested by the policies does not mean that buildings in commercial zoning districts must be the same size as those existing in residential districts. If the proposed project includes a step down at the northwest project corner that transition will be achieved. The building mass abuts the adjacent residential uses on Berkeley Way without a transition to the lower-intensity residential neighbors, as called for in the UASP.

The policies of the UASP are primarily designed to minimize land use conflicts and address design and aesthetic issues, and are not specifically adopted for the purpose of avoiding or mitigating a
significant environmental effect. Therefore, despite the project’s having some inconsistencies with
the UASP’s General Design Guidelines, the project does not result in a significant impact related to
conflict with plans or policies adopted for the purposes of avoiding or mitigating a significant
environmental effect.

c) The proposed project is located in an urbanized area adjacent to Downtown Berkeley, and the
project site is currently occupied by a 20,375 square foot single-story commercial structure. The
project site is not part of a riparian habitat or other natural community, nor is it part of a federally
protected wetland.

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. MINERAL RESOURCES -- Would the project:</td>
</tr>
</tbody>
</table>
| a) Result in the loss of availability of a known
mineral resource that would be of value to the
region and the residents of the state? | ☐ ☐ ☐ ☒ |
| b) Result in the loss of availability of a locally-
important mineral resource recovery site
delineated on a local general plan, specific plan or
other land use plan? | ☐ ☐ ☐ ☒ |

Discussion

a,b) From the mid-1800s to the present, a variety of minerals have been extracted in Alameda County,
including sand and gravel, petroleum, clays, asbestos, bromine, chromite, copper, gold, lead, lime,
manganese, potash, pyrite, silica, silver, soapstone and silver. Mining occurred throughout the
County, along creeks, in the hills of Oakland and Berkeley, and along the waterfront.

No mineral resources are identified within or around the project site by either the Alameda County
General Plan or the City of Berkeley’s General Plan. The proposed project would therefore not
result in the loss of availability of a known mineral resource that is valuable on a local, regional or
state-wide basis.
Issues (and Supporting Information Sources):

XII. NOISE -- Would the project result in:

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport of public use airport, would the project expose people residing or working in the project area to excessive noise levels?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a) Noise standards are typically addressed in Title 24, local General Plan policies and local noise ordinance standards. The proposed project could expose people to, or generate, noise levels in excess of General Plan standards in two ways. First, the project could expose sensitive receptors to noise above applicable standards by introducing sensitive land uses (proposed residential uses) that are incompatible with the noise environment at the site. Second, the project itself could lead to an increase in ambient noise levels thereby affecting existing sensitive receptors in the project vicinity. These potential impacts are discussed below.

Compatibility of Site for Proposed Uses. The City of Berkeley General Plan contains guidelines for determining the compatibility of various land uses with different noise environments (City of Berkeley, 2002). The Noise Element recognizes that some land uses are more sensitive to ambient
noise levels than others, due to the amount of noise exposure (in terms of both exposure duration and insulation from noise) and the types of activities typically involved. For residential uses, the guidelines indicate that a noise environment of DNL 60 dBA or less is generally considered “acceptable,” while a noise environment between DNL 60 and 77 dBA could be considered “conditionally acceptable.” In this context, the “Acceptable” category allows for development to occur without requiring an evaluation of the noise environment unless the proposed use could generate noise impacts on adjacent uses. If the noise environment is found to be “Conditionally Acceptable,” a specified land use may be permitted only after detailed analysis of the noise environment and project characteristics are conducted to determine whether noise insulation or protection features are required. For noise environments above DNL 75 dBA, the General Plan requires that development of residential uses not be undertaken unless adequate noise mitigation options have been analyzed and appropriate mitigations incorporated into the project to reduce the exposure of people to unacceptable noise levels. To provide the basis for evaluating compatibility of the site for residential uses as well as potential impacts of the project on the nearest noise-sensitive uses, ESA undertook short-term noise measurements on the project site. One 15-minute measurement was taken at a location approximately 100 feet from the intersection of Martin Luther King Jr. Way and Berkeley Way during the p.m. peak hour. It was observed that traffic was the predominant source of noise at the monitoring location. Other sources of noise included noise from the existing commercial activity at and in the vicinity of the site and noise from the parking lot at the site. The monitored peak hour Leq at the site was 71 dBA. In noise environments where traffic is the predominant source of noise, the DNL is approximately equal to the monitored peak hour Leq. Therefore, it can be approximated that the DNL at the site is about 71 dBA. This is consistent with the noise contours in the General Plan, which show that noise levels in the project area are between 70 and 75 dBA.

The monitored noise level falls within the conditionally acceptable category of the General Plan Land use Compatibility Guidelines for residential uses. As the project would place residences in an environment where the ambient noise level is less than that allowed under the City’s General Plan Land Use Compatibility Guidelines, the project would not introduce sensitive receptors into an area where the noise levels exceed local general plan standards.

Increases in the Noise Environment at Nearby Sensitive Receptor Locations. The City of Berkeley’s Noise Ordinance (Chapter 13.40 of the Municipal Code) establishes noise regulations in the City of Berkeley.

Construction Phase. The noise ordinance regulates the allowable hours for construction and demolition work and sets forth guidelines for maximum allowable construction-related noise levels at residential properties located in single-family, multi-family, and commercial and industrial areas. Specifically, the noise ordinance prohibits the operation of any tools or equipment used in construction or demolition work between 7:00 p.m. and 7:00 a.m. on weekdays, or 8:00 p.m. and 9:00 a.m. on weekends or holidays, such that the related noise creates a noise disturbance across a residential or commercial real property line, unless a variance is secured from the Noise Control Officer. Also, where technically and economically feasible, the noise ordinance requires that construction activities be conducted in such a manner that the maximum noise levels at affected
properties will not exceed the maximum allowable noise levels set forth in the ordinance. The applicable standards for this project are 60 dBA on weekdays and 50 dBA on weekends and legal holidays at residential properties within the R-2 Multi-Family Residential District north and northeast of the project site. The Berkeley Noise Ordinance also provides a different set of noise standards for short-term construction activities of less than 10 days, which would not be applicable to this project.

The Land Use Division has regularly imposed more restrictive limitations on hours for construction projects next to existing residential properties or other sensitive receptors, in order to reduce impacts on such uses. With this standard condition, construction is typically restricted to the hours from 8 a.m. to 6 p.m. Monday through Friday, and 9 a.m. to 12 p.m. on Saturdays. The applicant has formally requested that these more restrictive hours not be required as a condition of approval for this project, in order to reduce the construction period by up to five months and to reduce the project’s construction cost. For the purposes of this CEQA analysis, it is assumed that the project would only be subject to the limitations in the City’s Noise Ordinance. Further reducing the permitted hours of construction would not significantly reduce the project’s noise impacts, but would serve to extend the construction period by several months and potentially generate an incremental increase in other temporary construction-related environmental impacts, such as construction traffic and air pollution.

The project’s construction phase would involve demolition of the existing single-story retail center and the construction of a new mixed-use project. Various types of equipment would be used for demolition and construction purposes. Some of this equipment would generate relatively steady-state noise levels, such as the noise from diesel engines, and other equipment would generate impulse or impact noise. For instance, demolition may involve use of impact equipment, such as a hoe-ram.

Construction noise levels at and near locations on the project site would fluctuate depending on the particular type, number, and duration of use of various types of construction equipment. The effect of construction noise would depend upon how much noise would be generated by construction, the distance between construction activities and the nearest noise-sensitive uses, and the existing noise levels at those uses.

Table 6 shows typical noise levels generated by construction of commercial buildings. As shown in Table 6, the noisiest phases of construction would generate approximately 89 Leq at 50 feet. Pile driving, one of the loudest types of construction noise, would not be required as part of this construction project. The receptors nearest to the proposed construction activity would be the residences located immediately west and to the north and northeast of the site across Berkeley Way. The main noise sources associated with excavation are the operation of excavators removing material and trucks hauling excavated materials away. The main noise sources associated with exterior finishing would be operation of concrete mixers and pumps for application of stucco material to the building exterior.
Table 6: Typical Commercial Construction Noise Levels

<table>
<thead>
<tr>
<th>Phase</th>
<th>Noise Level (Leq)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Clearing</td>
<td>84</td>
</tr>
<tr>
<td>Excavation</td>
<td>89</td>
</tr>
<tr>
<td>Foundations</td>
<td>78</td>
</tr>
<tr>
<td>Erection</td>
<td>85</td>
</tr>
<tr>
<td>Exterior Finishing</td>
<td>89</td>
</tr>
</tbody>
</table>

\(^a\) Estimates correspond to a distance of 50 feet from the noisiest piece of equipment associated with a given phase and 200 feet from the other equipment associated with that phase.

Building construction noise during the noisiest phases of construction would be 89 L_{eq} at 50 feet and would be even higher at the home located immediately west of the project site. These predicted noise levels would exceed the applicable standards of the Noise Ordinance discussed previously. Consequently, project-related construction activities would have the potential to exceed the construction noise standards of the Noise Ordinance.

During very limited periods, construction noise would be generated into the evening and early morning hours to accommodate special round-the-clock construction activities such as pouring the concrete for the basement and podium levels. During these limited periods, construction noise would be more noticeable (since background noise is lower) given the more sensitive nature of the nighttime period. Therefore, these limited, temporary impacts would be significant.

To reduce noise impacts of project construction on adjacent sensitive receptors, the construction contractor will be required to implement the following measures throughout the duration of construction activity:

Mitigation Measure XI.1: Prior to the issuance of building permits, the applicant shall develop a site-specific noise reduction program prepared by a qualified acoustical consultant to reduce construction noise impacts to the maximum extent feasible, subject to review and approval of the Zoning Officer. The noise reduction program should include, but shall not be limited to, the following measures:

- **Noise barrier at the site boundary adjacent to the abutting residential property,** if the acoustical analysis proves such a barrier to be substantially effective in reducing noise impact at the adjacent residential property.

- **Equipment and trucks used for project construction shall utilize the best available noise control techniques** (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures, and acoustically attenuating shields or shrouds, wherever feasible).

- **Impact tools** (e.g., jack hammers, pavement breakers, and rock drills) used for project construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed-air exhaust from pneumatically powered tools. However, where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed-air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used where feasible, which could achieve a reduction of 5 dBA. Quieter procedures shall be used, such as drills rather than impact equipment, whenever feasible.

- **Stationary noise sources** shall be located as far from sensitive receptors as possible, and they shall be muffled and enclosed within temporary sheds, or insulation barriers or other measures shall be incorporated to the extent feasible.
• Signs shall be posted at the construction site that include permitted construction days and hours, a day and evening contact number for the job site, and a day and evening contact number for the on-site complaint and enforcement manager, and the City’s Noise Enforcement Officer, in the event of problems.

• An on-site complaint and enforcement manager shall be available to respond to and track complaints. The manager will be responsible for responding to any complaints regarding construction noise and for coordinating with the adjacent land uses. The manager will determine the cause of any complaints and coordinate with the construction team to implement effective measures (considered technically and economically feasible) warranted to correct the problem. The telephone number of the coordinator shall be posted at the construction site and provided to neighbors in a notification letter. The manager shall notify the City’s Noise Enforcement Officer of all complaints within 24 hours. The manager will be trained to use a sound level meter and should be available during all construction hours to respond to complaints; and

• Prior to the issuance of a building permit, a pre-construction meeting shall be held with the Noise Enforcement Officer and the general contractor/on-site project manager to confirm that noise mitigation and practices are completed (including construction hours, neighborhood notification, posted signs, etc.).

Implementation of Mitigation Measure XI.1a will reduce construction noise impacts to the maximum extent feasible, as required by the City Noise Ordinance. Therefore, construction noise impacts due to construction would be considered less-than-significant.

Operational Impacts. The proposed project could generate noise from motor vehicle trips as well as from stationary sources (i.e., HVAC equipment, etc.) that could adversely affect nearby noise-sensitive land uses. The sensitive receptors nearest to the project site are residences located to the west, north and northeast of the project site across Berkeley Way. These residences would be most affected by roadway noise along Martin Luther King Jr. Way, Hearst Avenue, Berkeley Way, and University Avenue.

It is projected that upon build-out, the proposed project would generate approximately 1,304 net new vehicular trips per day. The effect of these additional trips would be another 93 a.m. peak hour trips and another 161 trips during the afternoon peak hour. These trips would be distributed on the local road network and would increase noise levels along the affected roads. Noise modeling using Federal Highway Administration’s Noise Prediction Model was conducted for the following intersections analyzed in the traffic study:

- MLK Way @ Hearst Avenue
- MLK Way @ Berkeley Way
- MLK Way @ University Avenue
In general, the increase in traffic is too small to produce a perceptible change in the associated noise at most intersections. The segment of Grant Street south of University Avenue would experience the greatest percent increase in project and cumulative traffic over existing conditions, FHWA modeling shows that noise level could increase by up to 1.4 dBA during the p.m. peak hour under cumulative plus project conditions. The increase would be 0.9 dBA under existing plus project conditions. A change in noise levels of less than three dBA is not discernible to the general population; an increase in average noise levels of three dBA is considered barely perceptible, while an increase of five dBA is considered readily perceptible to most people (Caltrans, 1998). Therefore the impact of the project traffic on roadside noise levels would be less than significant.

In addition, sound could reflect off hard surfaces such as sound walls and tall building frontages back to the street, thereby increasing the roadside noise level. The proposed project would introduce a new structure that would be five stories high, which could lead to a minimal increase in roadside noise from reflection. However, given that the direct traffic noise increase due to the project would be below perceptible thresholds (3 dBA), any increase in roadside noise from sound reflected off the frontages of project structures would most certainly not be perceptible. Also, at this point, there is no validated methodology for quantifying reflected noise and hence it would be too speculative to quantifiably address noise from reflection.

Pedestrian warning noise signals could be installed at the driveway entrances adjacent to the sidewalks, if required by the building code or deemed necessary by the applicant to address safety concerns. At this time, such warning signals are not anticipated at the Berkeley Way driveway. However, should such signals be deemed necessary, the noise impacts would be of an intermittent nature and would not exceed the standards of the Noise Ordinance. Heating, ventilation, and air conditioning (HVAC) and other mechanical equipment would also be operated at the project site. Provided that the equipment is designed and used in a manner that complies with those Noise Ordinance, as proposed, the related noise impact to on-site residents and adjacent land uses would be less-than-significant. Therefore, noise from HVAC and other mechanical equipment for the project would not be expected to expose persons to or generate noise levels in excess of standards established in the local general plan or noise ordinance, significantly affecting the noise environment at nearby land uses.

b) The existing noise environment of the site is discussed in IX.a, above. The project would not introduce any new sources of excessive groundborne noise or vibration other than the construction noise impacts discussed above. Construction activities are not expected to generate excessive groundborne vibration. Also, there are no existing sources of groundborne noise or groundborne vibration at or around the site that the future occupants of the project would be exposed to. The BART corridor is located about one block to the north of the site; however, groundborne noise and vibration from the activity of BART trains is not perceivable at the project site.
c) As discussed under XI.a, the overall change in roadway noise resulting from the proposed project would not be perceptible. Therefore, the proposed project would not result in a permanent perceptible increase in ambient noise levels above those existing without the project.

d) Construction equipment could result in the temporary increase of noise levels in the project vicinity, as discussed under XI.a. Peak construction noise levels can reach 85 to 89 dBA at a distance of 50 feet from equipment. Construction noise levels are regulated by the City’s Noise Ordinance. Construction noise levels could be as high as 89 dBA at a distance of 50 feet, which is within the range of several adjacent sensitive receptors. This would be a significant impact as it would exceed the standards of the Berkeley Noise Ordinance.

Mitigation Measure XI.1.a would reduce this impact. There may be short-term noise impacts related to construction even with implementation of the identified mitigation measures, but they would be of limited duration and with the implementation of the identified mitigation measures such temporary noise impacts are considered to be less than significant.

e) The project site is not located within two miles of a public airport. The nearest public airport is the Metropolitan Oakland International Airport, which is located approximately 10 miles south of the project site.

f) The project site is not located within two miles of a private airstrip.

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

XII. POPULATION AND HOUSING -- Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

c) Displace substantial numbers of people necessitating the construction of replacement housing elsewhere?
Discussion

a) Between 1990 and 2000, the number of persons living in the nine San Francisco Bay Area counties increased from approximately 6.0 million persons to 6.8 million persons, an increase of approximately 13 percent. The Association of Bay Area Governments (ABAG) estimates that by the year 2010, the population in the Bay Area will have increased to approximately 7.5 million persons and by 2020, to an estimated 8.0 million persons.

Between 1990 and 2000, the population in Alameda County increased approximately 13 percent to nearly 1.5 million, while the population of the City of Berkeley increased by less than one percent to 102,743. By the year 2020, Alameda County will have an estimated 1.7 million residents, while the City of Berkeley’s population will increase to approximately 110,000.

According to the U.S. Census, between 1950 and 1960, Berkeley’s population decreased from 113,805 to 111,264. In 1970, the population increased to 116,716, its highest level; however, for the next 20 years the population decreased, until 2000, when an incremental increase of 19 people was registered by the Census between 1990 and 2000. Estimated population increases in the San Francisco Bay Area, Alameda County and the City of Berkeley from 1990 to 2020 are provided in Table 7 below.

The average household size in the City of Berkeley in 2000 was 2.16 persons per household, and in 1990 was 2.36 persons per household. The project site is located in U.S. Census tract 4223. In 2000, the population in this census tract was estimated at 3,238 (about 3.2 percent of Berkeley’s total 2000 population), and average household size was estimated at 2.02 persons per household. Using this average, the proposed 156 unit project could result in an estimated 315 additional residents living in the area. If the estimated citywide average of 2.16 persons per household is used, the proposed project would generate approximately 337 additional residents.

Using a range of between 315 and 337 additional residents, the proposed project would result in an estimated 9.7 percent to 10.4 percent increase over 2000 Census figures in Census tract 4223. Citywide, however, the new residents would account for an estimated 0.3 percent increase in Berkeley’s estimated 2000 population. This would not be considered a substantial increase in growth, and is consistent with the growth projections for the University Avenue corridor near downtown Berkeley. The project is consistent with the City’s goal of increasing the supply of housing in the City. In addition, the proposed project would be constructed in an urbanized area near Downtown Berkeley, and would not, by itself, induce additional growth in the area nor within the City of Berkeley.

8 The census tract extends from University Avenue to Cedar Way (south and north), and from Sacramento Street to Martin Luther King, Jr. Way (west and east).
Table 7: Estimated Population Increases, 1990–2020

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nine-County Bay Area</td>
<td>6,020,147</td>
<td>6,783,760</td>
<td>12.7%</td>
<td>7,513,800</td>
<td>10.8%</td>
<td>8,014,100</td>
<td>6.7%</td>
</tr>
<tr>
<td>Alameda County</td>
<td>1,276,702</td>
<td>1,443,741</td>
<td>13.1%</td>
<td>1,588,900</td>
<td>10.1%</td>
<td>1,669,400</td>
<td>7.1%</td>
</tr>
<tr>
<td>City of Berkeley</td>
<td>102,724</td>
<td>102,743</td>
<td>Negligible</td>
<td>107,300</td>
<td>4.4%</td>
<td>109,800</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

SOURCE: Census 2000; Projections 2002 (ABAG, 2000); ESA

b) The project site is currently occupied by an existing commercial building. There are no existing residences at the proposed project site. No residents or residential housing units would be displaced by the proposed project.

c) See response to XII.b., above. No persons currently reside at the site, and therefore the project would not result in displacement of substantial numbers of persons resulting in a need for replacement housing elsewhere.

Issues (and Supporting Information Sources):

XIII. PUBLIC SERVICES --

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:

- Fire protection?
 - Less Than Significant Mitigation Impact
 - Less Than Significant Impact
 - No Impact

- Police protection?
 - Less Than Significant Mitigation Impact
 - Less Than Significant Impact
 - No Impact

- Schools?
 - Less Than Significant Mitigation Impact
 - Less Than Significant Impact
 - No Impact

- Parks?
 - Less Than Significant Mitigation Impact
 - Less Than Significant Impact
 - No Impact

- Other public facilities?
 - Less Than Significant Mitigation Impact
 - Less Than Significant Impact
 - No Impact
Discussion

a) **Fire Protection:** Fire protection and emergency medical services for the project site are provided by the City of Berkeley Fire Department, which operates seven fire stations including seven engine companies, two truck companies, and two ambulances. Station No. 2, located at 2025 Berkeley Way, and Station No. 5, located at 2680 Shattuck Avenue, would provide primary and secondary service, respectively, to the project site. Each of these stations is equipped with one engine, one aerial ladder fire truck, and one ambulance. Each engine is staffed by three firefighters, each fire truck is staffed by three firefighters, and each ambulance is staffed with two paramedics.

The Berkeley Fire Department also administers the Uniform Fire Code and applicable sections of the California Health and Safety Code, California Administrative Codes, Title 19, Public Safety and Title 24, Building Standards. The Department actively participates in the City of Berkeley’s development process by commenting on building design and materials.

The Department responds to an average of 11,000 calls per year. Calls for emergency medical services comprise approximately 60 percent to 70 percent of all calls for service. Because the Department has fewer ambulances than fire engines, the standard response time for emergency medical services is nine minutes compared with four minutes standard response time for non-emergency medical service calls.

While the Fire Department anticipates an increase in calls for fire and emergency medical services as a result of the proposed project, the increase would represent an incremental increase to the already large annual volume of calls the Department receives (Orth, 2003). However, the Department has indicated an ability to provide adequate fire protection and emergency medical services to the proposed project site, without the need for new or physically altered facilities or significant staff increases (Orth, 2003). As part of standard development practices in the City of Berkeley, the Department would review project plans at time of issuance of permits to ensure compliance with all applicable Uniform Building Codes (UBC) and Uniform Fire Codes (UFC) to assure installation of adequate fire sprinklers, fire wall protection, fire hydrants, smoke detectors, and other similar fire prevention measures.

Police Protection: The Berkeley Police Department (BPD), headquartered at 2100 Martin Luther Jr. Way, would provide police protection services to the project site. Currently BPD provides a staffing ratio of approximately 1.9 officers per 1,000 residents, a total personnel staffing ratio of 2.9 personnel per 1,000 residents, and a total of 313.2 full-time sworn officers and staff. The project site is located in Beat 3. One patrol officer is assigned to this beat at all times.

The Department responds to an average of 10,500 calls per year, and maintains a standard response time for Priority 1 calls (life threatening situations) of five minutes from time of dispatch. Standard response times for Priority 2 calls (urgent, non-life threatening) are within 20 minutes, and response times for Priority 3 calls (non-urgent and/or property crimes) are within 60 minutes.

In 2002, within a 1,000-foot radius of the project site, approximately 5,162 calls for service were logged. The predominant crime-related calls were related to larceny, vehicle theft and burglary,
aggravated assault and robbery. Although the project would not result in a need to expand the Department’s existing facilities, or build new facilities, the Police Department (Odom, 2003) makes the following suggestions:

The project applicant should consult with BPD’s Community Services Bureau on the design and implementation of a security plan for the project that considers the following elements:

- The project applicant should arrange for all landlords or property managers to participate, at no cost, in the City of Berkeley’s Landlord Training Program (keeping illegal activity out of rental property) before opening the project to renters;
- Design entryways, the lobby, and the parking areas with lighting that eliminates areas of concealment;
- Design landscaping so that it would not conceal potential criminal activities near windows or doors;
- Provide outdoor night lighting to aid crime prevention and enforcement efforts;
- Enclose all garages;
- Provide solid core doors with deadbolt locks to all units;
- Prohibit the use of louvered windows.

BPD (Odom, 2003) also suggests the project design include the following principles:

- Creating defensible space that clearly marks boundaries of public and private space;
- Provide the opportunity for tenants to see by maximizing public views;
- Use objects, landscaping, and other design features to control access to the site;
- Use access and activity to increase site usage and provide safety in numbers.

The applicant has extensive experience with the construction and management of similar mixed-use buildings in downtown Berkeley. The project will incorporate many of the principles suggested above, based on the applicant’s experience with other projects in the City.

Schools: The Berkeley Unified School District (BUSD) operates and manages public schools in the City of Berkeley. The District currently serves approximately 9,495 students, who primarily attend 12 elementary schools (grades K-5), three middle schools (grades 6-8), and one high school (grades 9-12). The project site falls within the District’s Central Zone, which encompasses five elementary schools, two middle schools, and one high school. The elementary and middle schools nearest the project site are Washington Elementary School located at 2300 Martin Luther King, Jr. Way, and Willard Middle School located at 2425 Stuart Street. Berkeley High School is located approximately one-half mile south of the
project site at 2246 Milvia Street. The project is estimated to generate between 315 and 337 additional residents. Based on Census 2000 data, the number of students in Berkeley between the ages of 5 and 17 is 10,404, or approximately 10 percent of Berkeley’s population. The Berkeley Unified School District has not formally adopted a ratio to estimate the number of students that would be generated by housing units within the City. However, BUSD has indicated that a ratio of 0.5 students per housing unit would be an appropriate generation rate for planning purposes.\^9 It should be noted that this rate would be conservative for the proposed project, given its location near downtown and the fact that all of the units would have two or fewer bedrooms, and therefore would be less likely to attract households with children than larger units in a suburban location. Using the conservative rate of 0.5 students per housing unit, the project could generate 78 students. Currently, there is capacity at each of these schools to accommodate the additional students.\(^{10}\)

Senate Bill 50, enacted in February, 1999, prohibits local agencies, such as the City of Berkeley, from denying land use approvals on the basis that school facilities are inadequate. This legislation also establishes the legally mandated mitigation measure under CEQA in the form of impact mitigation fees for use at impacted schools. Berkeley Unified School District may therefore be entitled to impact fees from the project applicant. Because of Senate Bill 50, the proposed project would have a less than significant impact on public schools in the Berkeley Unified School District.

Parks: The City of Berkeley’s Department of Parks, Recreation, and Waterfront manages approximately 235 acres of parks and marinas. Two parks are located within a quarter mile of the project site: Martin Luther King Civic Center Park (2.77 acres) to the south and the five-block long stretch of Ohlone Park (9.8 acres) to the north. An additional 14 parks are within a one-mile radius of the project site providing a total of approximately 27 acres of park lands. The project site is located on Martin Luther King, Jr. Way between Berkeley Way and University Avenue, where Urban Design Policy UA-11 of the University Avenue Strategic Plan applies: “Encourage the creation of a new public open space within the University Avenue study area and maintain those open spaces that already exist.”

The proposed project would provide about 12,535 sq. ft. of useable open space that would include a 5,152 sq. ft. central courtyard and approximately 7,383 sq. ft. roof deck area on Building A and B, plus a small amount of landscaped ground level open space. In addition to the University of California campus, there are several East Bay Regional Parks nearby, including the 2,077-acre Tilden Park and the 205-acre Claremont Canyon Regional Preserve. Because the project is located in an urbanized area, near public transit (Downtown Berkeley BART station is located within one-half mile of the project site) and the Downtown area, the project would not be expected to provide recreational facilities. Residents would likely anticipate leaving the project site for outdoor park and/or recreational experiences. Adequate park and recreation facilities are located nearby. The project would not result in the need for construction of new park facilities.

\(^9\) 0.5 students per housing unit is the same rate used by the West Contra Costa Unified School District for the Kensington area, as indicated in the UC Berkeley 2020 LRDP Draft EIR.

\(^{10}\) David Brower Center/Oxford Plaza Initial Study Checklist, City of Berkeley, June 2005.
Issues (and Supporting Information Sources):

XIV. RECREATION --

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a) See response to XIII.a, Parks, above. The project site is located on Martin Luther King, Jr. Way between Berkeley Way and University Avenue. Two parks are located within a quarter mile of the project site: Martin Luther King Civic Center Park (2.77 acres) to the south and the five-block long stretch of Ohlone Park (9.8 acres) to the north. An additional 14 parks are within a one-mile radius of the project site providing approximately 27 acres of parks. There are also several East Bay Regional Parks nearby, in addition to the University of California campus, including the 2,077-acre Tilden Park and the 205-acre Claremont Canyon Regional Preserve. The project would have the potential to generate approximately 315 to 337 additional residents. Residents would likely anticipate leaving the project site for outdoor park and/or recreational experiences. Because of the number and variety of recreational opportunities near the site, the project would not by itself result in the substantial deterioration of a public recreation facility.

b) Although the project would provide open space, it would not provide recreation facilities. Because of the variety of nearby recreation facilities, the project would not, by itself, require construction or expansion of recreational facilities.

XV. TRANSPORTATION / TRAFFIC -- Would the project:

a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?
☐ ☐ ☒ ☐

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?
☐ ☐ ☐ ☒

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
☐ ☒ ☐ ☐

e) Result in inadequate emergency access?
☐ ☒ ☐ ☐

f) Result in inadequate parking capacity?
☐ ☐ ☒ ☐

g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?
☐ ☐ ☒ ☐

Discussion

A traffic impact analysis has been prepared for the proposed project, and is summarized here.

a) Traffic level of service (LOS) conditions were assessed at six study intersections for weekday morning and evening peak hours under existing, existing plus project, cumulative, and cumulative plus project conditions. The LOS concept is a qualitative characterization of traffic conditions associated with varying levels of traffic, based on delay and congestion. Descriptions of conditions range from LOS A (free-flow condition) to LOS F (jammed condition). LOS C or better are generally considered to be satisfactory service levels, while LOS D is marginally acceptable, LOS E is undesirable, and LOS F conditions are unacceptable.

Traffic counts were conducted on Thursday, October 10, 2002, when the University of California, Berkeley and other local schools were in session at the following six study intersections (signalized unless otherwise noted):

1. Martin Luther King Jr. Way / Hearst Avenue
2. Martin Luther King Jr. Way / Berkeley Way (unsignalized)
3. Martin Luther King Jr. Way / University Avenue
4. University Avenue / Milvia Street
5. Martin Luther King Jr. Way / Allston Way
6. University Avenue / Grant Street (unsignalized)

Each of the signalized study intersections currently operate at LOS C or better. LOS C is indicative of good traffic conditions with low or moderate vehicular delay. The stop-controlled side streets at

the unsignalized study intersections of the Martin Luther King, Jr. Way / Berkeley Way and University / Grant Street experience delays, with the former operating at LOS E/F during both peak hours, and the latter operating at LOS F during the evening peak hour (and LOS D during the morning peak hour).

Cumulative traffic conditions in 2020 (without the project) were forecast on the basis of information developed for the City of Berkeley’s General Plan traffic analysis. The signalized study intersections are projected to operate at LOS D or better in 2020. The MLK Jr. Way / University Avenue AM and PM peak hours drop from LOS C to LOS D in cumulative conditions. The side streets at the unsignalized study intersections would operate at LOS F during both peak hours. The delay experienced by approaching vehicles will increase, even at intersections where the overall level of service remains the same.

The number of vehicle trips that would be generated by the proposed project was estimated using data in the Institute of Transportation Engineer’s (ITE), *Trip Generation Manual*, Sixth Edition, adjusted to reflect local conditions. A conservative 25 percent modal split adjustment was applied to trips forecast to be generated by the residential portion of the proposed project. This adjustment is based on 2000 Census data for Tract 4223, including the project site, which indicates that 47 percent of area residents commuted by automobile, while 53 percent used transit, walked or biked.

The trip generation rate for the proposed Trader Joe’s Grocery store utilizes ITE’s rate for Supermarket (ITE Land Use #850). This rate was found to be comparable with the actual trip generation rate of the Trader Joe’s store in San Francisco at Bay Street & Mission Street, which is assumed to have similar trip generation characteristics as the proposed Berkeley store. The 875 sq.ft. retail space proposed at the northeast corner of the building was categorized as Specialty Retail Center for the purposes of trip generation.

The trip generation analysis indicates that the existing commercial floor area of the site generates approximately 903 average daily trips\(^{12}\) (ADT) when fully leased out\(^{13}\), and 55 of those trips would occur during the peak hour in the afternoon. The proposed project is expected to generate 2,207 ADT, with 216 trips during the PM peak hour. The net increase in trips generated by uses at the site would be 1,304 ADT, with 93 new trips during the AM peak hour and 161 trips in the PM peak hour. The net trip generation is summarized in Table 8, below.

\(^{12}\) One trip is from an origin to a destination. Thus, a typical commute from home to work and back home would count as two trips.

\(^{13}\) The existing commercial building is only 50% occupied, so trips currently generated by the site are lower that if the building were fully leased. However, existing traffic counts were conducted when the project application was submitted to the City and the commercial storefronts were fully occupied, so the traffic analysis calculates existing traffic as if the entire 20,375 square foot building were occupied. The building could be leased out again as is, and likely would be if the project were denied.
Table 8: Net Trip Generation

<table>
<thead>
<tr>
<th>Uses</th>
<th>Daily</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IN</td>
<td>OUT</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>2,207</td>
<td>39</td>
<td>65</td>
</tr>
<tr>
<td>Existing Uses (to be demolished)</td>
<td>(903)</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td>Net Project Trips</td>
<td>1,304</td>
<td>34</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 9 below summarizes the results of the traffic analysis for intersection level of service under the various analysis scenarios. Insert Table 1 from TIA. As shown in Table 9, all of the study intersections would maintain the same LOS rating with the addition of project-related traffic in the Existing plus Project condition. All of the signalized intersections operate at acceptable levels of service (LOS D or better) in all scenarios with and without the addition of project related traffic.

In the existing condition during the AM peak hour, the worst minor approach at the University Avenue / Grant Street unsignalized intersection operates at LOS D and F during the AM and PM peak hours, respectively. Although vehicle delay at the worst minor approach to this intersection would operate at LOS F with and without the addition of project-related traffic, the project would add less than ten vehicles to the critical approach.

Table 9: Intersection Level of Service Analysis

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>Peak Hour</th>
<th>Existing</th>
<th>Existing plus Project</th>
<th>Cumulative</th>
<th>Cumulative plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Level of Service (Average Vehicle Delay)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Luther King /</td>
<td>Signalized</td>
<td>AM</td>
<td>C (29.9)</td>
<td>C (29.7)</td>
<td>D (46.0)</td>
<td>D (46.1)</td>
</tr>
<tr>
<td>Hearst</td>
<td></td>
<td>PM</td>
<td>B (18.0)</td>
<td>B (18.1)</td>
<td>C (26.5)</td>
<td>C (29.3)</td>
</tr>
<tr>
<td>Martin Luther King /</td>
<td>Unsignalized</td>
<td>AM</td>
<td>E (51.7)</td>
<td>E (51.7)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
</tr>
<tr>
<td>Berkeley¹</td>
<td></td>
<td>PM</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
</tr>
<tr>
<td>Martin Luther King /</td>
<td>Signalized</td>
<td>AM</td>
<td>C (21.0)</td>
<td>C (21.6)</td>
<td>D (46.5)</td>
<td>D (48.9)</td>
</tr>
<tr>
<td>University</td>
<td></td>
<td>PM</td>
<td>C (24.5)</td>
<td>C (26.3)</td>
<td>D (35.5)</td>
<td>D (41.1)</td>
</tr>
<tr>
<td>University / Milvia</td>
<td>Signalized</td>
<td>AM</td>
<td>B (16.0)</td>
<td>B (16.1)</td>
<td>B (19.2)</td>
<td>B (18.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>B (17.6)</td>
<td>B (17.9)</td>
<td>C (20.3)</td>
<td>B (19.8)</td>
</tr>
<tr>
<td>Martin Luther King /</td>
<td>Signalized</td>
<td>AM</td>
<td>B (16.1)</td>
<td>B (16.4)</td>
<td>B (17.0)</td>
<td>B (17.1)</td>
</tr>
<tr>
<td>Allston</td>
<td></td>
<td>PM</td>
<td>B (10.1)</td>
<td>B (10.1)</td>
<td>B (11.6)</td>
<td>B (11.7)</td>
</tr>
<tr>
<td>University / Grant²</td>
<td>Unsignalized (N</td>
<td>AM</td>
<td>D (28.0)</td>
<td>D (29.4)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
</tr>
<tr>
<td></td>
<td>orthbound)</td>
<td>PM</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
</tr>
<tr>
<td></td>
<td>Unsignalized (S</td>
<td>AM</td>
<td>C (19.3)</td>
<td>C (19.3)</td>
<td>F (68.7)</td>
<td>F (68.7)</td>
</tr>
<tr>
<td></td>
<td>outhbound)</td>
<td>PM</td>
<td>D (30.2)</td>
<td>D (30.2)</td>
<td>F (>80.0)</td>
<td>F (>80.0)</td>
</tr>
</tbody>
</table>

Table Footnotes: 1: Worst minor approach at the MLK Jr. Way / Berkeley Way intersection is the eastbound approach; 2: Worst minor approach at the University Avenue / Grant Street intersection is the northbound approach. However, this approach is not expected to receive traffic from the project. Thus, LOS and delay is shown for the southbound approach as well (as this is the approach that is most impacted by the project).
Potentially significant impacts would occur at the MLK Jr. Way / Berkeley Way and University Avenue / MLK Jr. Way intersections as a result of the project. The MLK Jr. Way / Berkeley Way intersection would operate at unacceptable conditions during the Existing plus Project and Cumulative plus Project conditions. Since the project would add over ten vehicles to the critical approach (eastbound approach) during the PM peak hour, and the Peak Hour Volume Warrant would be met, the project would create a significant impact at this intersection. The impact would be mitigated through the installation of a traffic signal. In addition, due to the significant increase in northbound left turns at the intersection, lane configurations and signal coordination with additional signalized intersections would be necessary to provide for appropriate operations on the surrounding streets. The traffic study identified the following improvements as necessary to mitigate the project’s impacts at the MLK Jr. Way / Berkeley Way intersection, exhibited in Figure 5, below:

- Signalize the MLK Jr. Way/Berkeley Way intersection
- Restripe MLK Jr. Way to provide a northbound left turn lane for the new traffic signal
- Remove on-street parking between University Avenue and Berkeley Way*
- Remove on-street parking on the east side of MLK Jr. Way between Berkeley Way and Hearst Avenue (parking currently prohibited 4-6 p.m.)*
- Move northbound “merge lane” north of Hearst Avenue
- Restripe the eastbound approach to the MLK Jr. Way/Berkeley Way intersection to identify two separate lanes.

After further review of the traffic analysis, the Office of Transportation has determined that most of the existing parking spaces can remain on the east side of MLK Jr. Way between Berkeley Way and University Avenue, except between the hours of 3 p.m. to 7 p.m., Monday – Saturday, when traffic volumes are highest. Staff has proposed that spaces south of Berkeley Way be limited to short term parking to accommodate the adjacent businesses that have no on-site parking. Staff also proposes to stripe several short-term parking spaces on Berkeley Way, east of MLK Jr.

Incorporation of the above measures (as modified by the Office of Transportation) would mitigate the project’s impacts to this intersection, which would then operate at LOS D or better in all scenarios.

Under the Cumulative plus Project scenario, conditions at the eastbound left turn lane of the University Avenue / MLK Jr. Way intersection would become unacceptable with the addition of project-related traffic, thus resulting in a potentially significant impact. In order to mitigate this impact, the phasing of the intersection signal must be changed from permissive to protected plus permissive. With the change, the overall delay at the intersection would increase slightly during the PM peak hour, but would remain at LOS D.
Figure 5. Existing and Proposed Street Improvements

- **HEARST AV**
 - On-street parking prohibited during PM peak hour
 - Removal of 6 parking spaces over length of block
 - Install New Traffic Signal

- **MARTIN LUTHER KING, JR. WAY**

- **BERKELEY WAY**
 - Removal of 3 parking spaces
 - (3-7 p.m. Mon.– Sat.)

- **UNIVERSITY AV**
 - Existing Traffic Signal

- **EXISTING**
- **PROPOSED**

Note: The diagram illustrates existing and proposed street improvements with specific changes and additions noted on the map.
The street improvements described above would mitigate all of the project’s significant traffic impacts and result in acceptable traffic operations. Therefore, the following mitigation measures are required to mitigate the project’s traffic impacts to a less-than-significant level:

Mitigation Measure XV.1: The following transportation improvements, subject to minor modifications and approval by the Office of Transportation, shall be implemented by the project applicant prior to occupancy of the project, consistent with the recommendations of the traffic impact analysis:

- The MLK Jr. Way / Berkeley Way intersection shall be signalized.
- The northbound approach to the Berkeley Way / MLK Jr. Way intersection shall be reconfigured to include a left turn lane.
- All on-street parking along the west side of MLK Jr. Way between Berkeley Way and University Avenue shall be removed. Parking on the east side of MLK Jr. Way between Hearst Avenue and University Avenue shall be prohibited between the hours of 3 p.m. and 7 p.m., Monday through Saturday.
- On-street parking on the east side of MLK Jr. Way between Berkeley Way and Hearst Avenue shall be removed.
- The existing northbound merge lane on MLK Jr. Way between Berkeley Way and Hearst Avenue shall be moved north of Hearst Avenue.
- The eastbound approach to the Berkeley Way / MLK Jr. Way intersection would be reconfigured to include two lanes (plus the left turn lane for the new traffic signal).
- The phasing of the eastbound approach to the University Avenue / MLK Jr. Way intersection shall be changed from permissive phasing to protected-plus-permissive.

Berkeley Way Traffic Increase. The project would add traffic to the block of Berkeley Way between Grant Street (where a traffic diverter currently exists) and MLK Jr. Way. The block of Berkeley Way between Grant Street and MLK Jr. Way has a very low traffic volume because of the existing traffic diverter at the intersection of Grant Street & Berkeley Way. Traffic volumes under 1,500 are generally considered reasonable for local streets. The existing traffic volume of Berkeley Way just west of the MLK Jr. Way intersection is approximately 1,380 ADT, while the existing volume near Grant Street is approximately 570 ADT, based on estimates provided from the Office of Transportation. The project traffic bound for the commercial parking lot or stopping by Building B’s residential lobby would arrive and depart the block of Berkeley Way between MLK Jr. Way and the traffic diverter at Grant Street. While most of the traffic generated by the commercial uses is expected to utilize MLK Jr. Way / Berkeley Way intersection to access the commercial garage, some vehicles would access the site via the Grant Street / University Avenue intersection, utilizing the residential block of Berkeley Way. In the existing plus project condition, traffic volume on Berkeley Way between MLK Jr. Way and the new commercial driveway would increase to approximately 2,060 ADT, while the volume of traffic near Grant Street would increase to approximately 735 ADT. While the project would result in a substantial increase in traffic at the project driveway near MLK Jr. Way, the increase in traffic

volume in the residential portion of the block would be small, and volumes would be well within the range considered acceptable for local residential streets.

The traffic analysis did not identify any significant impacts related to the increase in volume on this block of Berkeley Way, and therefore no mitigation is required to address the increase in traffic on Berkeley Way. However, residents of this block of Berkeley Way have requested that restrictions be implemented to minimize the increase in traffic on Berkeley Way. The traffic analysis included a separate memorandum (Traffic Study Appendix D) that evaluates the potential effects of possible traffic restrictions on Berkeley Way west of the proposed commercial driveway. The analysis evaluated the following alternatives:

- No traffic restrictions at the project driveway (the assumption used in the traffic study)
- Closure of Berkeley Way west of the project driveway
- Prohibition of left turns out of the Berkeley Way project driveway

The Berkeley Way alternatives analysis concludes that, if required by the City, restrictions to Berkeley Way could be implemented without significant impacts on intersection operations. Should the City ultimately decide to implement restrictions to traffic on Berkeley Way adjacent to the project site, such restrictions have been adequately evaluated, and no further environmental analysis of such restrictions would be required. However, the Fire Department has expressed concerns with any proposed restrictions that would result in a full or partial street closure of Berkeley Way, due to the proximity of the Fire Station #2, at 2029 Berkeley Way. The Fire Department would be consulted regarding any future restrictions to ensure that their operations are not significantly affected.

The projected traffic volume on Berkeley Way would be relatively low, and there would be no significant environmental impact. As such the Office of Transportation currently supports no restrictions. While not required to address a significant environmental impact, staff may include a condition of approval that requires traffic monitoring of the street occur after occupancy of the project to ensure that traffic volumes are acceptably low, as projected in the traffic study, and to establish whether traffic calming measures would be warranted to address traffic impacts generated by through-traffic. Because the increase in volume on Berkeley Way is not considered a significant impact, future monitoring and potential traffic calming measures, if proposed would not be considered mitigation measures under CEQA.

b) University Avenue, San Pablo Avenue and the Eastshore Freeway (I-80/I-580) are the nearest congestion management agency facilities to the project site. The project would not contribute a significant number of trips to these facilities such that it would individually or cumulatively exceed the established level of service standard for these facilities.

c) There would be no change to air traffic patterns associated with the project.

d) The traffic study prepared for the project includes bicycle and pedestrian counts at the six study intersections in order to accurately reflect actual operating conditions of the intersections. The

counts documented a relatively high level of pedestrian and bicycle traffic in the vicinity of the site. The traffic study prepared for the project documents bicycle and pedestrian accident data from collected during two four year periods between 1998 and 2004. Table 10, below, identifies the intersections and the number of reported accidents.

Table 10: Pedestrian and Bicycle Accidents in Project Vicinity, 1998 – 2004

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Collision Type</th>
<th>1998-2002</th>
<th>2000-2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Luther King / University</td>
<td>Vehicle-Bicycle</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vehicle-Pedestrian</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Rank = 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Luther King / Berkeley</td>
<td>Vehicle-Bicycle</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vehicle-Pedestrian</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Rank = 14 (tie)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the five-year period from 1998-2002, the University Avenue / MLK Jr. Way intersection had the second highest number of collisions involving bicycles or pedestrians among City Intersections; the Berkeley Way / MLK Jr. Way intersection ranked 14th (tie). For the five year period from 2000-2004, the number of collisions may have gone down, but is still substantial.

The proposed project would add to pedestrian and bicycle traffic in the vicinity, and the traffic study estimates that the project would generate approximately eight pedestrian and five bicycle trips during the PM peak hour. In addition, the project is expected to generate 11 transit trips during the PM peak hour. The project would not substantially increase any hazards due to a design feature, and no mitigation is required to address this issue. The installation of the street improvements discussed in XV (a,b) above is expected to improve pedestrian and bicycle safety in the immediate vicinity of the project because the existing configuration of MLK Jr. Way is confusing for drivers and presents hazards to pedestrians and bicyclists, which may be a contributing factor to the high number of pedestrian and bicycle accidents at the adjacent intersections. Installation of the traffic signal at MLK Jr. Way / Berkeley Way will allow pedestrians and bicyclists to cross the intersection in a safer manner.

Construction Phase. Demolition, excavation, and construction activities associated with development of the project would generate traffic composed of material and equipment deliveries, export of excavated soils, and demolition and construction debris, and trips generated by construction workers. Also, construction activities would affect vehicle access and parking in the immediate vicinity of the project site. A brief discussion of the project’s construction impacts is provided below.
The construction period is expected to last approximately two years. To accomplish construction staging, parking would be temporarily eliminated adjacent to the project site. In addition, the sidewalk along Berkeley Way would be entirely closed to pedestrians adjacent to the project site. Sidewalks along MLK Jr. Way and University Avenue would be temporarily covered and may be re-routed to the street adjacent to the curb.

During the excavation phase of the project, which is anticipated to last approximately 20 work days (four weeks), approximately 85 trucks would enter and exit the site each day. A total of 1,700 truck trips would occur during this period. The concrete pour phase of the project is anticipated to last approximately six months, and would require approximately 550 gravel and cement trucks to access the site on approximately sixteen specific days when concrete would be poured into frames for the basement and podium levels. Approximately twelve to 59 trucks would access and exit the site during each of these days. Excavation and concrete trucks would drive up University Avenue, turn north onto Grant Street, and turn east onto Berkeley Way prior to reaching the project site. Excavation trucks would generally enter the site from Berkeley Way and exit via University Avenue. Concrete trucks would generally exit via the site via Berkeley Way to MLK Jr. Way and University Avenue.

If not properly controlled, construction activities such as material deliveries, vehicle parking, and use of inadequate streets by large trucks and equipment could have significant impacts on the circulation of vehicles, bicycles and pedestrians in the vicinity by blocking streets and sidewalks without proper control or notice. Approval and implementation of a construction management plan to address procedures and timing for these activities will reduce these impacts to less-than-significant:

Mitigation Measure XV.2: Prior to building permit issuance, a construction management plan shall be submitted for approval by the Office of Transportation, Public Works Department, and Planning Department. This plan shall indicate locations of pedestrian walkways and bike lanes adjacent to the site, directional signage, material and equipment storage, trailers, and worker parking, and shall include a schedule of site operations that may block traffic, and provisions for traffic control. The plan shall also indicated the designated routes for construction-related traffic. The City Zoning Officer and/or Traffic Engineer may limit off-site parking of construction-related vehicles to protect the health, safety, or convenience of the surrounding neighborhood. All contractors shall be required to comply with the provisions of the construction management plan.

e) With the proposed project, vehicle access around the perimeter of the site on the existing surface streets would be preserved with temporary restrictions during the construction period. However, at all times adequate emergency access would be provided. While a traffic barrier on Berkeley Way is not proposed as part of the project, and such a barrier was not found to be warranted by the traffic analysis, a barrier may be installed west of the project driveway to minimize detriment of commercial traffic on the residential neighborhood west of the project site. The Fire Department has raised concerns regarding the installation of a traffic barrier on Berkeley Way. To address any potential emergency-access impacts of such a barrier, if proposed, Mitigation Measure XV.3 requires consultation with the Fire Department.
Mitigation Measure XV.3: The Office of Transportation shall consult with the Fire Department and Police Department regarding the design and emergency access requirements of any traffic barrier proposed for Berkeley Way, prior to its approval.

f) The project proposes to provide a total of 157 parking spaces, which equals the number required by the Zoning Ordinance: 128 spaces for residential uses and 29 spaces for the commercial tenants. The Zoning Ordinance requires one space per 1,000 sq. ft. of residential floor area and two spaces per 1,000 sq. ft. for commercial floor area. While the project would provide the total number of parking spaces required, the applicant has stated that the 48 parking spaces in the at-grade parking lot would be for the exclusive use of the commercial tenants. As a result, only the 109 parking spaces in the basement level would be for the residential tenants, so the project has a shortfall of 19 residential parking spaces, but a surplus of commercial spaces. A Use Permit is required to permit the reduction in the required number of spaces.

The surplus of on-site parking for the commercial tenants should address most of the demand generated by the commercial uses, except during their peak hours of operation. The development could physically provide the total number of spaces required for residential uses by the Zoning Ordinance, either through additional parking lifts in the basement level, or by allowing shared use of the ground floor parking lot by the residents of the building. However, the applicant is not proposing to do so. As such, it is the City’s policy not to grant Residential Preferred Parking (RPP) permits to future residents of the building.

The project could result in inadequate parking supply in the project area during periods of peak parking demand. However, lack of parking is not an environmental impact as interpreted by CEQA. Because the project provides the total number of parking spaces required by the Zoning Ordinance (while providing 19 fewer spaces than required for the residential uses than required by the Zoning Ordinance), and because the project is expected to meet most of the demand generated by the commercial uses (the commercial parking lot would exceed the number of parking spaces required by the Zoning Ordinance), except during the peak hours of operation, parking impacts are considered less-than-significant.

g) The project site is well-served by public transportation, including services provided by BART and AC Transit. The Downtown Berkeley BART station is located about three blocks to the southeast of the project site at the intersection of Shattuck and Center Avenues. AC Transit routes 15, 51, 51M, FS and 52L, operate on University Avenue, and route 15 operates on Martin Luther King, Jr. Way, and for a short section east of the site, on University Avenue. Bicycle facilities are located throughout the City. In the vicinity of the project site, striped Class II bike lanes (delineated with pavement markings striped on the street, with traffic) are provided along Oxford Street, Hearst Avenue, Milvia Street (between Allston Way and Dwight Way), and Center Street (between Milvia and Oxford Streets). Both Milvia Street and Channing Way have been designated as Bicycle Boulevards in the City’s General Plan, however, Milvia Street does not have Bicycle lanes in the vicinity of the project site. Allston Way is a Class III (signed as a bicycle route without pavement striping) bicycle facility west of Shattuck Avenue. The City of Berkeley requires that two dedicated bicycle parking spaces be provided for every 2,000 sq. ft. of commercial space. The proposed project would provide the seven required bicycle parking spaces near the main
commercial entrance on the sidewalks in consultation with City staff. Addition, bicycle parking spaces are anticipated to be provided with the ground floor and basement parking garages.

The project would not conflict with adopted policies, plans, or programs supporting alternative transportation.

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>XVII. UTILITIES AND SERVICE SYSTEMS -- Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
</tr>
</tbody>
</table>

Discussion

a,b,d,e) **Sanitary Sewer:** In Berkeley, sanitary sewage flows toward the San Francisco Bay through a network of pipes, beginning with building connections at the upper laterals, which are privately...
-owned and maintained, and continuing to the lower laterals and to the sewer mains, which are City-owned and maintained. All of the mains connect to the East Bay Municipal Utility District’s (EBMUD) regional interceptor line, which conveys the sewage south, parallel to the I-80 freeway, to the EBMUD treatment plant, which then discharges the treated effluent into the Bay from a submerged outfall pipe under the Bay Bridge. Within the City of Berkeley, there are approximately 400 miles of sanitary sewer mains, with an estimated 28,000 lateral connections. The sewer mains vary from 1 to 100 years old, and vary in size from 6 to 48 inches in diameter.

Stormwater infiltration16 and inflow17 has created significant overflow problems for the Berkeley sewer system. During intense storms, wet weather sewage flow can increase up to twenty times the amount of dry weather flow due to the infiltration and inflow of storm water. In order to reduce strain on the sewer system, 72 manholes were previously equipped with diversions to bypass sanitary sewage into the storm drain system, during periods of intense weather. In 1973, a National Pollutant Discharge Elimination System (NPDES) permit for discharge into the San Francisco Bay was issued by the San Francisco Bay Regional Water Quality Control Board (RWQCB) to EBMUD because the wet weather flow was beyond the capacity of the collection system and treatment plant. The RWQCB placed the highest priority on the elimination of the by-pass to the storm relief system and untreated overflow, under a cease-and-desist order mandated in 1986. In 1985, the East Bay Infiltration and Inflow Study was completed by the City and RWQCB as a regional effort to reduce excessive wet weather flows into the sanitary sewer system and eventually eliminate the overflow of untreated sewage onto private property, public streets and into the San Francisco Bay. This study produced a comprehensive 20-year abatement program with specific recommendations for each participating city.

The City of Berkeley’s Inflow/Infiltration correction program allows for a 20 percent increase in the base wastewater flow for each of the City’s 89 sub-basins due to changes in land use or population. The Inflow/Infiltration correction program, initiated in late 1987, proposes rehabilitation or replacement of 50 percent of the City’s existing system over 30 years.

Currently, the main EBMUD Wastewater Treatment Plant (WTP) has the capacity to treat 120 million gallons per day (mgd) during dry weather. The average dry weather flow is approximately 75 mgd. EBMUD initiated a program to increase the plant’s wet weather sustained treatment capacity to 320 mgd and a peak wet weather capacity of 415 mgd by use of an 11 million gallon storage basin. According to EBMUD, this program has been successfully implemented.

The proposed project would generate domestic wastewater, treated by the East Bay Municipal Utility District’s (EBMUD) treatment facilities. EBMUD is required to meet applicable Regional Water Quality Control Board treatment requirements. In addition, the proposed project would use an incremental portion of EBMUD’s wet weather treatment capacity. If wastewater generation is calculated at a 100 gallons per day per person (with an estimated 315 to 337 residents living at the site after completion of the project), the additional approximately 33,700 gallons per day would

16 Infiltration refers to storm or groundwater which enters defective pipe joints, or damaged/deteriorated pipes due to offset joints, misalignment, tree roots, cracks and joint mortar deterioration.

17 Inflow refers to storm water that enters the sanitary sewers directly through downsputs, yard drains connected to building laterals, and/or storm drains.
require less than 0.01 percent of EBMUD’s sustained wet weather treatment capacity. The City of Berkeley Public Works Department recently upgraded the sewer line in Martin Luther King Jr. Way adjacent to the site from 6” to 8” in diameter. The new line is of sufficient capacity to accommodate the wastewater generated by the project. As part of standard development practices within the City of Berkeley, the project applicant would be required to pay fees to cover its fair share of the cost for sewer line upgrades, as determined in consultation with the City of Berkeley Public Works Department, prior to issuance of a certificate of occupancy. Thus, the project’s impact on existing sewer systems would be less than significant.

Water: Water is provided to the City of Berkeley by EBMUD. EBMUD currently obtains its water from the Mokelumne River watershed. The water passes through the Pardee and Camanche reservoirs, into the Mokelumne aqueduct delivery system and then into the Briones, Chabot, Lafayette, San Pablo, and Upper San Leandro storage/terminal reservoirs. EBMUD also has a contract with the U.S. Bureau of Reclamation to obtain water from the American River via the Folsom South Canal, but these facilities have yet to be built because of litigation opposing further diversions from the Sacramento River Delta.

EBMUD faces water supply problems such as the growing risk of aqueduct failure in the Delta, increasing shortages in dry periods, and increased difficulty in maintaining high quality drinking water. In response, EBMUD has developed a Water Supply Management Program, in which recycled water has been identified as a key supplemental water supply. The City of Berkeley is located in one of EBMUD’s identified water reuse zones. Some of the recycled water demands identified by EBMUD in the City of Berkeley include irrigation, toilet flushing, commercial process water, and decorative fountains. EBMUD’s Non-Potable Water Policy 73 (Policy 73) seeks to implement recycled water programs. Policy 73 requires that, when non-potable water is available, customers of EBMUD use non-potable water for non-domestic purposes when it is of adequate quality and quantity, available at reasonable cost, not detrimental to public health, and not injurious to plant life, fish and wildlife.

The proposed project would add to the City’s demand for water that the General Plan EIR has identified may not be satisfied by existing water supplies. Policy EM-26 in the City of Berkeley General Plan promotes water conservation through City programs and requirements, including cooperation with EMBUD to make recycled water available for irrigation and other uses. Compliance with standard City requirements for incorporating water conservation measures into the project design will ensure efficient use of water at the site and minimize the project’s potential water demand to a level that is considered less than significant.

The proposed project is not subject to either an assessment required by Senate Bill 221 (project is consistent with the General Plan, is not subject to a referendum, and is not a subdivision) or an assessment required by Senate Bill 610 (project consists of less than 500 units and 500,000 sq. ft. of commercial space, and will have fewer than 1,000 employees).

Storm Water: Most of the creeks in Berkeley (except in a few locations) have been culverted, forming the basis of the storm drain system layout. Berkeley’s original storm drain system is over 100 years old. Prior to 1945, the system conveyed both untreated sanitary sewer and storm water to
the San Francisco Bay. The storm drain system was separated from the sanitary system by 1961, with the exception of 72 sewer-to-storm drain bypass installations.

Berkeley has approximately 78 miles of storm drains ranging from 6 inches to 6 feet in diameter. In addition, there are approximately 1,900 catch basins and 4,000 storm inlets/outlets which divert the storm water runoff into the underground mains. Maintenance and improvement of the system is paid for by the General Fund and through hook-up fees paid by new development.

The proposed project would connect to the existing stormwater system. The project applicant would be required to pay the cost of installing new storm drains at the project site. The project would not increase impervious surfaces at the site and would therefore not result in increased amounts of stormwater. Construction impacts could occur from the construction of additional pipelines to connect to the existing storm water system. Implementation of the City’s standard conditions for controlling runoff from the construction site would reduce this impact to less than significant.

Solid waste. Proposed project operations would increase the amount of solid waste generated in the City of Berkeley. According to the Integrated Waste Management Board’s Jurisdiction Profile for the City of Berkeley, on average, each resident generates approximately 2.7 pounds per day of solid waste. Retail food stores generate approximately 2.9 tons of solid waste per employee per year. Using these estimates, the residential portion of the proposed project would be anticipated to generate approximately 6,370 pounds per week, and the commercial uses would generate approximately 2,231 pounds per week. The City’s Public Works staff visited other Trader Joe’s stores and discussed the solid waste and recycling operations with Trader Joe’s representatives. Based on these observations, the commercial uses at the site (Trader Joe’s plus the separate retail space) are expected to generate approximately 40 cubic yards of solid waste per week.18

Solid waste would be transported from the Berkeley Transfer Station, located at 1021 Second Street, to the Altamont Landfill and Resource Recovery Facility, located near the Altamont Pass, northeast of the City of Livermore. This landfill will not reach capacity within the next 20 years and is estimated to reach its capacity in approximately 80 years (Benenson, 2002). The proposed project would use an incremental portion of landfill capacity and would not significantly lessen landfill capacity at the Altamont Landfill Facility.

In 2002, the City of Berkeley diverted approximately 49 percent of its solid waste from landfills through recycling and/or composting efforts (CIWMB, 2003). The project site could result in one to two pounds of construction debris per square foot of construction, in addition to the demolition debris from the remains of the existing 20,375 sq. ft. single level structure. Prior to approval of large development projects, the City of Berkeley Solid Waste Management Division staff reviews proposed plans for the adequate design of trash and recycling facilities. In addition, the City’s standard conditions of approval require the submittal of a Construction and Demolition Recycling Plan prior to building permit issuance. The purpose of the plan is to divert as much debris as possible.

possible from the waste stream. Implementation of these standard measures reduce the impact of the proposed project and help the city to comply with state laws regulating waste reduction.

Issues (and Supporting Information Sources):

XVII. MANDATORY FINDINGS OF SIGNIFICANCE

- **a)** Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

 - [] Potentially Significant Impact
 - [x] Mitigation Incorporation
 - [] Less Than Significant Impact
 - [] No Impact

Discussion

The proposed project will not degrade the quality of the environment with respect to plant or animal habitats as the proposed project site is located in an urban area where no known significant species or habitats currently exist. No important examples of major periods of California history or prehistory exist on the site. However, mitigation measures are included in the event that unanticipated archaeological or paleontological resources are uncovered during construction activities to ensure that resources potentially important California prehistory are not eliminated.

- **b)** Does the project have impacts that are individually limited, but cumulative considerable? (“Cumulative considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

 - [] Potentially Significant Impact
 - [x] Mitigation Incorporation
 - [] Less Than Significant Impact
 - [] No Impact

Discussion

The impacts of the proposed project, when combined with approved but not yet built residential and mixed-use residential projects within the vicinity of the project site will not result in significantly considerable cumulative effects above and beyond what was already analyzed within the City of Berkeley Draft General Plan EIR (LSA Associates, February 2001), at full build out. The project includes measures (such as transportation improvements) to mitigate its cumulatively significant traffic impacts.
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

☐ ☒ ☐ ☐ ☐

Discussion

The project will not result in any potential environmental effects that will cause substantial adverse effects on human beings, upon implementation of the identified mitigation measures. The proposed project does not entail the use, storage or handling of any significant amounts of hazardous substances.
LIST OF SOURCES CONSULTED

Alameda County, *Open Space, Conservation and Recreation Element*, May 1, 1994,

Benenson, Heidi, Waste Management, email communication, October 23, 2002.

California Department of Conservation, *Alameda County Important Farmland 1998*.

California Geological Survey (CGS, formerly California Department of Conservation, Division of Mines and Geology), *Special Studies Zone Map, Oakland West Quadrangle*, January 1, 1982.

California Geological Survey (CGS, formerly California Department of Conservation, Division of Mines and Geology), Special Publication 117: *Guidelines for Evaluating and Mitigating Seismic Hazards in California*, 1997

California Geological Survey (CGS, formerly California Department of Conservation, Division of Mines and Geology), *Seismic Hazard Zones Map, Parts of the Oakland West Quadrangle*, March 30, 2000

City of Berkeley, University Avenue Strategic Plan Goals, November 1996.

Environmental Science Associates, Update to Historical Analysis, April 2006.

Hillier, Peter, Assistant Public Works Director. *Memorandum to Zoning Adjustments Board with Staff Comments on Transportation Commission Motion of April 20, 2006*, May 1, 2006.

Levy, Tania, City of Berkeley Department of Public Works, Solid Waste Division, e-mail correspondence, February 2006.

Orth, David, Deputy Fire Chief, Berkeley Fire Department, written communication, April 22, 2003.

Orth, David, Deputy Fire Chief. Personal Communication with Steven Ross, Senior Planner. February 27, 2006.

Site Visits, 2002-2006.

Yee, Henry, Supervising Civil Engineer, City of Berkeley Public Works Department, Sewer Division, personal communication, April 24, 2003.

Zoning Project Application, Plans, and related information in project file.