<table>
<thead>
<tr>
<th>Impacts</th>
<th>Mitigation Measures</th>
<th>Monitoring Responsibility</th>
<th>Monitoring Timing</th>
<th>Verification (Date and Initials)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the construction schedule in writing prior to the beginning of construction. Designate a “construction liaison” that would be responsible for responding to any local complaints about construction noise. The liaison would determine the cause of the noise complaints (e.g., starting too early, bad muffler, etc.) and institute reasonable measures to correct the problem. Conspicuously post a telephone number for the liaison at the construction site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NOI-6 The proposed project would expose residences, businesses, and historic structures within or in the vicinity of the Downtown Area to construction-related vibration during the excavation and foundation work of the buildings constructed during the DAP, a significant impact. | NOI-6 Avoidance of Pile-Driving/Site-Specific Vibration Studies/Monitoring/ Contingency Planning. The following measures are recommended to reduce vibration from construction activities:
- Avoid impact pile-driving where possible. Drilled piles causes lower vibration levels where geological conditions permit their use.
- Avoid using vibratory rollers and tampers near sensitive areas.
- In areas where project construction is anticipated to include vibration generating activities, such as pile-driving in close proximity to existing structures, site-specific vibration studies should be conducted to determine the area of impact and to present appropriate mitigation measures that may include the following:
 o Identification of sites that would include vibration compaction activities such as pile-driving and | City of Berkeley Planning Department, Land Use Division | Prior to the issuance of a Building Permit | |
<table>
<thead>
<tr>
<th>Impacts</th>
<th>Mitigation Measures</th>
<th>Monitoring Responsibility</th>
<th>Monitoring Timing</th>
<th>Verification (Date and Initials)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>that have the potential to generate groundborne vibration, and the sensitivity of nearby structures to groundborne vibration. Vibration limits should be applied to all vibration-sensitive structures located within 200 feet of the project. A qualified structural engineer should conduct this task.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Development of a vibration monitoring and construction contingency plan to identify structures where monitoring would be conducted, set up a vibration monitoring schedule, define structure-specific vibration limits, and address the need to conduct photo, elevation, and crack surveys to document before and after construction conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Construction contingencies would be identified for when vibration levels approached the limits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o At a minimum, vibration monitoring should be conducted during initial demolition activities and during pile-driving activities. Monitoring results may indicate the need for more or less intensive measurements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o When vibration levels approach limits, suspend construction and implement contingencies to either lower vibration levels or secure the affected structures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Conduct post-survey on structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts</td>
<td>Mitigation Measures</td>
<td>Monitoring Responsibility</td>
<td>Monitoring Timing</td>
<td>Verification (Date and Initials)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>where either monitoring has indicated high levels or complaints of damage has been made. Make appropriate repairs or compensation where damage has occurred as a result of vibration.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUSTAINABLE PROJECT GOALS

- INTEGRATED SUN SHADES FOR WESTERN SOLAR ORIENTATION
- ROOF TRELLIS WITH INTEGRATED PHOTOVOLTAIC PANELS
- DECKS PROVIDE SHADE FOR UNITS BELOW
- OPERABLE WINDOWS PROVIDE NATURAL VENTILATION
- LOW E GLAZING CURTAIN WALL SYSTEM
- ROOF TOP GARDENS TO REDUCE HEAT ISLAND
- COMMUNITY GARDENS
- HORIZONTAL METAL SUN SHADES FOR SOUTHERN SOLAR ORIENTATION
- GREEN WALL
- HORIZONTAL PHOTOVOLTAIC SUN SHADES FOR SOUTHERN SOLAR ORIENTATION

MVEI
• Simplified Curtain wall system at Glass shoulders. Spandrel glass to conceal concrete floors.
• Aluminum panel at parapet of curtain wall to match color of aluminum panels at the base of tower.
• Simplified Photovoltaic panels integrated into curtain wall system.
- Articulation of the retail base creating identity and variety at the pedestrian level while conserving a cohesive overall design.
- Corner Restaurant with Nana wall system allowing indoor outdoor relationship with high ceilings.
- Private patio for restaurant outdoor dining.
- Outdoor seating area designated for public use.
• Articulation of the retail base creating identity and variety at the pedestrian level while conserving a cohesive overall design.
• Vertical photovoltaic sun shade devices integrated into the Western curtain wall system.
Articulation of the retail base creating identity and variety at the pedestrian level while conserving a cohesive overall design.
• Curtain wall system applied to shoulder massing.
- Entry Garage to have steel canopy similar to Leasing office entry.
- Garage entry gate design to be similar to outdoor dining patio fence.
- Residential Patio decks with metal railings to have similar design theme of entry garage gate.
- Pedestrian scale view of Harold Way and Kittredge Street.
Pedestrian scale view towards tower
Detail indicating aluminum panel under decks, integrated into the concrete floor slabs
Pedestrian scale view up towards tower.
Detail indicating transition of material from curtain wall system to brick panel.
• Vertical photovoltaic sun shade devices integrated into the Western curtain wall system. Integrated into curtain wall system.
Integrated photovoltaic louvers at curtain wall

Integrated sun shades with punched
perforated panels on upper
levels providing natural light.

Horizontal photovoltaic sun shade devices integrated into the South curtain wall system, connected into the floor system and aligned vertically with curtain system. Simplified curtain wall system, and to include spandrel glass to conceal concrete floor slabs.
• Night view at a pedestrian level view
- Sandstone: Aluminum Curtain wall system
- VUE 24-30: Reflected Curtain Glass, Transmitted Curtain Glass
- Sea Wolf: Aluminum metal Accent
- Curtain Wall vents
- Pre-cast Architectural Panels: Red
- Curtain Wall Brick system
- Photovoltaic sun shades
THE RESIDENCES AT BERKELEY PLAZA

[Diagram of architectural details and perspectives of the building]